首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we demonstrate that tumor mRNA–loaded dendritic cells can elicit a specific CD8+ cytotoxic T-lymphocyte (CTL) response against autologous tumor cells in patients with malignant glioma. CTLs from three patients expressed strong cytolytic activity against autologous glioma cells, did not lyse autologous lymphoblasts or EBV-transformed cell lines, and were variably cytotoxic against the NK-sensitive cell line K-562. Also, DCs-pulsed normal brain mRNA failed to induce cytolytic activity against autologous glioma cells, suggesting the lack of autoimmune response. Two patients' CD8+ T cells expressed a modest cytotoxicity against autologous glioma cells. CD8+ T cells isolated during these ineffective primings secreted large amounts of IL-10 and smaller amounts of IFN- as detected by ELISA. Type 2 bias in the CD8+ T-cell response accounts for the lack of cytotoxic effector function from these patients. Cytotoxicity against autologous glioma cells could be significantly inhibited by anti-HLA class I antibody. These data demonstrate that tumor mRNA–loaded DC can be an effective tool in inducing glioma-specific CD8+ CTLs able to kill autologous glioma cells in vitro. However, high levels of tumor-specific tolerance in some patients may account for a significant barrier to therapeutic vaccination. These results may have important implications for the treatment of malignant glioma patients with immunotherapy. DCs transfected with total tumor RNA may represent a method for inducing immune responses against the entire repertoire of glioma antigens.  相似文献   

2.
3.
Background and purpose Immunization with heat shock proteins, gp96, elicits specific protective immunity against parent tumors. However, it is marginally effective as a therapeutic tool against established tumors. In the present study, we evaluated the efficacy and mechanism of immunotherapy with bone marrow-derived dendritic cells (DCs) pulsed with tumor-derived gp96 against murine lung cancer. Methods Mice were transplanted subcutaneously with ovalbumin (OVA)-transfected Lewis Lung Cancer (LLC-OVA) cells and immunized with gp96 derived from LLC-OVA, DCs, or DCs pulsed with gp96 derived from LLC-OVA. Results The antitumor effect was significantly enhanced in the mice immunized with DCs pulsed with gp96 derived from LLC-OVA, compared to mice immunized with gp96 or DCs (P < 0.05). The antitumor effect was significantly dependent on natural killer (NK) cells and CD8+ cells and partially dependent on CD4+ cells. Analysis by laser confocal microscopy demonstrated that gp96 was shown on the cell surface at 15 min, and after 30 min internalized in the endosomes and not in the endoplasmic reticulum or lysosomes. OVA-specific+ CD8+ cells were more readily recruited into the draining lymph nodes and higher CD8+ cytotoxic T cell activity against LLC-OVA was observed in splenocytes from mice immunized with DCs pulsed with gp96 derived from LLC-OVA. Re-challenge of the surviving mice with LLC-OVA tumors after the initial tumor inoculation showed dramatic retardation in tumor growth. Conclusion In conclusion, immunotherapy of DCs pulsed with tumor-derived gp96 against murine lung cancer is effective through immune response of CD8+ cytotoxic T lymphocytes and NK cells.  相似文献   

4.
Dendritic cells (DCs) are professional antigen-presenting cells that are required for the initiation of the immune response. DCs have been shown to be generated from CD34+pluripotent hematopoietic progenitor cells in the bone marrow and cord blood (CB), but relatively little is known about the effect of cryopreservation on functional maturation of DCs from hematopoietic stem cells. In this work we report the generation of DCs from cryopreserved CB CD34+cells. CB CD34+cells were cryopreserved at −80°C for 2 days. Cryopreserved CB CD34+cells as well as freshly isolated CB CD34+cells cultured with granulocyte—macrophage colony-stimulating factor (GM-CSF)/stem cell factor (SCF)/tumor necrosis factor-α (TNF-α) for 14 days gave rise to CD1a+/CD4+/CD11c+/CD14/CD40+/CD80+/CD83+/CD86+/HLA-DR+cells with dendritic morphology. DCs derived from cryopreserved CB CD34+cells showed a similar endocytic capacity for fluorescein isothiocyanate-labeled dextran and lucifer yellow when compared with DCs derived from freshly isolated CB CD34+cells. Flow cytometric analysis revealed that two CC chemokine receptors (CCRs), CCR-1 and CCR-3, were expressed on the cell surface of DCs derived from both cryopreserved and freshly isolated CB CD34+cells, and these DCs exhibited similar chemotactic migratory capacities in response to regulated on activation normal T-cell expressed and secreted. DCs derived from cryopreserved as well as freshly isolated CB CD34+cells were more efficient than peripheral blood mononuclear cells in the primary allogeneic T-cell response. These results indicate that frozen CB CD34+cells cultured with GM-CSF/TNF-α/SCF gave rise to dendritic cells which were morphologically, phenotypically and functionally similar to DCs derived from fresh CB CD34+cells.  相似文献   

