首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cutaneous T-cell lymphoma (CTCL) is characterized by constitutive activation of nuclear factor κB (NF-κB), which plays a crucial role in the survival of CTCL cells and their resistance to apoptosis. NF-κB activity in CTCL is inhibited by the proteasome inhibitor bortezomib; however, the mechanisms remained unknown. In this study, we investigated mechanisms by which bortezomib suppresses NF-κB activity in CTCL Hut-78 cells. We demonstrate that bortezomib and MG132 suppress NF-κB activity in Hut-78 cells by a novel mechanism that consists of inducing nuclear translocation and accumulation of IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha), which then associates with NF-κB p65 and p50 in the nucleus and inhibits NF-κB DNA binding activity. Surprisingly, however, while expression of NF-κB-dependent antiapoptotic genes cIAP1 and cIAP2 is inhibited by bortezomib, expression of Bcl-2 is not suppressed. Chromatin immunoprecipitation indicated that cIAP1 and cIAP2 promoters are occupied by NF-κB p65/50 heterodimers, whereas Bcl-2 promoter is occupied predominantly by p50/50 homodimers. Collectively, our data reveal a novel mechanism of bortezomib function in CTCL and suggest that the inhibition of NF-κB-dependent gene expression by bortezomib is gene specific and depends on the subunit composition of NF-κB dimers recruited to NF-κB-responsive promoters.  相似文献   

2.
Smac mimetic compounds (SMCs) potentiate TNFα-mediated cancer cell death by targeting the inhibitor of apoptosis (IAP) proteins. In addition to TNFα, the tumor microenvironment is exposed to a number of pro-inflammatory cytokines, including IL-1β. Here, we investigated the potential impact of IL-1β on SMC-mediated death of cancer cells. Synergy was seen in a subset of a diverse panel of 21 cancer cell lines to the combination of SMC and IL-1β treatment, which required IL-1β-induced activation of the NF-κB pathway. Elevated NF-κB activity resulted in the production of TNFα, which led to apoptosis dependent on caspase-8 and RIP1. In addition, concurrent silencing of cIAP1, cIAP2, and X-linked IAP by siRNA was most effective for triggering IL-1β-mediated cell death. Importantly, SMC-resistant cells that produced TNFα in response to IL-1β treatment were converted to an SMC-sensitive phenotype by c-FLIP knockdown. Reciprocally, ectopic expression of c-FLIP blocked cell death caused by combined SMC and IL-1β treatment in sensitive cancer cells. Together, our study indicates that a positive feed-forward loop by pro-inflammatory cytokines can be exploited by SMCs to induce apoptosis in cancer cells.  相似文献   

3.
Bindarit     
The activation of nuclear factor (NF)κB pathway and its transducing signaling cascade has been associated with the pathogenesis of many inflammatory diseases. The central role that IκBα and p65 phosphorylation play in regulating NFκB signalling in response to inflammatory stimuli made these proteins attractive targets for therapeutic strategies. Although several chemical classes of NFκB inhibitors have been identified, it is only for a few of those that a safety assessment based on a comprehensive understanding of their pharmacologic mechanism of action has been reported. Here, we describe the specific anti-inflammatory effect of bindarit, an indazolic derivative that has been proven to have anti-inflammatory activity in a variety of models of inflammatory diseases (including lupus nephritis, arthritis and pancreatitis). The therapeutic effects of bindarit have been associated with its ability to selectively interfere with monocyte recruitment and the "early inflammatory response," although its specific molecular mechanisms have remained ill-defined. For this purpose, we investigated the effect of bindarit on the LPS-induced production of inflammatory cytokines (MCP-1 and MCPs, IL-12β/p40, IL-6 and IL-8/KC) in both a mouse leukaemic monocyte-macrophage cell line and bone marrow derived macrophages (BMDM). Bindarit inhibits the LPS-induced MCP-1 and IL-12β/p40 expression without affecting other analyzed cytokines. The effect of bindarit is mediated by the downregulation of the classical NFκB pathway, involving a reduction of IκBα and p65 phosphorylation, a reduced activation of NFκB dimers and a subsequently reduced nuclear translocation and DNA binding. Bindarit showed a specific inhibitory effect on the p65 and p65/p50 induced MCP-1 promoter activation, with no effect on other tested activated promoters. We conclude that bindarit acts on a specific subpopulation of NFκB isoforms and selects its targets wihtin the whole NFκB inflammatory pathway. These findings pave the way for future applications of bindarit as modulator of the inflammatory response.  相似文献   

