首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is an interest in developing approaches to “ecosystem-based” management for coral reefs. One aspect of ecosystem performance is to monitor carbon metabolism of whole communities. In an effort to explore robust techniques to monitor the metabolism of fringing reefs, especially considering the possible effects of ocean acidification, a yearlong study of the carbonate chemistry of a nearshore fringing reef in Hawaii was conducted. Diurnal changes in seawater carbonate chemistry were measured once a week in an algal-dominated and a coral-dominated reef flat on the Waimanalo fringing reef, Hawaii, from April of 2010 until May of 2011. Calculated rates of gross primary production (GPP) and net community calcification (G) were similar to previous estimates of community metabolism for other coral reefs (GPP 971 mmol C m?2 d?1; G 186 mmol CaCO3 m?2 d?1) and indicated that this reef was balanced in terms of organic metabolism, exhibited net calcification, and was a net source of CO2 to the atmosphere. Average slopes of total alkalinity versus dissolved inorganic carbon (TA–DIC slope) for the coral-dominated reef flat exhibited a greater calcification-to-net photosynthesis ratio than for the algal-dominated reef flat (coral slope vs. algal slope). Over the course of the time series, TA–DIC slopes remained significantly different between sites and were not correlated with diurnal averages in reef-water residence time or solar irradiance. These characteristic slopes for each reef flat reflect the relationship between carbon and carbonate community metabolism and can be used as a tool to monitor ecosystem function in response to ocean acidification.  相似文献   

2.
Number, biomass and production of phytoplankton, bacteria, micro- and mesozooplankton and turnover of labile and stable organic matter were measured in waters over some Capricornia round reefs, and over the reefs of Lizard Island. Primary production was 10 to 40 mg C m–3 d–1 but was lower over the living reefs. Microbial wet biomass in reef waters varied from 100 to 500 mg m–3, and production from 4 to 68 mg C m–3 d–1, which was commensurable with primary production. The biomass of microzooplankton (ciliates, zooflagellates and larvae) in waters of Lizard Island reefs reached 100–300 mg m–3. Mesozooplankton biomass at night in reef waters of Heron Island varied from 200 to 800 mg m–3. Its composition depended upon the tide phase. PB coefficients in bacterioplankton were 0.3 to 1.2 per day. The food demand of bacterioplankton in waters over the reefs was 5 to 20 times higher than the primary phytoplankton production. Labile organic matter (LOM) doubled in waters after it stayed over living reef for several hours. The turnover time of LOM in reef waters was as short as 1–2 weeks.  相似文献   

3.
Highly variable thermal environments, such as coral reef flats, are challenging for marine ectotherms and are thought to invoke the use of behavioural strategies to avoid extreme temperatures and seek out thermal environments close to their preferred temperatures. Common to coral reef flats, the epaulette shark (Hemiscyllium ocellatum) possesses physiological adaptations to hypoxic and hypercapnic conditions, such as those experienced on reef flats, but little is known regarding the thermal strategies used by these sharks. We investigated whether H. ocellatum uses behavioural thermoregulation (i.e., movement to occupy thermally favourable microhabitats) or tolerates the broad range of temperatures experienced on the reef flat. Using an automated shuttlebox system, we determined the preferred temperature of H. ocellatum under controlled laboratory conditions and then compared this preferred temperature to 6 months of in situ environmental and body temperatures of individual H. ocellatum across the Heron Island reef flat. The preferred temperature of H. ocellatum under controlled conditions was 20.7 ± 1.5°C, but the body temperatures of individual H. ocellatum on the Heron Island reef flat mirrored environmental temperatures regardless of season or month. Despite substantial temporal variation in temperature on the Heron Island reef flat (15–34°C during 2017), there was a lack of spatial variation in temperature across the reef flat between sites or microhabitats. This limited spatial variation in temperature creates a low-quality thermal habitat limiting the ability of H. ocellatum to behaviourally thermoregulate. Behavioural thermoregulation is assumed in many shark species, but it appears that H. ocellatum may utilize other physiological strategies to cope with extreme temperature fluctuations on coral reef flats. While H. ocellatum appears to be able to tolerate acute exposure to temperatures well outside of their preferred temperature, it is unclear how this, and other, species will cope as temperatures continue to rise and approach their critical thermal limits. Understanding how species will respond to continued warming and the strategies they may use will be key to predicting future populations and assemblages.  相似文献   