5.
Patients with head and neck squamous cell carcinoma (HNSCC) have profound immune defects. These defects are associated with a poor prognosis and are mediated, in part, by immune inhibitory CD34+ progenitor cells, whose numbers are increased in the peripheral blood of HNSCC patients. Immune inhibitory CD34+ cells are also present within HNSCC tumors. A phase IB clinical trial was conducted with HNSCC patients to determine if treatment with the differentiation-inducer 25-hydroxyvitamin D3 could diminish CD34+ cell levels and improve a panel of immune parameters. Here we present the results of treatment with orally administered escalating doses (20, 40, 60 g) of 25-hydroxyvitamin D3, with an emphasis on the six patients who received the maximum dosage of 60 g per day. Peripheral blood was collected at 0, 1, 2, 4, and 6 weeks, and assessed for markers of immune activity. Although no clinical responses were observed, results of this pilot study demonstrated that treatment of HNSCC patients with 25-hydroxyvitamin D3 reduces the number of immune suppressive CD34+ cells, increases HLA-DR expression, increases plasma IL-12 and IFN- levels, and improves T-cell blastogenesis. In contrast, 25-hydroxyvitamin D3 treatment did not modulate plasma IL-1, IL-2, IL-4, IL-6, IL-10, GM-CSF, or TGF- levels.Abbreviations GM-CSF granulocyte-macrophage colony-stimulating factor - high CD34+ patients patients with greater than 1% baseline CD34+ cell levels - HLA human leukocyte antigen - IFN interferon - IL interleukin - low CD34+ patients patients with less than 1% baseline CD34+ cell levels - OD optical density - TGF transforming growth factor  相似文献   

6.

Purpose

Suppression of cellular immunity resulting from tumorigenesis and/or therapy might promote cancer cells’ growth, progression and invasion. Here, we explored whether T lymphocyte subtypes from peripheral blood of metastatic breast cancer (MBC) female patients could be used as alternative surrogate markers for cancer progress. Additionally, plasma levels of interleukin (IL)-2, IL-4, IL-6, IL-10, IFN-γ, and transforming growth factor-β1 were quantitated from MBC and healthy volunteers.

Experimental design

This study included 89 female MBC patients during the post-salvage chemotherapy follow-up and 50 age- and sex-matched healthy volunteers as control. The percentages of T lymphocyte subpopulations from peripheral blood and plasma levels of cytokines were measured.

Results

Both CD8+CD28? and CD4+CD25+ were elevated in MBC patients compared to the control cohort (P < 0.05). In contrast, CD3+ and CD8+CD28+cells were significantly lower in MBC patients (P < 0.0001, P = 0.045, respectively). MBC patients had elevated levels of immunosuppressive cytokines IL-6 and IL-10. Patients with elevated CD8+CD28? and CD4+CD25+ cells showed increased levels of IL-6, and only patients with elevated CD8+CD28? had decreased interferon-γ. Univariate analysis indicated increased CD3+CD4+ or CD8+CD28+correlated with prolonged progression-free survival (PFS), while elevated CD8+CD28?associated with shorten PFS. The percent of CD8+CD28? T lymphocytes is an independent predictor for PFS through multivariate analysis.

