首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The highly conserved 16S rRNA (rrs) gene is generally used for bacterial identification. In organisms possessing multiple copies of rrs, high intra-genomic heterogeneity does not allow easy distinction among different species. In order to identify Vibrio species, a wide range of genes have been employed. There is an urgent requirement of a consensus gene, which can be used as biomarker for rapid identification. Eight sequenced genomes of Vibrio species were screened for selecting genes which were common among all the genomes. Out of 108 common genes, 24 genes of sizes varying from 0.11 to 3.94 kb were subjected to in silico digestion with 10 type II restriction endonucleases (RE). A few unique genes—dapF, fadA, hisD, ilvH, lpxC, recF, recR, rph and ruvB in combination with certain REs provided unique digestion patterns, which can be used as biomarkers. This protocol can be exploited for rapid diagnosis of Vibrio species.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-015-0553-5) contains supplementary material, which is available to authorized users.  相似文献   

2.
Bacterial identification using rrs (16S rRNA) gene is widely reported. Bacteria possessing multiple copies of rrs lead to overestimation of its diversity. Staphylococcus genomes carries 5–6 copies of rrs showing high similarity in their nucleotide sequences, which lead to ambiguous results. The genomes of 31 strains of Staphylococcus representing 7 species were searched for the presence of common genes. In silico digestion of 34 common genes using 10 restriction endonucleases (REs) lead to select gene-RE combinations, which could be used as biomarkers. RE digestion of recA allowed unambiguous identification of 13 genomes representing all the 7 species. In addition, a few more genes (argH, argR, cysS, gyrB, purH, and pyrE) and RE combinations permitted further identification of 12 strains. By employing additional RE and genes unique to a particular strain, it was possible to identify the rest 6 Staphylococcus aureus strains. This approach has the potential to be utilized for rapid detection of Staphylococcus strains.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-016-0565-9) contains supplementary material, which is available to authorized users.  相似文献   

3.
The use of rrs (16S rRNA) gene is widely regarded as the “gold standard” for identifying bacteria and determining their phylogenetic relationships. Nevertheless, multiple copies of this gene in a genome is likely to give an overestimation of the bacterial diversity. In each of the 50 Streptococcus genomes (16 species, 50 strains), 4–7 copies of rrs are present. The nucleotide sequences of these rrs genes show high similarity within and among genomes, which did not allow unambiguous identification. A genome-wide search revealed the presence of 27 gene sequences common to all the Streptococcus species. Digestion of these 27 gene sequences with 10 type II restriction endonucleases (REs) showed that unique RE digestion in purH gene is sufficient for clear cut identification of 30 genomes belonging to 16 species. Additional gene-RE combinations allowed identification of another 15 strains belonging to S. pneumoniae, S. pyogenes, and S. suis. For the rest 5 strains, a combination of 2 genes was required for identifying them. The proposed strategy is likely to prove helpful in proper detection of pathogens like Streptococcus.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-015-0561-5) contains supplementary material, which is available to authorized users.  相似文献   

4.
Bacterial identification on the basis of the highly conserved 16S rRNA (rrs) gene is limited by its presence in multiple copies and a very high level of similarity among them. The need is to look for other genes with unique characteristics to be used as biomarkers. Fifty-one sequenced genomes belonging to 10 different Yersinia species were used for searching genes common to all the genomes. Out of 304 common genes, 34 genes of sizes varying from 0.11 to 4.42 kb, were selected and subjected to in silico digestion with 10 different Restriction endonucleases (RE) (4–6 base cutters). Yersinia species have 6–7 copies of rrs per genome, which are difficult to distinguish by multiple sequence alignments or their RE digestion patterns. However, certain unique combinations of other common gene sequences—carB, fadJ, gluM, gltX, ileS, malE, nusA, ribD, and rlmL and their RE digestion patterns can be used as markers for identifying 21 strains belonging to 10 Yersinia species: Y. aldovae, Y. enterocolitica, Y. frederiksenii, Y. intermedia, Y. kristensenii, Y. pestis, Y. pseudotuberculosis, Y. rohdei, Y. ruckeri, and Y. similis. This approach can be applied for rapid diagnostic applications.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-015-0552-6) contains supplementary material, which is available to authorized users.  相似文献   