4.
The abundance of reef builders, non-builders and the calcium carbonate produced by communities established in Calcification Accretion Units (CAUs) were determined in three Abrolhos Bank shallow reefs during the period from 2012 to 2014. In addition, the seawater temperature, the irradiance, and the amount and composition of the sediments were determined. The inner and outer reef arcs were compared. CAUs located on the inner reef shelf were under the influence of terrigenous sediments. On the outer reefs, the sediments were composed primarily of marine biogenic carbonates. The mean carbonate production in shallow reefs of Abrolhos was 579 ± 98 g m-2 y-1. The builder community was dominated by crustose coralline algae, while the non-builder community was dominated by turf. A marine heat wave was detected during the summer of 2013–2014, and the number of consecutive days with a temperature above or below the summer mean was positively correlated with the turf cover increase. The mean carbonate production of the shallow reefs of Abrolhos Bank was greater than the estimated carbonate production measured for artificial structures on several other shallow reefs of the world. The calcimass was higher than the non-calcareous mass, suggesting that the Abrolhos reefs are still in a positive carbonate production balance. Given that marine heat waves produce an increase of turf cover on the shallow reefs of the Abrolhos, a decrease in the cover represented by reef builders and shifting carbonate production are expected in the near future.  相似文献   

5.

Most laboratory experiments examining the effect of ocean acidification on marine organisms use stable pH/pCO2 treatments based on average projections for the open ocean. However, pH/pCO2 levels vary spatially and temporally in marine environments, and this variation can affect organism responses to pH/pCO2. On coral reefs, diel pH/pCO2 variability at the individual reef scale has been reported in a few studies, but variation among microhabitats within a reef remains poorly understood. This study determined the pH/pCO2 variability of three different reefs, and three contrasting coral reef microhabitats (dominated by hard coral, soft coral, or open substrate) within each reef. Three SeaFET pH loggers were deployed simultaneously at the three microhabitats within a reef over a 9-day period. This was repeated at three different reefs around the Lizard Island lagoon. The loggers recorded pHT and temperature every 5 min. Water samples were collected from each microhabitat during four points of the tidal cycle (high, low, rising, and falling) and analysed for total alkalinity and dissolved inorganic carbon. The data show a clear diel pCO2 cycle, increasing overnight and decreasing during the day, in association with photosynthesis and respiration cycles. Diel pCO2 differed more between reefs than between microhabitats within reefs. Variation between reefs was most likely influenced by water flow, with the more protected (low flow) reefs experiencing a greater range in pCO2 (Δ 250 μatm) than the exposed (high flow) reefs (Δ 116 μatm). These results add to a growing body of the literature on the diel variation of pCO2 of shallow, nearshore environments and suggest that when projecting future pCO2 levels, it is important to consider reef metabolism as well as physical and hydrodynamic factors.

  相似文献   

6.
Spatially adjacent habitats on coral reefs can represent highly distinct environments, often harbouring different coral communities. Yet, certain coral species thrive across divergent environments. It is unknown whether the forces of selection are sufficiently strong to overcome the counteracting effects of the typically high gene flow over short distances, and for local adaptation to occur. We screened the coral genome (using restriction site‐associated sequencing) and characterized both the dinoflagellate photosymbiont‐ and tissue‐associated prokaryote microbiomes (using metabarcoding) of a reef flat and slope population of the reef‐building coral, Pocillopora damicornis, at two locations on Heron Island in the southern Great Barrier Reef. Reef flat and slope populations were separated by <100 m horizontally and ~5 m vertically, and the two study locations were separated by ~1 km. For the coral host, genetic divergence between habitats was much greater than between locations, suggesting limited gene flow between the flat and slope populations. Consistent with environmental selection, outlier loci primarily belonged to the conserved, minimal cellular stress response, likely reflecting adaptation to the different temperature and irradiance regimes on the reef flat and slope. The prokaryote community differed across both habitat and, to a lesser extent, location, whereas the dinoflagellate photosymbionts differed by habitat but not location. The observed intraspecific diversity associated with divergent habitats supports that environmental adaptation involves multiple members of the coral holobiont. Adaptive alleles or microbial associations present in coral populations from the environmentally variable reef flat may provide a source of adaptive variation for assisted evolution approaches, through assisted gene flow, artificial cross‐breeding or probiotic inoculations, with the aim to increase climate resilience in the slope populations.  相似文献   