Conclusions

This study suggests that progressive elevated levels of CD8+CD28? suppressor T lymphocytes represent a novel independent predictor of PFS during post-chemotherapy follow-up.  相似文献   

7.
We have recently reported that administration of Pro T to DBA/2 mice before the inoculation of syngeneic L1210 leukemic cells prolonged the survival of these animals by (a) inducing tumoricidal peritoneal macrophages, (b) enhancing natural killer (NK) and inducing lymphokine-activated killer (LAK) activities in splenocytes and (c) inducing the production of interleukin-2 and tumor necrosis factor [Papanastasiou et al. (1992) Cancer Immunol Immunother 35:145; Baxevanis et al. (1994) Cancer Immunol Immunother 38:281]. In this report we demonstrate that Pro T , when administered simultaneously with L1210 tumor cells, is capable of generating in DBA/2 animals tumorspecific CD8+ cytotoxic T lymphocytes (CTL). The Pro T -induced CD8+ CTL lysed their syngeneic L1210 targets in a major histocompatibility complex (MHC)-restricted fashion since monoclonal antibodies (mAb) against the H-2Kd allelic product could inhibit the cytotoxic response. Mice receiving only Pro T developed non-MHC-restricted cytotoxic activity (NK, and LAK activities) whereas those receiving Pro T and L1210 tumor cells developed both MHC-restricted (CTL) and non-MHC-restricted cytotoxic activities and survived longer. The Pro T -induced CD8+ CTL activity was regulated by Pro T -induced L1210-specific syngeneic CD4+ cells. This was shown in two different ways: first, CD8+-cell-mediated cytotoxic responses against L1210 targets were associated with L1210-specific and MHC-restricted proliferative responses of syngeneic CD4+ cells and, second, CD4+ cells from mice that had received both Pro T and L1210 tumor cells could enhance in vitro the otherwise weak, MHC-restricted and L1210-specific cytotoxicity of syngeneic CD8+ cells from mice that had received only L1210 cells. Our data suggest that Pro T is capable of inducing nonspecific, as well as tumor-specific CTL responses in vivo. This is of importance since Pro T may prove to be useful in clinical protocols aimed at cancer immunotherapy.This work was supported by a CEC grant to Dr. M. Papamichail  相似文献   

8.
We have previously reported that the antitumor effect of OK-432, aStreptococcal preparation, is markedly augmented when injected intratumorally together with fibrinogen (Cancer, 69: 636–642, 1992). In order to elucidate the mechanism of the antitumor effects, we established T cell clones from regional lymph nodes of colorectal cancer patients who received this local immunotherapy. By culture of lymph node lymphocytes, in the presence of IL-2 and OK-432, 4 clones of T cells were established from 4 patients treated by local immunotherapy. These clones had a helper T cell phenotype (CD3+, CD4+, CD8, CD56, WT31+) and were successfully maintained for several months. The cells strongly expressed CD25 when stimulated with OK-432 and exhibited a high level of cytotoxic activity in part explained by the increased expression of ICAM-1 and LFA-1, and the release of TNF. These results suggest that the CD4+ T cells play a role in the antitumor mechanism of local immunotherapy.  相似文献   

9.
Diffuse large B cell lymphoma (DLBCL) is a common B cell malignancy with approximately 30% of patients present relapsed or refractory disease after first-line therapy. Research of further treatment options is needed. Cytotoxic CD4+ T cells express cytolytic molecules and have potential antitumor function. Here, we showed that the CD19+ cells from DLBCL patients presented significantly reduced expression of MHC II molecules than those from healthy controls. Three years after the first-line treatment, patients that presented relapsed disease had significantly lower MHC II expression on their CD19+ cells than patients who did not show recurrence. Examining cytotoxic CD4+ T cells show that DLBCL patients presented significantly elevated frequencies of granzyme A-, granzyme B-, and/or perforin-expressing cytotoxic CD4+ T cells. Also, frequency of cytotoxic CD4+ T cells in DLBCL patients was positively correlated with the MHC II expression level. Subsequently, the cytotoxic potential of CD4+ T cells against autologous CD19+ cells was investigated. We found that the cytotoxic potential of CD4+ T cells was highest in MHC II-high, intermediate in MHC II-mid, and lowest in MHC II-low patients. The percentage of MHC II-expressing viable CD19+ cells presented a significant reduction after longer incubation with cytotoxic CD4+ T cells, suggesting that cytotoxic CD4+ T cells preferentially eliminated MHC II-expressing CD19+ cells. Blocking MHC II on CD19+ cells significantly reduced the cytolytic capacity of CD4+ T cells. Despite these discoveries, the frequency of cytotoxic CD4+ T cells did not predict the clinical outcome of DLBCL patients. Together, these results demonstrated that cytotoxic CD4+ T cells presented an MHC II-dependent cytotoxic potential against autologous CD19+ cells and could potentially represent a future treatment option for DLBCL.  相似文献   

10.