4.
目的: 探讨miR-520a-3p调控宫颈癌细胞因子分泌的分子机制。方法: 通过TargetScanHuman分析miR-520a-3p与NF-κB复合体亚基RELA的匹配情况,然后通过荧光素酶报告系统检测miR-520a-3p是否靶向NF-κB复合体亚基RELA;使用LPS刺激宫颈癌HELA细胞后,将miR-520a-3p mimics与转染试剂混合后滴入HELA细胞中,此为过表达组;将miR-520a-3p inhibitor与转染试剂混合后滴入HELA细胞中,此为敲低组,通过酶联免疫吸附试验检测过表达组和敲低组GCSF, GM-CSF, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12 p40, IL-12 p70, IL-13, IL-17, IFN-γ, MCP-1, MCP-5, RANTES, TNFα的表达水平。每次实验重复3次。结果: miR-520a-3p靶向RELA的3’UTR;LPS激活NF-kB信号通路后,宫颈癌HELA细胞分泌的细胞因子GCSF, GM-CSF, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12 p40, IL-12 p70, IL-13, IL-17, IFN-γ, MCP-1, MCP-5, RANTES, TNFα的蛋白表达水平上升(P<0.05);过表达组中NF-κB复合体亚基RELA的蛋白表达水平下降,宫颈癌HELA细胞分泌的上述细胞因子的蛋白表达水平下降(P<0.05);敲低组中NF-κB复合体亚基RELA的蛋白表达水平上升,宫颈癌HELA细胞分泌的上述细胞因子的蛋白表达水平上升(P<0.05)。结论: miR-520a-3p通过靶向NF-κB信号通路的关键分子RELA抑制宫颈癌HELA细胞的细胞因子分泌。  相似文献   

5.
6.
The relationship between the mitogen‐activated protein kinase response, nuclear factor‐κB (NFκB) expression and the apoptosis in human acute promyelocytic leukaemia NB4 cells treated with vinblastine was investigated in this work. Cell viability, subdiploid DNA and cell cycle were analysed by propidium iodide permeability and flow cytometry analyses. Apoptosis was determined by annexin V‐Fluorescein isothiocyanate assays. Western‐blot analysis was used for determination of expression levels of apoptotic factors (p53, Bax and Bcl2), intracellular kinases [serine/threonine‐specific protein kinase, extracellular signal‐regulated kinase and c‐Jun N‐terminal kinase (JNK)], NFκB factor and caspases. Electrophoretic mobility shift assay was usefully applied to study DNA‐NFκB interaction. In NB4 cells, vinblastine produces alteration of p53 and DNA fragmentation. Vinblastine treatment had an antiproliferative effect via the induction of apoptosis producing Bax/Bcl‐2 imbalance. Vinblastine treatment suppressed NFκB expression and depressed NFκB‐DNA binding activity while maintaining JNK activation that subsequently resulted in apoptotic response through caspase‐dependent pathway. Our study provides a possible anti‐cancer mechanism of vinblastine action on NB4 cells by deregulation of the intracellular signalling cascade affecting to JNK activation and NFκB expression. Moreover, JNK activation and NFκB depression can be very significant factors in apoptosis induction by vinblastine. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Parkinson’s disease (PD) is a common neurodegenerative disease, and its etiology remains obscure. Increasing evidence has suggested an important role for environmental factors such as exposure to pesticides in increasing the risk of developing PD and inflammation is the early incident during the process of PD. In this study, we measure the pro-inflammatory cytokines by enzyme-linked immunosorbnent assay and RT-PCR methods; analyze the reactive oxygen species by DCFH-DA; detected nuclear factor κB (NFκB) translocation by western blot and immunofluorescence methods; and analyze the phosphorylation of mitogen-activated protein (MAP) kinase and protein level of Nurr1 by western blot. Results showed that rotenone could induce tumor neurosis factor α (TNFα) and interleukin 1β (IL-1β) release from BV-2 cells, enhance TNFα and IL-1β mRNA levels in substantia nigra lesioned by rotenone; also, rotenone could increase the phosphorylation of inhibitor of κB (IκB), extracellular regulated protein kinase , c-Jun N-terminal kinase, p38 MAP kinases and promote p65 subunit of NFκB translocation to nuclear; at the same time, rotenone could decrease the protein level of Nurr1 in nuclear. So, rotenone exerted toxicity through activating microglia, and its mechanism might be associated with NFκB signal pathway.  相似文献   