5.
Diversity analysis of Clostridium botulinum strains is complicated by high microheterogeneity caused by the presence of 9–22 copies of rrs (16S rRNA gene). The need is to mine genetic markers to identify very closely related strains. Multiple alignments of the nucleotide sequences of the 212 rrs of 13 C. botulinum strains revealed intra- and inter-genomic heterogeneity. Low intragenomic heterogeneity in rrs was evident in strains 230613, Alaska E43, Okra, Eklund 17B, Langeland, 657, Kyoto, BKT015925, and Loch Maree. The most heterogenous rrs sequences were those of C. botulinum strains ATCC 19397, Hall, H04402065, and ATCC 3502. In silico restriction mapping of these rrs sequences was observable with 137 type II Restriction endonucleases (REs). Nucleotide changes (NC) at these RE sites resulted in appearance of distinct and additional sites, and loss in certain others. De novo appearances of RE sites due to NC were recorded at different positions in rrs gene. A nucleotide transition A>G in rrs of C. botulinum Loch Maree and 657 resulted in the generation of 4 and 10 distinct RE sites, respectively. Transitions A>G, G>A, and T>C led to the loss of RE sites. A perusal of the entire NC and in silico RE mapping of rrs of C. botulinum strains provided insights into their evolution. Segregation of strains on the basis of RE digestion patterns of rrs was validated by the cladistic analysis involving six house keeping genes: dnaN, gyrB, metG, prfA, pyrG, and Rho.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-015-0514-z) contains supplementary material, which is available to authorized users.  相似文献   

6.
Pseudomonas is a highly versatile bacterium at the species level with great ecological significance. These genetically and metabolically diverse species have undergone repeated taxonomic revisions. We propose a strategy to identify Pseudomonas up to species level, based on the unique features of their 16S rDNA (rrs) gene sequence, such as the frame work of sequences, sequence motifs and restriction endonuclease (RE) digestion patterns. A species specific phylogenetic framework composed of 31 different rrs sequences, allowed us to segregate 1,367 out of 2,985 rrs sequences of this genus, which have been classified at present only up to genus (Pseudomonas) level, as follows: P. aeruginosa (219 sequences), P. fluorescens (463 sequences), P. putida (347 sequences), P. stutzeri (197 sequences), and P. syringae (141 sequences). These segregations were validated by unique 30–50 nucleotide long motifs and RE digestion patterns in their rrs. A single gene thus provides multiple makers for identification and surveillance of Pseudomonas.  相似文献   

7.

Background

Bacterial taxonomy and phylogeny based on rrs (16S rDNA) sequencing is being vigorously pursued. In fact, it has been stated that novel biological findings are driven by comparison and integration of massive data sets. In spite of a large reservoir of rrs sequencing data of 1,237,963 entries, this analysis invariably needs supplementation with other genes. The need is to divide the genetic variability within a taxa or genus at their rrs phylogenetic boundaries and to discover those fundamental features, which will enable the bacteria to naturally fall within them. Within the large bacterial community, Clostridium represents a large genus of around 110 species of significant biotechnological and medical importance. Certain Clostridium strains produce some of the deadliest toxins, which cause heavy economic losses. We have targeted this genus because of its high genetic diversity, which does not allow accurate typing with the available molecular methods.

Results

Seven hundred sixty five rrs sequences (> 1200 nucleotides, nts) belonging to 110 Clostridium species were analyzed. On the basis of 404 rrs sequences belonging to 15 Clostridium species, we have developed species specific: (i) phylogenetic framework, (ii) signatures (30 nts) and (iii) in silico restriction enzyme (14 Type II REs) digestion patterns. These tools allowed: (i) species level identification of 95 Clostridium sp. which are presently classified up to genus level, (ii) identification of 84 novel Clostridium spp. and (iii) potential reduction in the number of Clostridium species represented by small populations.

Conclusions

This integrated approach is quite sensitive and can be easily extended as a molecular tool for diagnostic and taxonomic identification of any microbe of importance to food industries and health services. Since rapid and correct identification allows quicker diagnosis and consequently treatment as well, it is likely to lead to reduction in economic losses and mortality rates.  相似文献   

8.
9.
10.
11.
12.
Recombinant DNA techniques have been used to introduce agronomically valuable traits, including resistance to viruses, herbicides, and insects, into crop plants. Introduction of these genes into plants frequently involves Agrobacterium-mediated gene transfer. The potential exists for applying this technology to nematode control by introducing genes conferring resistance to nematodes. Transferred genes could include those encoding products detrimental to nematode development or reproduction as well as cloned host resistance genes. Host genes that confer resistance to cyst or root-knot nematode species have been identified in many plants. The best characterized is Mi, a gene that confers resistance to root-knot nematodes in tomato. A map-based cloning approach is being used to isolate the gene. For development of a detailed map of the region of the genome surrounding Mi, DNA markers genetically linked to Mi have been identified and analyzed in tomato lines that have undergone a recombination event near Mi. The molecular map will be used to identify DNA corresponding to Mi. We estimate that a clone of Mi will be obtained in 2-5 years. An exciting prospect is that introduction of this gene will confer resistance in plant species without currently available sources of resistance.  相似文献   

13.

