首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Attempts were made to define the relationship among the three domains (eukaryotes, archaea, and eubacteria) using phylogenetic tree analyses of 16S rRNA sequences as well as of other protein sequences. Since the results are inconsistent, it is implied that the eukaryotic genome has a chimeric structure. In our previous studies, the origin of eukaryotes to be the symbiosis of archaea into eubacteria using the whole open reading frames (ORF) of many genomes was suggested. In these studies, the species participating in the symbiosis were not clarified, and the effect of gene duplication after speciation (in-paralog) was not addressed. To avoid the influence of the in-paralog, we developed a new method to calculate orthologous ORFs. Furthermore, we separated eukaryotic in-paralogs into three groups by sequence similarity to archaea, eubacteria (other than -proteobacteria), and -proteobacteria and treated them as individual organisms. The relationship between the three ORF groups and the functional classification was clarified by this analysis. The introduction of this new method into the phylogenetic tree analysis of 66 organisms (4 eukaryotes, 13 archaea, and 49 eubacteria) based on gene content suggests the symbiosis of pyrococcus into -proteobacteria as the origin of eukaryotes.  相似文献   

2.
From the initial application of molecular techniques to the study of microbial organisms, three domains of life emerged, with eukaryotes and archaea as sister taxa. However, recent analyses of an expanding molecular data set reveal that the eukaryotic genome is chimeric with respect to archaea and bacteria. Moreover, there is now evidence that the primitive eukaryotic group ‘Archezoa' once harbored mitochondia. These discoveries have challenged the traditional stepwise model of the evolution of eukaryotes, in which the nucleus and microtubules evolve before the acquisition of mitochondria, and consequently compel a revision of existing models of the origin of eukaryotic cells.  相似文献   

3.
Conserved domains in DNA repair proteins and evolution of repair systems.   总被引:38,自引:10,他引:28  
A detailed analysis of protein domains involved in DNA repair was performed by comparing the sequences of the repair proteins from two well-studied model organisms, the bacterium Escherichia coli and yeast Saccharomyces cerevisiae, to the entire sets of protein sequences encoded in completely sequenced genomes of bacteria, archaea and eukaryotes. Previously uncharacterized conserved domains involved in repair were identified, namely four families of nucleases and a family of eukaryotic repair proteins related to the proliferating cell nuclear antigen. In addition, a number of previously undetected occurrences of known conserved domains were detected; for example, a modified helix-hairpin-helix nucleic acid-binding domain in archaeal and eukaryotic RecA homologs. There is a limited repertoire of conserved domains, primarily ATPases and nucleases, nucleic acid-binding domains and adaptor (protein-protein interaction) domains that comprise the repair machinery in all cells, but very few of the repair proteins are represented by orthologs with conserved domain architecture across the three superkingdoms of life. Both the external environment of an organism and the internal environment of the cell, such as the chromatin superstructure in eukaryotes, seem to have a profound effect on the layout of the repair systems. Another factor that apparently has made a major contribution to the composition of the repair machinery is horizontal gene transfer, particularly the invasion of eukaryotic genomes by organellar genes, but also a number of likely transfer events between bacteria and archaea. Several additional general trends in the evolution of repair proteins were noticed; in particular, multiple, independent fusions of helicase and nuclease domains, and independent inactivation of enzymatic domains that apparently retain adaptor or regulatory functions.  相似文献   

4.
Recent results from engineered and natural samples show that the starkly different lipids of archaea and bacteria can form stable hybrid membranes. But if the two types can mix, why don't they? That is, why do most bacteria and all eukaryotes have only typically bacterial lipids, and archaea archaeal lipids? It is suggested here that the reason may lie on the other main component of cellular membranes: membrane proteins, and their close adaptation to the lipids. Archaeal lipids in modern bacteria could suggest that the last universal common ancestor (LUCA) had both lipid types. However, this would imply a rather elaborate evolutionary scenario, while negating simpler alternatives. In light of widespread horizontal gene transfer across the prokaryotic domains, hybrid membranes reveal that the lipid divide did not just occur once at the divergence of archaea and bacteria from LUCA. Instead, it continues to occur actively to this day. Also see the video abstract here https://youtu.be/TdKjxoDAtsg .  相似文献   