Introduction

The present study was devised to understand the role of systemic indoleamine 2,3-dioxygenase (IDO) in the tolerance induction for orally tolerized mice in collagen-induced arthritis (CIA). We examined whether IDO-expressing dendritic cells (DCs) are involved in the generation of CD4+CD25+ regulatory T cells during the induction of oral tolerance in a murine CIA model.

Methods

Type II collagen was fed six times to DBA/1 mice beginning 2 weeks before immunization, and the effect on arthritis was assessed. To examine the IDO expression, the DCs of messenger RNA and protein were analyzed by RT-PCR and Flow cytometry. In addition, a proliferative response assay was also carried out to determine the suppressive effects of DCs through IDO. The ability of DCs expressing IDO to induce CD4+CD25+ T regulatory cells was examined.

Results

CD11c+ DCs in Peyer's patches from orally tolerized mice expressed a higher level of IDO than DCs from nontolerized CIA mice. IDO-expressing CD11c+ DCs were involved in the suppression of type II collagen-specific T-cell proliferation and in the downregulation of proinflammatory T helper 1 cytokine production. The suppressive effect of IDO-expressing CD11c+ DCs was mediated by Foxp3+CD4+CD25+ regulatory T cells.

Conclusion

Our data suggest that tolerogenic CD11c+ DCs are closely linked with the induction of oral tolerance through an IDO-dependent mechanism and that this pathway may provide a new therapeutic modality to treat autoimmune arthritis.  相似文献   

11.
Human umbilical CD34+ immature haematopoietic cells were rapidly and efficiently obtained from light density MNC (mononuclear cells) by MACS (magnetic cell sorting). An ex vivo expanded population of CD34+ was cultured in serum‐free medium supplemented with cytokines FL (flt3 ligand), SCF (stem cell factor) and TPO (thrombopoietin) in order to obtain a sufficient number of CD34+ cells. CD34+ cells expanded from cord blood for 7 days were demonstrated to increase in the absolute number of CD34+ cells by 5.12±2.47‐fold (mean±S.D., n=3). Flow cytometric analysis demonstrated that the percentage of CD34 antigen expression after expansion of the culture was 97.81±1.07%, whereas it was 69.39±10.37% in none‐expanded CD34+ cells (mean±S.D., n=3), thus defining a system that allowed extensive amplification accompanied by no maturation. MTs (metallothioneins), low molecular weight, cysteine‐rich metal‐binding proteins, exhibit various functions, including metal detoxification and homoeostasis. We here examined the expression pattern of functional members of the MT gene family in immature CD34+ cells and compared it with more mature CD34? cells in order to strengthen the proposed function of MT in differentiation. Cells were cultured in RPMI 1640 medium, with or without different zinc supplements for 24 h. Relative quantitative expression of MT isogenes in the mature CD34? cells was higher than in the immature CD34+ cells. IHC (immunohistochemical staining) revealed an increased MT protein biosynthesis in CD34? cells, greater than in CD34+ cells. Therefore, the role of MT in differentiation of human haematopoietic progenitor cells from human cord blood is reported for the first time.  相似文献   

12.

Background

Sarcoidosis is a granulomatous disease characterized by a seemingly exaggerated immune response against a difficult to discern antigen. Dendritic cells (DCs) are pivotal antigen presenting cells thought to play an important role in the pathogenesis. Paradoxically, decreased DC immune reactivity was reported in blood samples from pulmonary sarcoidosis patients. However, functional data on lung DCs in sarcoidosis are lacking. We hypothesized that at the site of disease DCs are mature, immunocompetent and involved in granuloma formation.

