首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In previous studies, we demonstrated that allergenic house dust mite proteases are potent inducers of proinflammatory cytokines from the respiratory epithelium, although the precise mechanisms involved were unclear. In this study, we investigated whether this was achieved through activation of protease-activated receptor (PAR)-1 or -2. Pretreatment of A549 respiratory epithelial cells with the clinically important cysteine protease allergen, Der p 1, ablated subsequent PAR-1, but not PAR-2 agonist peptide-induced IL-6 and IL-8 release. HeLa cells transfected with the plasmid coding for PAR-2, in contrast to PAR-1, released significant concentration of IL-6 after exposure to Der p 1. Exposure of HeLa cells transfected with either PAR-1/enhanced yellow fusion protein or PAR-2/enhanced yellow fusion protein to Der p 1 caused receptor internalization in the latter cells only, as judged by confocal microscopy with re-expression of the receptor within 120-min postenzyme exposure. Der p 1-induced cytokine release from both A549 and transfected HeLa cells was accompanied by changes in intracellular Ca(2+) concentrations. Desensitization studies showed that Der p 1 pretreatment of the A549 cells resulted in the abolition of both trypsin- and PAR-2 agonist peptide-induced Ca(2+) release, but not that induced by subsequent exposure to either thrombin or PAR-1 agonist peptide. These data indicate for the first time that the house dust mite allergen Der p 1-induced cytokine release from respiratory epithelial cells is, in part, mediated by activation of PAR-2, but not PAR-1.  相似文献   

2.
Proteinase 3 (PR3), a 29-kDa serine proteinase secreted from activated neutrophils, also exists in a membrane-bound form, and is suggested to actively contribute to inflammatory processes. The present study focused on the mechanism by which PR3 activates human oral epithelial cells. PR3 activated the epithelial cells in culture to produce IL-8 and monocyte chemoattractant protein-1 and to express ICAM-1 in a dose- and time-dependent manner. Incubation of the epithelial cells for 24 h with PR3 resulted in a significant increase in the adhesion to neutrophils, which was reduced to baseline levels in the presence of anti-ICAM-1 mAb. Activation of the epithelial cells by PR3 was inhibited by serine proteinase inhibitors and serum. The epithelial cells strongly express protease-activated receptor (PAR)-1 and PAR-2 mRNA and weakly express PAR-3 mRNA. The expression of PAR-2 on the cell surface was promoted by PR3, and inhibited by cytochalasin B, but not by cycloheximide. PR3 cleaved the peptide corresponding to the N terminus of PAR-2 with exposure of its tethered ligand. Treatment with trypsin, an agonist for PAR-2, and a synthetic PAR-2 agonist peptide induced intracellular Ca(2+) mobilization, and rendered cells refractory to subsequent stimulation with PR3 and vice versa. The production of cytokine induced by PR3 and the PAR-2 agonist peptide was completely abolished by a phospholipase C inhibitor. These findings suggest that neutrophil PR3 activates oral epithelial cells through G protein-coupled PAR-2 and actively participates in the process of inflammation such as periodontitis.  相似文献   

3.
Protease-activated receptors (PARs) compose a family of G protein-coupled receptors activated by proteolysis with exposure of their tethered ligand. Recently, we reported that a neutrophil-derived serine proteinase, proteinase 3 (PR3), activated human oral epithelial cells through PAR-2. The present study examined whether other neutrophil serine proteinases, human leukocyte elastase (HLE), and cathepsin G (Cat G) activate nonepithelial cells, human gingival fibroblasts (HGF). HLE and Cat G as well as PR3 activated HGF to produce IL-8 and monocyte chemoattractant protein 1. Human oral epithelial cells but not HGF express mRNA and protein of secretory leukocyte protease inhibitor, an inhibitor of HLE and Cat G, and recombinant secretory leukocyte protease inhibitor clearly inhibited the activation of HGF induced by HLE and Cat G but not by PR3. HGF express PAR-1 and PAR-2 mRNA in the cells and the proteins on the cell surface. HLE and Cat G cleaved the peptide corresponding to the N terminus of PAR-2 with exposure of its tethered ligand. Treatment with trypsin, an agonist for PAR-2, and a synthetic PAR-2 agonist peptide induced intracellular Ca(2+) mobilization and rendered cells refractory to subsequent stimulation with HLE and Cat G. The production of cytokine induced by HLE and Cat G and the PAR-2 agonist peptide was completely abolished by inhibition of phospholipase C. These findings suggest that neutrophil serine proteinases have equal ability to activate human nonepithelial cells through PAR-2 to produce inflammatory cytokines and may control a number of inflammatory processes such as periodontitis.  相似文献   