5.
The distribution of protein domains was analyzed in superkingdoms Archaea, Bacteria, and Eukaryota. About a half of eukaryotic domains have prokaryotic origin. Many domains related to information processing in the nucleocytoplasm were inherited from archaea. Sets of domains associated with metabolism and regulatory and signaling systems were inherited from bacteria. Many signaling and regulatory domains common for bacteria and eukaryotes were responsible for the cellular interaction of bacteria with other components of the microbial community but were involved in coordination of the activity of eukaryotic organelles and cells in multicellular organisms. Many eukaryotic domains of bacterial origin could not originate from ancestral mitochondria and plastids but rather were adopted from other bacteria. An archaeon with the induced incorporation of alien genetic material could be the ancestor of the eukaryotic nucleocytoplasm.__________Translated from Izvestiya Akademii Nauk, Seriya Biologicheskaya, No. 4, 2005, pp. 389–400.Original Russian Text Copyright © 2005 by Markov, Kulikov.  相似文献   

6.
Summary: Anaerobic ammonium-oxidizing (anammox) bacteria defy many microbiological concepts and share numerous properties with both eukaryotes and archaea. Among their most intriguing characteristics are their compartmentalized cell plan and archaeon-like cell wall. Here we review our current knowledge about anammox cell biology. The anammox cell is divided into three separate compartments by bilayer membranes. The anammox cell consists of (from outside to inside) the cell wall, paryphoplasm, riboplasm, and anammoxosome. Not much is known about the composition or function of both the anammox cell wall and the paryphoplasm compartment. The cell wall is proposed to be proteinaceous and to lack both peptidoglycan and an outer membrane typical of Gram-negative bacteria. The function of the paryphoplasm is unknown, but it contains the cell division ring. The riboplasm resembles the standard cytoplasmic compartment of other bacteria; it contains ribosomes and the nucleoid. The anammoxosome occupies most of the cell volume and is a so-called “prokaryotic organelle” analogous to the eukaryotic mitochondrion. This is the site where the anammox reaction takes place, coupled over the curved anammoxosome membrane, possibly giving rise to a proton motive force and subsequent ATP synthesis. With these unique properties, anammox bacteria are food for thought concerning the early evolution of the domains Bacteria, Archaea, and Eukarya.  相似文献   

7.
Protein sequences with similarities to Escherichia coli RecA were compared across the major kingdoms of eubacteria, archaebacteria, and eukaryotes. The archaeal sequences branch monophyletically and are most closely related to the eukaryotic paralogous Rad51 and Dmc1 groups. A multiple alignment of the sequences suggests a modular structure of RecA-like proteins consisting of distinct segments, some of which are conserved only within subgroups of sequences. The eukaryotic and archaeal sequences share an N-terminal domain which may play a role in interactions with other factors and nucleic acids. Several positions in the alignment blocks are highly conserved within the eubacteria as one group and within the eukaryotes and archaebacteria as a second group, but compared between the groups these positions display nonconservative amino acid substitutions. Conservation within the RecA-like core domain identifies possible key residues involved in ATP-induced conformational changes. We propose that RecA-like proteins derive evolutionarily from an assortment of independent domains and that the functional homologs of RecA in noneubacteria comprise an array of RecA-like proteins acting in series or cooperatively. Received: 25 October 1996 / Accepted: 31 December 1996  相似文献   

8.
9.
Evolutionary origins of mechanosensitive ion channels   总被引:6,自引:0,他引:6  
According to the recent revision, the universal phylogenetic tree is composed of three domains: Eukarya (eukaryotes), Bacteria (eubacteria) and Archaea (archaebacteria). Mechanosensitive (MS) ion channels have been documented in cells belonging to all three domains suggesting their very early appearance during evolution of life on Earth. The channels show great diversity in conductance, selectivity and voltage dependence, while sharing the property of being gated by mechanical stimuli exerted on cell membranes. In prokaryotes, MS channels were first documented in Bacteria followed by their discovery in Archaea. The finding of MS channels in archaeal cells helped to recognize and establish the evolutionary relationship between bacterial and archaeal MS channels and to show that this relationship extends to eukaryotic Fungi (Schizosaccharomyces pombe) and Plants (Arabidopsis thaliana). Similar to their bacterial and archaeal homologues, MS channels in eukaryotic cell-walled Fungi and Plants may serve in protecting the cellular plasma membrane from excessive dilation and rupture that may occur during osmotic stress. This review summarizes briefly some of the recent developments in the MS channel research field that may ultimately lead to elucidation of the biophysical and evolutionary principles underlying the mechanosensory transduction in living cells.  相似文献   