Methods

We analyzed myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) in broncho-alveolar lavage (BAL) and blood from newly diagnosed, untreated pulmonary sarcoidosis patients and healthy controls using 9-color flowcytometry. DCs, isolated from BAL using flowcytometric sorting (mDCs) or cultured from monocytes (mo-DCs), were functionally assessed in a mixed leukocyte reaction with naïve allogeneic CD4+ T cells. Using Immunohistochemistry, location and activation status of CD11c+DCs was assessed in mucosal airway biopsies.

Results

mDCs in BAL, but not in blood, from sarcoidosis patients were increased in number when compared with mDCs from healthy controls. mDCs purified from BAL of sarcoidosis patients induced T cell proliferation and differentiation and did not show diminished immune reactivity. Mo-DCs from patients induced increased TNFα release in co-cultures with naïve allogeneic CD4+ T cells. Finally, immunohistochemical analyses revealed increased numbers of mature CD86+ DCs in granuloma-containing airway mucosal biopsies from sarcoidosis patients.

Conclusion

Taken together, these finding implicate increased local DC activation in granuloma formation or maintenance in pulmonary sarcoidosis.  相似文献   

13.
Dendritic cells (DCs) link the innate and adaptive immune system. Currently, murine DCs for cell biology investigations are developed from MHC class II-negative bone marrow (BM) precursor cells, non-depleted BM cells or BM monocytes in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF). Here we demonstrate an isolation procedure of functionally intact myeloid CD11c+ CD11b+ DCs derived from murine CD34-positive precursors. DCs derived from CD34+ cells show functional internalization, maturation, cytokine secretion, MHC-restricted antigen presentation, and MHCII retrograde transport of antigens from the lysosomes to the cell surface. In comparison to the established method, the advantages of this isolation procedure are a shorter cultivation period, a superior transfection efficiency, the yield of a purer and more homogeneous population of immature DCs, and less consumption of cell culture medium and GM-CSF. The new isolation procedure and the functional quality of CD34+ cell-derived murine myeloid DCs make them ideally suited for immunology and cell biology studies.  相似文献   

14.

Background

Dendritic cells (DCs) are considered as key mediators of the early events in human immunodeficiency virus type 1 (HIV-1) infection at mucosal sites. Previous studies have shown that surface-bound virions and/or internalized viruses found in endocytic vacuoles of DCs are efficiently transferred to CD4+ T cells. Extracellular adenosine triphosphate (ATP) either secreted or released from necrotic cells induces a distorted maturation of DCs, transiently increases their endocytic capacity and affects their migratory capacity. Knowing that high extracellular ATP concentrations are present in situations of tissue injury and inflammation, we investigated the effect of ATP on HIV-1 transmission from DCs to CD4+ T lymphocytes.

Results

In this study, we show that extracellular ATP reduces HIV-1 transfer from immature monocyte-derived DCs (iDCs) to autologous CD4+ T cells. This observed decrease in viral replication was related to a lower proportion of infected CD4+ T cells following transfer, and was seen with both X4- and R5-tropic isolates of HIV-1. Extracellular ATP had no effect on direct CD4+ T cell infection as well as on productive HIV-1 infection of iDCs. These observations indicate that extracellular ATP affects HIV-1 infection of CD4+ T cells in trans with no effect on de novo virus production by iDCs. Additional experiments suggest that extracellular ATP might modulate the trafficking pathway of internalized virions within iDCs leading to an increased lysosomal degradation, which could be partly responsible for the decreased HIV-1 transmission.

Conclusion

These results suggest that extracellular ATP can act as a factor controlling HIV-1 propagation.
  相似文献   

15.

Background

Mesenchymal stem cells have prominent immune modulatory properties, which may have clinical applications; however their major source, bone marrow, is of limited availability. On the other hand, mesenchymal stem cells derived from human exfoliated deciduous teeth (SHEDs) are readily accessible, but their immune regulatory properties have not been completely investigated. This study was designed, therefore, to evaluate the SHEDs influence on DCs differentiation, maturation, ability to activate T cells and to expand CD4+Foxp3+ T cells.