8.
9.
Pro-inflammatory cytokines IL-1β and TNFα play important roles in the manifestation of arthritis by disrupting the anabolic and catabolic activities of the chondrocytes. We observed a novel mechanism of cartilage regulation by which muscle cells diminish the response of chondrocytes to IL-1β and TNFα. We found that chondrocytes cocultured with muscle cells or cultured in muscle cell-conditioned medium significantly enhanced the expression of cartilage matrix proteins (collagen II and collagen IX) and resisted IL-1β and TNFα-induced cartilage damage. Our data suggest that this effect is achieved by inhibiting the expression of key components of the signaling pathways of pro-inflammatory cytokines (including NFκB, ESE-1, Cox-2, and GADD45β), leading to attenuated expression of cartilage-degrading enzymes (MMPs and ADAMTS4). Therefore, our work unveils a potential role of muscle in regulating cartilage homeostasis and response to pro-inflammatory stimuli, and provides insights on designing treatment strategies for joint degenerative diseases such as arthritis.  相似文献   

10.
11.
Interleukin-32 (IL-32) is an inflammatory cytokine produced mainly by T, natural killer, and epithelial cells. Previous studies on IL-32 have primarily investigated its proinflammatory properties. The IL-32 also has been described as an activator of the p38 mitogen-activated protein kinase (MAPK) and NF-κB, and induces several cytokines. In this study, we hypothesized that the inflammatory regulators NF-κB, MAP kinase, STAT1, and STAT3 are associated with the expression of the IL-32 protein in human calcified aortic valve cells. This study comprised aortic valve sclerotic patients and control group patients without calcified aortic valve. Increased IL-32 expression in calcified aortic valvular tissue was shown by immunohistochemical staining and western blotting. There was an increase in NF-κB p65 level, p-ERK, p-JNK, and p-p38 MAPK activation underlying IL-32 expression in the study. The level of p-STAT3 but not p-STAT1 was found to be increased in calcified aortic valve tissue. In cultured primary human aortic valve interstitial cells, inhibition of NF-κB or MAPK kinase pathways results in a decrease of IL-32 expression. Treatment of recombinant IL-32 induced the levels of TNF-α, IL-6, IL-1β, and IL-8. Our findings demonstrate that IL-32 may be an important pro-inflammatory molecule involved in calcific aortic valve disease.  相似文献   

12.
Cancer cells undergo epithelial-mesenchymal transition (EMT) during invasion and metastasis. Although transforming growth factor-β (TGF-β) and pro-inflammatory cytokines have been implicated in EMT, the underlying molecular mechanisms remain to be elucidated. Here, we studied the effects of proinflammatory cytokines derived from the mouse macrophage cell line RAW 264.7 on TGF-β-induced EMT in A549 lung cancer cells. Co-culture and treatment with conditioned medium of RAW 264.7 cells enhanced a subset of TGF-β-induced EMT phenotypes in A549 cells, including changes in cell morphology and induction of mesenchymal marker expression. These effects were increased by the treatment of RAW 264.7 cells with lipopolysaccharide, which also induced the expression of various proinflammatory cytokines, including TNF-α and IL-1β. The effects of conditioned medium of RAW 264.7 cells were partially inhibited by a TNF-α neutralizing antibody. Dehydroxy methyl epoxyquinomicin, a selective inhibitor of NFκB, partially inhibited the enhancement of fibronectin expression by TGF-β, TNF-α, and IL-1β, but not of N-cadherin expression. Effects of other pharmacological inhibitors also suggested complex regulatory mechanisms of the TGF-β-induced EMT phenotype by TNF-α stimulation. These findings provide direct evidence of the effects of RAW 264.7-derived TNF-α on TGF-β-induced EMT in A549 cells, which is transduced in part by NFκB signalling.  相似文献   