10.
Prolidases, metalloproteases that catalyze the cleavage of Xaa-Pro dipeptides, are conserved enzymes found in prokaryotes and eukaryotes. In humans, prolidase is crucial for the recycling of collagen. To further characterize the essential elements of this enzyme, we utilized the Escherichia coli prolidase, PepQ, which shares striking similarity with eukaryotic prolidases. Through structural and bioinformatic insights, we have extended previous characterizations of the prolidase active site, uncovering a key component for substrate specificity. Here we report the structure of E. coli PepQ, solved at 2.0 Å resolution. The structure shows an antiparallel, dimeric protein, with each subunit containing N-terminal and C-terminal domains. The C-terminal domain is formed by the pita-bread fold typical for this family of metalloproteases, with two Mg(II) ions coordinated by five amino-acid ligands. Comparison of the E. coli PepQ structure and sequence with homologous structures and sequences from a diversity of organisms reveals distinctions between prolidases from Gram-positive eubacteria and archaea, and those from Gram-negative eubacteria, including the presence of loop regions in the E. coli protein that are conserved in eukaryotes. One such loop contains a completely conserved arginine near the catalytic site. This conserved arginine is predicted by docking simulations to interact with the C-terminus of the substrate dipeptide. Kinetic analysis using both a charge-neutralized substrate and a charge-reversed variant of PepQ support this conclusion, and allow for the designation of a new role for this key region of the enzyme active site.  相似文献   

11.
12.
There is currently no consensus on the evolutionary origin of eukaryotes. In the search of the ancestors of eukaryotes, we analyzed the phylogeny of 46 genomes, including those of 2 eukaryotes, 8 archaea, and 36 eubacteria. To avoid the effects of gene duplications, we used inparalog pairs of genes with orthologous relationships. First, we grouped these inparalogs into the functional categories of the nucleus, cytoplasm, and mitochondria. Next, we counted the sister groups of eukaryotes in prokaryotic phyla and plotted them on a standard phylogenetic tree. Finally, we used Pearson's chi-square test to estimate the origin of the genomes from specific prokaryotic ancestors. The results suggest the eukaryotic nuclear genome descends from an archaea that was neither euryarchaeota nor crenarchaeota and that the mitochondrial genome descends from alpha-proteobacteria. In contrast, genes related to the cytoplasm do not appear to originate from a specific group of prokaryotes.  相似文献   

13.
Early evolution and the origin of eukaryotes   总被引:35,自引:0,他引:35  
Our understanding of evolutionary relationships in the eukaryotic world has been revolutionized by molecular systematics. Phylogenies based upon comparisons of rRNAs define five major eukaryotic assemblages plus a series of paraphyletic protist lineages. Comparison of conserved genes that were duplicated prior to the divergence of eubacteria, archaebacteria, and eukaryotes, positions the root of the universal tree within the eubacterial line of descent. In this review a novel model is presented which uses the rRNA and protein based phylogenies to describe the evolutionary origins of eukaryotes.  相似文献   

14.
Pentameric ligand-gated ion channels (pLGICs) are ubiquitous neurotransmitter receptors in Bilateria, with a small number of known prokaryotic homologues. Here we describe a new inventory and phylogenetic analysis of pLGIC genes across all kingdoms of life. Our main finding is a set of pLGIC genes in unicellular eukaryotes, some of which are metazoan-like Cys-loop receptors, and others devoid of Cys-loop cysteines, like their prokaryotic relatives. A number of such “Cys-less” receptors also appears in invertebrate metazoans. Together, those findings draw a new distribution of pLGICs in eukaryotes. A broader distribution of prokaryotic channels also emerges, including a major new archaeal taxon, Thaumarchaeota. More generally, pLGICs now appear nearly ubiquitous in major taxonomic groups except multicellular plants and fungi. However, pLGICs are sparsely present in unicellular taxa, suggesting a high rate of gene loss and a non-essential character, contrasting with their essential role as synaptic receptors of the bilaterian nervous system. Multiple alignments of these highly divergent sequences reveal a small number of conserved residues clustered at the interface between the extracellular and transmembrane domains. Only the “Cys-loop” proline is absolutely conserved, suggesting the more fitting name “Pro loop” for that motif, and “Pro-loop receptors” for the superfamily. The infered molecular phylogeny shows a Cys-loop and a Cys-less clade in eukaryotes, both containing metazoans and unicellular members. This suggests new hypotheses on the evolutionary history of the superfamily, such as a possible origin of the Cys-loop cysteines in an ancient unicellular eukaryote. Deeper phylogenetic relationships remain uncertain, particularly around the split between bacteria, archaea, and eukaryotes.  相似文献   