Methodology/Principal Findings

The experiments were based in cellular co-culture during differentiation and maturation of monocyte derived-DCs (moDCs), with, or not, presence of SHEDs. After co-culture with SHEDs, (moDCs) presented lower expression of BDCA-1 and CD11c, in comparison to DC cultivated without SHEDs. CD40, CD80, CD83 and CD86 levels were also decreased in mature DCs (mDCs) after co-cultivation with SHEDs. To assess the ability of SHEDs-exposed moDCs to modulate T cell responses, the former were separated from SHEDs, and co-cultured with peripheral blood lymphocytes. After 5 days, the proliferation of CD4+ and CD8+ T cells was evaluated and found to be lower than that induced by moDCs cultivated without SHEDs. In addition, an increase in the proportion of CD4+Foxp3+IL-10+ T cells was observed among cells stimulated by mature moDCs that were previously cultivated with SHEDs. Soluble factors released during co-cultures also showed a reduction in the pro-inflammatory cytokines (IL-2, TNF-α and IFN-γ), and an increase in the anti-inflammatory molecule IL-10.

Conclusion/Significance

This study shows that SHEDs induce an immune regulatory phenotype in moDCs cells, evidenced by changes in maturation and differentiation rates, inhibition of lymphocyte stimulation and ability to expand CD4+Foxp3+ T cells. Further characterization and validation of this phenomenon could support the use of SHEDs, directly or indirectly for immune modulation in the clinical practice.  相似文献   

16.

Introduction

The FMS-related tyrosine kinase 3 ligand (Flt3L)/CD135 axis plays a fundamental role in proliferation and differentiation of dendritic cells (DCs). As DCs play an important role in rheumatoid arthritis (RA) immunopathology we studied in detail the Flt3L/CD135 axis in RA patients.

Methods

The levels of Flt3L in (paired) serum and synovial fluid (SF) were quantified by enzyme-link immunosorbent assay (ELISA). Expression of Flt3L and CD135 in paired peripheral blood mononuclear cells (PBMCs) and synovial fluid mononuclear cells (SFMCs) was quantified by fluorescence-activated cell sorting (FACS). The expression of Flt3L, CD135 and TNF-Converting Enzyme (TACE) in synovial tissues (STs) and in vitro polarized macrophages and monocyte-derived DCs (Mo-DCs) was assessed by quantitative PCR (qPCR). CD135 ST expression was evaluated by immunohistochemistry and TACE ST expression was assessed by immunofluorescence. Flt3L serum levels were assessed in RA patients treated with oral prednisolone or adalimumab.

Results

Flt3L levels in RA serum, SF and ST were significantly elevated compared to gout patients and healthy individuals (HI). RA SF monocytes, natural killer cells and DCs expressed high levels of Flt3L and CD135 compared to HI. RA ST CD68+ and CD163+ macrophages, CD55+ fibroblast-like synoviocytes (FLS), CD31+ endothelial cells or infiltrating monocytes and CD19+ B cells co-expressed TACE. IFN-γ-differentiated macrophages expressed higher levels of Flt3L compared to other polarized macrophages. Importantly, Flt3L serum levels were reduced by effective therapy.

Conclusions

The Flt3L/CD135 axis is active in RA patients and is responsive to both prednisolone and adalimumab treatment. Conceivably, this ligand receptor pair represents a novel therapeutic target.  相似文献   

17.
In an attempt to investigate whether the genetic defect in the HEXA and HEXB genes (which causes the absence of the lysosomal β‐N‐acetyl‐hexosaminidase), are related to the wide inflammation in GM2 gangliosidoses (Tay‐Sachs and Sandhoff disease), we have chosen the dendritic cells (DCs) as a study model. Using the RNA interference approach, we generated an in vitro model of HEXs knock‐down immunogenic DCs (i‐DCs) from CD34+‐haemopoietic stem cells (CD34+‐HSCs), thus mimicking the Tay‐Sachs (HEXA?/?) and Sandhoff (HEXB?/?) cells. We showed that the absence of β‐N‐acetyl‐hexosaminidase activity does not alter the differentiation of i‐DCs from HSCs, but it is critical for the activation of CD4+T cells because knock‐down of HEXA or HEXB gene causes a loss of function of i‐DCs. Notably, the silencing of the HEXA gene had a stronger immune inhibitory effect, thereby indicating a major involvement of β‐N‐acetyl‐hexosaminidase A isoenzyme within this mechanism. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Summary A total of 199 T cell clones from two melanoma patients were derived from progenitor T cells from recurrent melanoma, regional lymph nodes (either involved or uninvolved with malignancy) and peripheral blood by inoculating single cells directly into the wells of microtiter plates before in vitro expansion. The surface marker phenotype of most clones was CD4+CD8, although some were CD4CD8+. Genomic DNA prepared from all clones was analyzed by Southern blot hybridization using T cell receptor (TCR) and gene probes, seeking clones with identical TCR gene rearrangement patterns as direct evidence for in vivo progenitor T cell clonal amplification. ProbingHindIII-digested DNA with TCR and TCR probes revealed several clones with identical TCR gene rearrangement patterns. These clones had subsequent probing ofBamHI-digested DNA with TCR and TCR probes, which showed all but 2 clones to have distinct rearrangement patterns. These analyses provide clear molecular evidence for in vivo polyclonal CD4+ T cell populations in each of several separate immune compartments in these patients.This investigation was supported by National Institutes of Health, National Research Service Award CA-08 397 from the National Cancer Institute as well as NIH CA-32 685, CA-30 688, DOE FG028 760 502 and American Cancer Society Grant ACS CH-237  相似文献   