13.
14.
15.
Proinflammatory cytokines produced by immune cells destroy pancreatic beta cells in type 1 diabetes. The aim of this study was to investigate the cytokine network and its effects in insulin-secreting cells. INS1E cells were exposed to different combinations of proinflammatory cytokines. Cytokine toxicity was estimated by MTT assay and caspase activation measurements. The NFκB-iNOS pathway was analyzed by a SEAP reporter gene assay, Western-blotting and nitrite measurements. Gene expression analyses of ER stress markers, Chop and Bip, were performed by real-time RT-PCR. Cytokines tested in this study, namely IL-1β, TNFα and IFNγ, had deleterious effects on beta cell viability. The most potent toxicity exhibited IL-1β and its combinations with other cytokines. The toxic effects of IL-1β towards cell viability, caspase activation and iNOS activity were dependent on nitric oxide and abolished by an iNOS blocker. IL-1β was the strongest inducer of the NFκB activation. An iNOS blocker inhibited IL-1β-mediated NFκB activation in the first, initial phase of cytokine action, but did not affect significantly NFκB activation after prolonged incubation. Interestingly iNOS protein expression was induced predominantly by IL-1β and decreased in the presence of an iNOS blocker in the case of a short time exposure. The changes in the expression of ER stress markers were also almost exclusively dependent on the IL-1β presence and counteracted by iNOS blockade. Thus cytokine-induced beta cell death is primarily IL-1β mediated with a NO-independent enhancement by TNFα and IFNγ. The deleterious effects on cell viability and function are crucially dependent on IL-1β-induced nitric oxide formation.  相似文献   

16.
Tolerance to bacterial cell wall components including bacterial lipoprotein (BLP) represents an essential regulatory mechanism during bacterial infection. Reduced Toll-like receptor 2 (TLR2) and IL-1 receptor-associated kinase 1 (IRAK-1) expression is a characteristic of the downregulated TLR signaling pathway observed in BLP-tolerised cells. In this study, we attempted to clarify whether TLR2 and/or IRAK-1 are the key molecules responsible for BLP-induced tolerance. Transfection of HEK293 cells and THP-1 cells with the plasmid encoding TLR2 affected neither BLP tolerisation-induced NF-κB deactivation nor BLP tolerisation-attenuated pro-inflammatory cytokine tumor necrosis factor alpha (TNF-α) production, indicating that BLP tolerance develops despite overexpression of TLR2 in these cells. In contrast, overexpression of IRAK-1 reversed BLP-induced tolerance, as transfection of IRAK-1 expressing vector resulted in a dose-dependent NF-κB activation and TNF-α release in BLP-tolerised cells. Furthermore, BLP-tolerised cells exhibited markedly repressed NF-κB p65 phosphorylation and impaired binding of p65 to several pro-inflammatory cytokine gene promoters including TNF-α and interleukin-6 (IL-6). Overexpression of IRAK-1 restored the nuclear transactivation of p65 at both TNF-α and IL-6 promoters. These results indicate a crucial role for IRAK-1 in BLP-induced tolerance, and suggest IRAK-1 as a potential target for manipulation of the TLR-mediated inflammatory response during microbial sepsis.  相似文献   