15.
Bailey S  Wing RA  Steitz TA 《Cell》2006,126(5):893-904
The crystal structure of Thermus aquaticus DNA polymerase III alpha subunit reveals that the structure of the catalytic domain of the eubacterial replicative polymerase is unrelated to that of the eukaryotic replicative polymerase but rather belongs to the Polbeta-like nucleotidyltransferase superfamily. A model of the polymerase complexed with both DNA and beta-sliding clamp interacting with a reoriented binding domain and internal beta binding site was constructed that is consistent with existing biochemical data. Within the crystal, two C-terminal domains are interacting through a surface that is larger than many dimer interfaces. Since replicative polymerases of eubacteria and eukaryotes/archaea are not homologous, the nature of the replicative polymerase in the last common ancestor is unknown. Although other possibilities have been proposed, the plausibility of a ribozyme DNA polymerase should be considered.  相似文献   

16.
17.
All life is organized as cells. Physical compartmentation from the environment and self-organization of self-contained redox reactions are the most conserved attributes of living things, hence inorganic matter with such attributes would be life's most likely forebear. We propose that life evolved in structured iron monosulphide precipitates in a seepage site hydrothermal mound at a redox, pH and temperature gradient between sulphide-rich hydrothermal fluid and iron(II)-containing waters of the Hadean ocean floor. The naturally arising, three-dimensional compartmentation observed within fossilized seepage-site metal sulphide precipitates indicates that these inorganic compartments were the precursors of cell walls and membranes found in free-living prokaryotes. The known capability of FeS and NiS to catalyse the synthesis of the acetyl-methylsulphide from carbon monoxide and methylsulphide, constituents of hydrothermal fluid, indicates that pre-biotic syntheses occurred at the inner surfaces of these metal-sulphide-walled compartments, which furthermore restrained reacted products from diffusion into the ocean, providing sufficient concentrations of reactants to forge the transition from geochemistry to biochemistry. The chemistry of what is known as the RNA-world could have taken place within these naturally forming, catalyticwalled compartments to give rise to replicating systems. Sufficient concentrations of precursors to support replication would have been synthesized in situ geochemically and biogeochemically, with FeS (and NiS) centres playing the central catalytic role. The universal ancestor we infer was not a free-living cell, but rather was confined to the naturally chemiosmotic, FeS compartments within which the synthesis of its constituents occurred. The first free-living cells are suggested to have been eubacterial and archaebacterial chemoautotrophs that emerged more than 3.8 Gyr ago from their inorganic confines. We propose that the emergence of these prokaryotic lineages from inorganic confines occurred independently, facilitated by the independent origins of membrane-lipid biosynthesis: isoprenoid ether membranes in the archaebacterial and fatty acid ester membranes in the eubacterial lineage. The eukaryotes, all of which are ancestrally heterotrophs and possess eubacterial lipids, are suggested to have arisen ca. 2 Gyr ago through symbiosis involving an autotrophic archaebacterial host and a heterotrophic eubacterial symbiont, the common ancestor of mitochondria and hydrogenosomes. The attributes shared by all prokaryotes are viewed as inheritances from their confined universal ancestor. The attributes that distinguish eubacteria and archaebacteria, yet are uniform within the groups, are viewed as relics of their phase of differentiation after divergence from the non-free-living universal ancestor and before the origin of the free-living chemoautotrophic lifestyle. The attributes shared by eukaryotes with eubacteria and archaebacteria, respectively, are viewed as inheritances via symbiosis. The attributes unique to eukaryotes are viewed as inventions specific to their lineage. The origin of the eukaryotic endomembrane system and nuclear membrane are suggested to be the fortuitous result of the expression of genes for eubacterial membrane lipid synthesis by an archaebacterial genetic apparatus in a compartment that was not fully prepared to accommodate such compounds, resulting in vesicles of eubacterial lipids that accumulated in the cytosol around their site of synthesis. Under these premises, the most ancient divide in the living world is that between eubacteria and archaebacteria, yet the steepest evolutionary grade is that between prokaryotes and eukaryotes.  相似文献   