7.
Habitat use by the resident coral reef anemonefish, Amphiprion frenatus, was examined in the complex coral reef landscape of Shiraho Reef, Ishigaki Island, Okinawa, Japan, using an enlarged color aerial photograph processed using image analysis software as an accurate field map. The anemonefish inhabit assemblages of the host sea anemone, Entacmaea quadricolor (clonal type), which inhabit various patch reefs in the back reef moat. We located all patch reefs inhabited by the host in the map based on snorkel observations: 297 anemonefish were found in 93 host assemblages in the study site of 2.9 ha. These patch reefs could be recognized by the reef colors, including the shadows (blackish color) in the photograph. Using image analysis software, the colors of the patch reefs were chosen and pixels with the same color values were regarded as potential habitat patches for the fish (PHPs). PHPs were 3D patch reefs (>0.5 m in height). Total areas (TA) and total perimeters (TP) of PHPs were measured in nine quadrats in the digitized aerial photograph. Host abundance and anemonefish abundance in a quadrat showed stronger correlations with the product of TA and TP of PHPs than TA alone. A site with numerous large 3D patch reefs (≥0.75 m2 in situ) can be a better habitat for the fish than other sites consisting of several huge 3D patch reefs of the same total area. The methodology applied here may be useful for assessing the quality of habitats for small resident animals in shallow subtidal reefs.  相似文献   

8.
Coral cover has declined rapidly on Caribbean reefs since the early 1980s, reducing carbonate production and reef growth. Using a cross-regional dataset, we show that widespread reductions in bioerosion rates—a key carbonate cycling process—have accompanied carbonate production declines. Bioerosion by parrotfish, urchins, endolithic sponges and microendoliths collectively averages 2 G (where G = kg CaCO3 m−2 yr−1) (range 0.96–3.67 G). This rate is at least 75% lower than that reported from Caribbean reefs prior to their shift towards their present degraded state. Despite chronic overfishing, parrotfish are the dominant bioeroders, but erosion rates are reduced from averages of approximately 4 to 1.6 G. Urchin erosion rates have declined further and are functionally irrelevant to bioerosion on most reefs. These changes demonstrate a fundamental shift in Caribbean reef carbonate budget dynamics. To-date, reduced bioerosion rates have partially offset carbonate production declines, limiting the extent to which more widespread transitions to negative budget states have occurred. However, given the poor prognosis for coral recovery in the Caribbean and reported shifts to coral community states dominated by slower calcifying taxa, a continued transition from production to bioerosion-controlled budget states, which will increasingly threaten reef growth, is predicted.  相似文献   

9.
Samples of Lutjanus carponotatus (Lutjanidae) from reef flat (shallow) and reef slope (deep) sites around Heron and Wistari reefs on the southern Great Barrier Reef were examined for Pomphorhynchus heronensis (Acanthocephala). Individual fish from the reef slope had 0-9 (2.6) worms as compared with 1-122 (39.6) worms for individuals from the reef flat (P < 0.0001). Other variables (year, season, size of fish) made little contribution to the variation. Reef flat and reef slope sites were separated by as little as 300 m. These results imply both that the fish have very limited local movement and that transmission of the parasite is concentrated locally.  相似文献   

10.
We studied the diel timing of spawning in the demersally spawning Hawaiian damselfish, Dascyllus albisella, from mid-June to late-September 1997 at two small patch reefs in Hawaii. Our objectives were to elucidate daily timing of spawning in relation to water temperature, diel timing of hatching, and short-period spawning synchrony. Spawning occurred every 5–7 days at both reefs, with all spawning on a reef concluded either within a single day (1-day spawning) or within two successive days (2-day spawning). Spawning began in early morning and continued for most of the day. There was a significant, positive linear relationship between mean daily average water temperature (= daily average temperature averaged over the period starting from the day following the last spawning day of the preceding nest cycle till the day before the first spawning day of the current cycle) and peak spawning hour of day, for 1-day spawning, and the first and second days of 2-day spawning at both reefs. The relationship between mean daily average water temperature and peak spawning hour of day was comparable among all spawning-day classes and reefs. Hatching occurred on the fourth day of development throughout the study despite the 26.5–29.1°C change in water temperature during the study period, and hatching was restricted to within two hours after sunset. We propose that D. albisella's peak spawning time is positively correlated with increased water temperature because it maintains the benefits of synchronous spawning within two constraints: the narrow daily period of hatching, and the inverse relationship between water temperature and embryo developmental time.  相似文献   