Background

Enterococcus mundtii is a yellow-pigmented microorganism rarely found in human infections. The draft genome sequence of E. mundtii was recently announced. Its genome encodes at least 2,589 genes and 57 RNAs, and 4 putative genomic islands have been detected. The objective of this study was to compare the genetic content of E. mundtii with respect to other enterococcal species and, more specifically, to identify genes coding for putative virulence traits present in enterococcal opportunistic pathogens.

Results

An in-depth mining of the annotated genome was performed in order to uncover the unique properties of this microorganism, which allowed us to detect a gene encoding the antimicrobial peptide mundticin among other relevant features. Moreover, in this study a comparative genomic analysis against commensal and pathogenic enterococcal species, for which genomic sequences have been released, was conducted for the first time. Furthermore, our study reveals significant similarities in gene content between this environmental isolate and the selected enterococci strains (sharing an “enterococcal gene core” of 805 CDS), which contributes to understand the persistence of this genus in different niches and also improves our knowledge about the genetics of this diverse group of microorganisms that includes environmental, commensal and opportunistic pathogens.

Conclusion

Although E. mundtii CRL1656 is phylogenetically closer to E. faecium, frequently responsible of nosocomial infections, this strain does not encode the most relevant relevant virulence factors found in the enterococcal clinical isolates and bioinformatic predictions indicate that it possesses the lowest number of putative pathogenic genes among the most representative enterococcal species. Accordingly, infection assays using the Galleria mellonella model confirmed its low virulence.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-489) contains supplementary material, which is available to authorized users.  相似文献   

14.
15.
16.

Background

In addition to human and animal diseases, bacteria of the genus Burkholderia can cause plant diseases. The representative species of rice-pathogenic Burkholderia are Burkholderia glumae, B. gladioli, and B. plantarii, which primarily cause grain rot, sheath rot, and seedling blight, respectively, resulting in severe reductions in rice production. Though Burkholderia rice pathogens cause problems in rice-growing countries, comprehensive studies of these rice-pathogenic species aiming to control Burkholderia-mediated diseases are only in the early stages.

Results

We first sequenced the complete genome of B. plantarii ATCC 43733T. Second, we conducted comparative analysis of the newly sequenced B. plantarii ATCC 43733T genome with eleven complete or draft genomes of B. glumae and B. gladioli strains. Furthermore, we compared the genome of three rice Burkholderia pathogens with those of other Burkholderia species such as those found in environmental habitats and those known as animal/human pathogens. These B. glumae, B. gladioli, and B. plantarii strains have unique genes involved in toxoflavin or tropolone toxin production and the clustered regularly interspaced short palindromic repeats (CRISPR)-mediated bacterial immune system. Although the genome of B. plantarii ATCC 43733T has many common features with those of B. glumae and B. gladioli, this B. plantarii strain has several unique features, including quorum sensing and CRISPR/CRISPR-associated protein (Cas) systems.

Conclusions

The complete genome sequence of B. plantarii ATCC 43733T and publicly available genomes of B. glumae BGR1 and B. gladioli BSR3 enabled comprehensive comparative genome analyses among three rice-pathogenic Burkholderia species responsible for tissue rotting and seedling blight. Our results suggest that B. glumae has evolved rapidly, or has undergone rapid genome rearrangements or deletions, in response to the hosts. It also, clarifies the unique features of rice pathogenic Burkholderia species relative to other animal and human Burkholderia species.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1558-5) contains supplementary material, which is available to authorized users.  相似文献   

17.
18.
19.

Background

The genus Liposcelis (Psocoptera: Troctomorpha) has more than 120 species with a worldwide distribution and they pose a risk for global food security. The organization of mitochondrial (mt) genomes varies between the two species of booklice investigated in the genus Liposcelis. Liposcelis decolor has its mt genes on a single chromosome, like most other insects; L. bostrychophila, however, has a multipartite mt genome with genes on two chromosomes.

Results

To understand how multipartite mt genome organization evolved in the genus Liposcelis, we sequenced the mt genomes of L. entomophila and L. paeta in this study. We found that these two species of booklice also have multipartite mt genomes, like L. bostrychophila, with the mt genes we identified on two chromosomes. Numerous pseudo mt genes and non-coding regions were found in the mt genomes of these two booklice, and account for 30% and 10% respectively of the entire length we sequenced. In L. bostrychophila, the mt genes are distributed approximately equally between the two chromosomes. In L. entomophila and L. paeta, however, one mt chromosome has most of the genes we identified whereas the other chromosome has largely pseudogenes and non-coding regions. L. entomophila and L. paeta differ substantially from each other and from L. bostrychophila in gene content and gene arrangement in their mt chromosomes.

Conclusions

Our results indicate unusually fast evolution in mt genome organization in the booklice of the genus Liposcelis, and reveal different patterns of mt genome fragmentation among L. bostrychophila, L. entomophila and L. paeta.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-861) contains supplementary material, which is available to authorized users.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号