18.
HAMP domains are signal relay modules in >26,000 receptors of bacteria, eukaryotes, and archaea that mediate processes involved in chemotaxis, pathogenesis, and biofilm formation. We identify two HAMP conformations distinguished by a four- to two-helix packing transition at the C-termini that send opposing signals in bacterial chemoreceptors. Crystal structures of signal-locked mutants establish the observed structure-to-function relationships. Pulsed dipolar electron spin resonance spectroscopy of spin-labeled soluble receptors active in cells verify that the crystallographically defined HAMP conformers are maintained in the receptors and influence the structure and activity of downstream domains accordingly. Mutation of HR2, a key residue for setting the HAMP conformation and generating an inhibitory signal, shifts HAMP structure and receptor output to an activating state. Another HR2 variant displays an inverted response with respect to ligand and demonstrates the fine energetic balance between “on” and “off” conformers. A DExG motif found in membrane proximal HAMP domains is shown to be critical for responses to extracellular ligand. Our findings directly correlate in vivo signaling with HAMP structure, stability, and dynamics to establish a comprehensive model for HAMP-mediated signal relay that consolidates existing views on how conformational signals propagate in receptors. Moreover, we have developed a rational means to manipulate HAMP structure and function that may prove useful in the engineering of bacterial taxis responses.  相似文献   

19.
For the past four decades the compositional organization of the mammalian genome posed a formidable challenge to molecular evolutionists attempting to explain it from an evolutionary perspective. Unfortunately, most of the explanations adhered to the “isochore theory,” which has long been rebutted. Recently, an alternative compositional domain model was proposed depicting the human and cow genomes as composed mostly of short compositionally homogeneous and nonhomogeneous domains and a few long ones. We test the validity of this model through a rigorous sequence-based analysis of eleven completely sequenced mammalian and avian genomes. Seven attributes of compositional domains are used in the analyses: (1) the number of compositional domains, (2) compositional domain-length distribution, (3) density of compositional domains, (4) genome coverage by the different domain types, (5) degree of fit to a power-law distribution, (6) compositional domain GC content, and (7) the joint distribution of GC content and length of the different domain types. We discuss the evolution of these attributes in light of two competing phylogenetic hypotheses that differ from each other in the validity of clade Euarchontoglires. If valid, the murid genome compositional organization would be a derived state and exhibit a high similarity to that of other mammals. If invalid, the murid genome compositional organization would be closer to an ancestral state. We demonstrate that the compositional organization of the murid genome differs from those of primates and laurasiatherians, a phenomenon previously termed the “murid shift,” and in many ways resembles the genome of opossum. We find no support to the “isochore theory.” Instead, our findings depict the mammalian genome as a tapestry of mostly short homogeneous and nonhomogeneous domains and few long ones thus providing strong evidence in favor of the compositional domain model and seem to invalidate clade Euarchontoglires.  相似文献   

20.
The last ten years have seen a dramatic increase in our understanding of the molecular mechanism allowing specific incorporation of selenocysteine into selenoproteins. Whether in prokaryotes or eukaryotes, this incorporation requires several gene products, among which the specialized elongation factor SelB and the tRNA(Sec) play a pivotal role. While the molecular actors have been discovered and their role elucidated in the eubacterial machinery, recent data from our and other laboratories pointed to a higher degree of complexity in archaea and eukaryotes. These findings also revealed that more needs to be discovered in this area. This review will focus on phylogenetic aspects of the SelB proteins. In particular, we will discuss the concerted evolution that occurred within the SelB/tRNA(Sec) couples, and also the distinctive roles carried out by the SelB C-terminal domains in eubacteria on the one side, and archaea and eukaryotes, on the other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号