11.
Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic–biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km) from 85% of our study locations. These metrics will help identify reef ecosystems most exposed to environmental stress as well as systems that may be more resistant or resilient to future climate change.  相似文献   

12.
The Andaman Sea and other macrotidal semi-enclosed tropical seas feature large amplitude internal waves (LAIW). Although LAIW induce strong fluctuations i.e. of temperature, pH, and nutrients, their influence on reef development is so far unknown. A better-known source of disturbance is the monsoon affecting corals due to turbulent mixing and sedimentation. Because in the Andaman Sea both, LAIW and monsoon, act from the same westerly direction their relative contribution to reef development is difficult to discern. Here, we explore the framework development in a number of offshore island locations subjected to differential LAIW- and SW-monsoon impact to address this open question. Cumulative negative temperature anomalies – a proxy for LAIW impact – explained a higher percentage of the variability in coral reef framework height, than sedimentation rates which resulted mainly from the monsoon. Temperature anomalies and sediment grain size provided the best correlation with framework height suggesting that so far neglected subsurface processes (LAIW) play a significant role in shaping coral reefs.  相似文献   

13.
While increasing atmospheric carbon dioxide (CO2) concentration alters global water chemistry (Ocean Acidification; OA), the degree of changes vary on local and regional spatial scales. Inshore fringing coral reefs of the Great Barrier Reef (GBR) are subjected to a variety of local pressures, and some sites may already be marginal habitats for corals. The spatial and temporal variation in directly measured parameters: Total Alkalinity (TA) and dissolved inorganic carbon (DIC) concentration, and derived parameters: partial pressure of CO2 (pCO2); pH and aragonite saturation state (Ωar) were measured at 14 inshore reefs over a two year period in the GBR region. Total Alkalinity varied between 2069 and 2364 µmol kg−1 and DIC concentrations ranged from 1846 to 2099 µmol kg−1. This resulted in pCO2 concentrations from 340 to 554 µatm, with higher values during the wet seasons and pCO2 on inshore reefs distinctly above atmospheric values. However, due to temperature effects, Ωar was not further reduced in the wet season. Aragonite saturation on inshore reefs was consistently lower and pCO2 higher than on GBR reefs further offshore. Thermodynamic effects contribute to this, and anthropogenic runoff may also contribute by altering productivity (P), respiration (R) and P/R ratios. Compared to surveys 18 and 30 years ago, pCO2 on GBR mid- and outer-shelf reefs has risen at the same rate as atmospheric values (∼1.7 µatm yr−1) over 30 years. By contrast, values on inshore reefs have increased at 2.5 to 3 times higher rates. Thus, pCO2 levels on inshore reefs have disproportionately increased compared to atmospheric levels. Our study suggests that inshore GBR reefs are more vulnerable to OA and have less buffering capacity compared to offshore reefs. This may be caused by anthropogenically induced trophic changes in the water column and benthos of inshore reefs subjected to land runoff.  相似文献   

14.
Coral reefs form the most diverse of all marine ecosystems on the Earth. Corals are among their main components and owe their bioconstructing abilities to a symbiosis with algae (Symbiodinium). The coral–algae symbiosis had been traced back to the Triassic (ca 240 Ma). Modern reef-building corals (Scleractinia) appeared after the Permian–Triassic crisis; in the Palaeozoic, some of the main reef constructors were extinct tabulate corals. The calcium carbonate secreted by extant photosymbiotic corals bears characteristic isotope (C and O) signatures. The analysis of tabulate corals belonging to four orders (Favositida, Heliolitida, Syringoporida and Auloporida) from Silurian to Permian strata of Europe and Africa shows these characteristic carbon and oxygen stable isotope signatures. The δ18O to δ13C ratios in recent photosymbiotic scleractinians are very similar to those of Palaeozoic tabulates, thus providing strong evidence of such symbioses as early as the Middle Silurian (ca 430 Ma). Corals in Palaeozoic reefs used the same cellular mechanisms for carbonate secretion as recent reefs, and thus contributed to reef formation.  相似文献   