19.

Introduction

CD200 is a type I transmembrane glycoprotein that can regulate the activation threshold of inflammatory immune responses, polarize cytokine production, and maintain immune homeostasis. We therefore evaluated the functional status of CD200/CD200 receptor 1 (CD200R1) interactions in subjects with systemic lupus erythematosus (SLE).

Methods

Serum CD200 level was detected by ELISA. The expression of CD200/CD200R1 by CD4+ T cells and dendritic cells (DCs) was examined by flow cytometry, and then compared between SLE patients and healthy controls. Peripheral blood mononuclear cells were stained with carboxyfluorescein diacetate succinimidyl ester and annexin V/propidium iodide for evaluation of the effect of CD200 on cell proliferation and apoptosis. In addition, the effect of CD200 on DC function was determined by transwell migration assay as well as by measurement of binding and phagocytosis of apoptotic cells.

Results

In SLE patients, the number of CD200+ cells and the level of soluble CD200 were significantly higher than in healthy controls, whereas the expression of CD200R1 by CD4+ T cells and DCs was decreased. Furthermore, the increased CD200 expression by early apoptotic cells contributed to their diminished binding and phagocytosis by DCs in SLE. Importantly, the engagement of CD200 receptor on CD4+ T cells with CD200-Fc fusion protein in vitro reduced the differentiation of T-helper type 17 cells and reversed the defective induction of CD4+CD25highFoxP3+ T cells by transforming growth factor beta in SLE patients. Conversely, blockade of CD200-CD200R1 interaction with anti-CD200R1 antibody promoted CD4+ T-cell proliferation.

Conclusion

CD200 and CD200R1 expression and function are abnormal in SLE and may contribute to the immunologic abnormalities in SLE.  相似文献   

20.

Background

Multiple sclerosis (MS) is a chronic inflammatory, demyelinating and neurodegenerative disease. It is thought to be mediated by CD4+ Th1/Th17 cells. More recently, cells of the innate immune system such as dendritic cells (DCs) and natural killer (NK) cells have been in focus. Glatiramer acetate (GA) is an approved drug for treating MS patients.

Methodology/Principal Findings

In the current study we examined the activities of NK and DCs in nine relapsing remitting MS patients for up to one year after initiation of GA treatment. We observed that NK cells isolated from most of these patients have increased cytotoxic activity against K562 cells. Further analysis showed that the same NK cells lysed both autologous immature (i) and mature (m) DCs. In most patients this increased activity was correlated with increased NK cell activating cytotoxicity receptors such as NKp30, NKp44, NKp46 and NKG2D, and reduced expression of the inhibitory molecule CD158 on the surface of these NK cells. The expression of HLA-DR was increased on iDCs and mDCs in the majority of the patients, but no consistency was observed for the expression of HLA-I or HLA-E. Also, the co-stimulatory receptors CD80, CD83 or CD86 expression was down-regulated on iDCs and mDCs in most cases. Further, the expression of CCR6 was increased on mDCs at later time points of therapy (between 32–48 weeks).

Conclusions/Significance

Our results are the first showing the effects of GA treatment on NK cells in MS patients, which may impact future use of this and other drugs to treat this disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号