17.
Infertility affects one in seven couples and ascending bacterial infections of the male genitourinary tract by Escherichia coli are an important cause of male factor infertility. Thus understanding mechanisms by which immunocompetent cells such as testicular macrophages (TM) respond to infection and how bacterial pathogens manipulate defense pathways is of importance. Whole genome expression profiling of TM and peritoneal macrophages (PM) infected with uropathogenic E. coli (UPEC) revealed major differences in regulated genes. However, a multitude of genes implicated in calcium signaling pathways was a common feature which indicated a role of calcium-dependent nuclear factor of activated T cells (NFAT) signaling. UPEC-dependent NFAT activation was confirmed in both cultured TM and in TM in an in vivo UPEC infectious rat orchitis model. Elevated expression of NFATC2-regulated anti-inflammatory cytokines was found in TM (IL-4, IL-13) and PM (IL-3, IL-4, IL-13). NFATC2 is activated by rapid influx of calcium, an activity delineated to the pore forming toxin alpha-hemolysin by bacterial mutant analysis. Alpha-hemolysin suppressed IL-6 and TNF-α cytokine release from PM and caused differential activation of MAP kinase and AP-1 signaling pathways in TM and PM leading to reciprocal expression of key pro-inflammatory cytokines in PM (IL-1α, IL-1β, IL-6 downregulated) and TM (IL-1β, IL-6 upregulated). In addition, unlike PM, LPS-treated TM were refractory to NFκB activation shown by the absence of degradation of IκBα and lack of pro-inflammatory cytokine secretion (IL-6, TNF-α). Taken together, these results suggest a mechanism to the conundrum by which TM initiate immune responses to bacteria, while maintaining testicular immune privilege with its ability to tolerate neo-autoantigens expressed on developing spermatogenic cells.  相似文献   

18.
The ischemia-reperfusion (I/R) induced skin lesion has been identified as primary cause of pressure ulcer. Better understanding of the mechanism is required for new therapy development. Leucine rich repeat containing protein 19 (LRRC19) is a recently discovered transmembrane protein containing leucine-rich repeats and plays a role in immune response. To investigate the role of LRRC19 in pressure ulcers, mouse ulcer model was established with two cycles of I/R. The expression of LRRC19 was assessed during injury. siRNA mediated LRRC19 downregulation was applied to investigate the disease severity, immune cell infiltration and pro-inflammatory cytokines production. The primary skin fibroblasts were stimulated with IL-1β to dissect the molecular mechanism. LRRC19 was readily induced in I/R induced lesion site in a pattern mimicking the disease progress as measured by wound area. Knockdown of LRRC19 by siRNA significantly alleviated the disease severity and attenuated immune cell infiltration and pro-inflammatory cytokines production. In primary skin fibroblast model, siRNA knockdown of LRRC19 suppressed IL-1β mediated NFκB activation and its downstream cytokines production. LRRC19 was a novel factor for I/R-induced tissue damage by promoting NFκB dependent pro-inflammatory response. Our results supported that LRRC19 could be a potential therapeutic target for pressure ulcers.  相似文献   

19.
20.
IL-17C is a member of the IL-17 family of cytokines. The expression of IL-17C has been demonstrated to be strongly induced by TNFα in human keratinocytes, and recently the level of IL-17C was found to be increased in the inflammatory skin disease psoriasis. However, little is known about the molecular mechanisms involved in the regulation of IL-17C. Here, we show that pretreatment of cultured human keratinocytes with the inhibitor of κB kinase 2 inhibitor, SC-514, resulted in a significant reduction in both IL-17C mRNA and protein expression, indicating the significance of this pathway in the regulation of IL-17C. NF-κB binding sites were identified upstream from the IL-17C gene, and by electrophoretic mobility shift assay NF-κB was shown to bind to all three identified binding sites. Moreover, NF-κB binding to these sites was inducible by TNFα. Supershift analysis revealed binding of the NF-κB subunits p65 and p50 to all three NF-κB binding sites. To determine the contribution of NF-κB in IL-17C expression, we conducted luciferase gene reporter experiments and demonstrated that a 3204-bp promoter fragment of IL-17C containing three putative NF-κB binding sites was strongly activated by TNFα. Interestingly, mutations of the three NF-κB binding sites revealed that one specific NF-κB binding site was crucial for the TNFα-mediated IL-17C induction because mutation of this specific site completely abolished TNFα-induced IL-17C promoter activation. We conclude that the activation of NF-κB (p65/p50) is crucial for the TNFα-induced stimulation of IL-17C expression in human keratinocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号