15.
Ocean acidification (OA) is a major threat to marine ecosystems, particularly coral reefs which are heavily reliant on calcareous species. OA decreases seawater pH and calcium carbonate saturation state (Ω), and increases the concentration of dissolved inorganic carbon (DIC). Intense scientific effort has attempted to determine the mechanisms via which ocean acidification (OA) influences calcification, led by early hypotheses that calcium carbonate saturation state (Ω) is the main driver. We grew corals and coralline algae for 8–21 weeks, under treatments where the seawater parameters Ω, pH, and DIC were manipulated to examine their differential effects on calcification rates and calcifying fluid chemistry (Ωcf, pHcf, and DICcf). Here, using long duration experiments, we provide geochemical evidence that differing physiological controls on carbonate chemistry at the site of calcification, rather than seawater Ω, are the main determinants of calcification. We found that changes in seawater pH and DIC rather than Ω had the greatest effects on calcification and calcifying fluid chemistry, though the effects of seawater carbonate chemistry were limited. Our results demonstrate the capacity of organisms from taxa with vastly different calcification mechanisms to regulate their internal chemistry under extreme chemical conditions. These findings provide an explanation for the resistance of some species to OA, while also demonstrating how changes in seawater DIC and pH under OA influence calcification of key coral reef taxa.  相似文献   

16.
Knowledge on interactive effects of global (e.g. ocean warming) and local stressors (e.g. pollution) is needed to develop appropriate management strategies for coral reefs. Surfactants and diesel are common coastal pollutants, but knowledge of their effects on hard corals as key reef ecosystem engineers is scarce. This study thus investigated the physiological reaction of Pocillopora verrucosa from Lombok, Indonesia, to exposure with a) the water-soluble fraction of diesel (determined by total polycyclic aromatic hydrocarbons (PAH); 0.69 ± 0.14 mg L-1), b) the surfactant linear alkylbenzene sulfonate (LAS; 0.95 ± 0.02 mg L-1) and c) combinations of each pollutant with high temperature (+3°C). To determine effects on metabolism, respiration, photosynthetic efficiency and coral tissue health were measured. Findings revealed no significant effects of diesel, while LAS resulted in severe coral tissue losses (16–95% after 84 h). High temperature led to an increase in photosynthetic yield of corals after 48 h compared to the control treatment, but no difference was detected thereafter. In combination, diesel and high temperature significantly increased coral dark respiration, whereas LAS and high temperature caused higher tissue losses (81–100% after 84 h) and indicated a severe decline in maximum quantum yield. These results confirm the hypothesized combined effects of high temperature with either of the two investigated pollutants. Our study demonstrates the importance of reducing import of these pollutants in coastal areas in future adaptive reef management, particularly in the context of ocean warming.  相似文献   

17.
Inhaca Island (southern Mozambique) is located in a high-latitude setting along the seaward margins of the estuarine Maputo Bay and is subject to fluctuations in temperature and salinity, and high sedimentation and turbidity levels. Coral reefs are developed sporadically along the margins of intertidal channels, but framework development is severely restricted. Coral growth is bathymetrically limited (never exceeding 6-m depth), and framework accumulation is only present in the upper 1–2 m. Massive Porites sp. produce a basic reef structure, with other coral genera (mainly Acropora sp., Favia sp., Platygyra sp., Pocillopora sp., and Montipora sp.) colonizing available substrata. Sediment samples also indicate restricted carbonate sediment production, with siliciclastics (mainly quartz) a major sediment contributor (often >90%) and carbonate grain assemblages differing from those normally associated with lower-latitude reefs. Although corals, molluscs and coralline algae (including rhodoliths) represent dominant grain constituents, Halimeda is absent and there is a low diversity (four species identified) of benthic foraminifera (mainly Amphistegina sp.). Grain associations are therefore somewhat transitional in character, comprising elements of both tropical (chlorozoan) and temperate (foramol) grain assemblages. These patterns of reef and associated carbonate production emphasize the marginal character of these reef environments, which form one end member in a broad spectrum of marginal reef systems that are now being identified in a range of both high- and low-latitude settings.  相似文献   

18.
The response of species to global warming depends on how different populations are affected by increasing temperature throughout the species'' geographic range. Local adaptation to thermal gradients could cause populations in different parts of the range to respond differently. In aquatic systems, keeping pace with increased oxygen demand is the key parameter affecting species'' response to higher temperatures. Therefore, respiratory performance is expected to vary between populations at different latitudes because they experience different thermal environments. We tested for geographical variation in respiratory performance of tropical marine fishes by comparing thermal effects on resting and maximum rates of oxygen uptake for six species of coral reef fish at two locations on the Great Barrier Reef (GBR), Australia. The two locations, Heron Island and Lizard Island, are separated by approximately 1200 km along a latitudinal gradient. We found strong counter-gradient variation in aerobic scope between locations in four species from two families (Pomacentridae and Apogonidae). High-latitude populations (Heron Island, southern GBR) performed significantly better than low-latitude populations (Lizard Island, northern GBR) at temperatures up to 5°C above average summer surface-water temperature. The other two species showed no difference in aerobic scope between locations. Latitudinal variation in aerobic scope was primarily driven by up to 80% higher maximum rates of oxygen uptake in the higher latitude populations. Our findings suggest that compensatory mechanisms in high-latitude populations enhance their performance at extreme temperatures, and consequently, that high-latitude populations of reef fishes will be less impacted by ocean warming than will low-latitude populations.  相似文献   

19.
Sediments are a ubiquitous feature of all coral reefs, yet our understanding of how they affect complex ecological processes on coral reefs is limited. Sediment in algal turfs has been shown to suppress herbivory by coral reef fishes on high-sediment, low-herbivory reef flats. Here, we investigate the role of sediment in suppressing herbivory across a depth gradient (reef base, crest and flat) by observing fish feeding following benthic sediment reductions. We found that sediment suppresses herbivory across all reef zones. Even slight reductions on the reef crest, which has 35 times less sediment than the reef flat, resulted in over 1800 more herbivore bites (h−1 m−2). The Acanthuridae (surgeonfishes) were responsible for over 80 per cent of all bites observed, and on the reef crest and flat took over 1500 more bites (h−1 m−2) when sediment load was reduced. These findings highlight the role of natural sediment loads in shaping coral reef herbivory and suggest that changes in benthic sediment loads could directly impair reef resilience.  相似文献   

20.
The ability of benthic communities inhabiting coral reefs to produce calcium carbonate underpins the development of reef platforms and associated sedimentary landforms, as well as the fixation of inorganic carbon and buffering of diurnal pH fluctuations in ocean surface waters. Quantification of the relationship between reef flat community calcium carbonate production and wave energy provides an empirical basis for understanding and managing this functionally important process. This study employs geospatial techniques across the reef platform at Lizard Island, Great Barrier Reef, to (1) map the distribution and estimate the total magnitude of reef community carbonate production and (2) empirically ascertain the influence of wave energy on community carbonate production. A World-View-2 satellite image and a field data set of 364 ground referencing points are employed, along with data on physical reef characteristics (e.g. bathymetry, rugosity) to map and validate the spatial distribution of the four major community carbonate producers (live coral, carbonate sand, green calcareous macroalgae and encrusting calcified algae) across the reef platform. Carbonate production is estimated for the complete reef platform from the composition of these community components. A synoptic model of wave energy is developed using the Simulating WAves Nearshore (SWAN) two-dimensional model for the entire reef platform. The relationship between locally derived measures of carbonate production and wave energy is evaluated at both the global scale and local scale along spatial gradients of wave energy traversing the reef platform. A wave energy threshold is identified, below which carbonate production levels appear to increase with wave energy and above which mechanical forcing reduces community production. This implies an optimal set of hydrodynamic conditions characterized by wave energy levels of approximately 300 J m?2, providing an empirical basis for management of potential changes in community carbonate production associated with climate change-driven increases in wave energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号