4.
PAR-2, a member of a family of G-protein-coupled receptors, can be activated by serine proteases via proteolytic cleavage. PAR-2 expression is known to be upregulated in respiratory epithelium subsequent to inflammation in asthma and chronic obstructive pulmonary disease (COPD). Since these diseases also are characterized by excessive mucus production and secretion, we investigated whether PAR-2 could be linked to mucin hypersecretion by airway epithelium. Normal human bronchial epithelial (NHBE) cells in primary culture or the human bronchial epithelial cell lines, NCI-H292 and HBE-1, were used. NHBE, NCI-H292, and HBE-1 cells expressed prominent levels of PAR-2 protein. Short-term (30min) exposure of cells to the synthetic PAR-2 agonist peptide (SLIGKV-NH2) elicited a small but statistically significant increase in mucin secretion at high concentrations (100microM and 1000microM), compared to a control peptide with reversed amino acid sequence (VKGILS-NH2). Neither human lung tryptase nor bovine pancreatic trypsin, both PAR-2 agonists, affected NHBE cell mucin secretion when added over a range of concentrations. Knockdown of PAR-2 expression by siRNA blocked the stimulatory effect of the AP. The results suggest that, since PAR-2 activation only weakly increases mucin secretion by human airway epithelial cells in vitro, PAR-2 probably is not a significant contributor to mucin hypersecretion in inflamed airways.  相似文献   

5.

Background

The enzymatic activity of the four proteases found in the house dust mite Dermatophagoides pteronyssinus is involved in the pathogenesis of allergy. Our aim was to elucidate the activation cascade of their corresponding precursor forms and particularly to highlight the interconnection between proteases during this cascade.

Methods

The cleavage of the four peptides corresponding to the mite zymogen activation sites was studied on the basis of the Förster Resonance Energy Transfer method. The proDer p 6 zymogen was then produced in Pichia pastoris to elucidate its activation mechanism by mite proteases, especially Der p 1. The role of the propeptide in the inhibition of the enzymatic activity of Der p 6 was also examined. Finally, the Der p 1 and Der p 6 proteases were localised via immunolocalisation in D. pteronyssinus.

Results

All peptides were specifically cleaved by Der p 1, such as proDer p 6. The propeptide of proDer p 6 inhibited the proteolytic activity of Der p 6, but once cleaved, it was degraded by the protease. The Der p 1 and Der p 6 proteases were both localised to the midgut of the mite.

Conclusions

Der p 1 in either its recombinant form or in the natural context of house dust mite extracts specifically cleaves all zymogens, thus establishing its role as a major activator of both mite cysteine and serine proteases.

General significance

This finding suggests that Der p 1 may be valuable target against mites.  相似文献   

6.
7.
Human airway trypsin-like protease (HAT), a serine protease found in the sputum of patients with chronic airway diseases, is an agonist of protease-activated receptor-2 (PAR-2). Previous results have shown that HAT enhances the release of amphiregulin (AR); further, it causes MUC5AC gene expression through the AR-epidermal growth factor receptor pathway in the airway epithelial cell line NCI-H292. In this study, the mechanisms by which HAT-induced AR release can occur were investigated. HAT-induced AR gene expression was mediated by extracellular signal-regulated kinase (ERK) pathway, as pretreatment of cells with ERK pathway inhibitor eliminated the effect of HAT on AR mRNA. Both HAT and PAR-2 agonist peptide (PAR-2 AP) induced ERK phosphorylation; further, desensitization of PAR-2 with a brief exposure of cells to PAR-2 AP resulted in inhibition of HAT-induced ERK phosphorylation, suggesting that HAT activates ERK through PAR-2. Moreover, PAR-2 AP induced AR gene expression subsequent to protein production in the cellular fraction through the ERK pathway indicating that PAR-2-mediated activation of ERK is essential for HAT-induced AR production. However, in contrast to HAT, PAR-2 AP could not cause AR release into extracellular space; it appears that activation of PAR-2 is not sufficient for HAT-induced AR release. Finally, HAT-induced AR release was eliminated by blockade of tumour necrosis factor alpha-converting enzyme (TACE) by the TAPI-1 and RNA interference, suggesting that TACE activity is necessary for HAT-induced AR release. These observations show that HAT induces AR production through the PAR-2 mediated ERK pathway, and then causes AR release by a TACE-dependent mechanism.  相似文献   

8.
Hypersecretion of cytokines and serine proteases has been observed in asthma. However, the influence of proteases and protease-activated receptors (PARs) on monocyte chemoattractant protein-1 (MCP-1) release from airway epithelial cells remains largely unknown. In the present study, A549 cells were challenged with agonists of PARs, and levels of MCP-1 released in the supernatant and mRNA expression were examined by ELISA and real time polymerase chain reaction (PCR), respectively. The results show that thrombin, tryptase, elastase and trypsin induced an up to 6.5-, 1.8-, 1.6-, and 3.1-fold increase in MCP-1 release from A549 cells, respectively, following a 16-h incubation period. The protease-induced secretion of MCP-1 can be abolished by specific protease inhibitors. Agonist peptides of PAR-1 and PAR-2 stimulate MCP-1 secretion up to 15- and 12.7-fold, respectively. Real-time PCR showed that MCP-1 mRNA is up-regulated by the serine proteases tested and by agonist peptides of PAR-1 and PAR-2. In conclusion, serine proteases can stimulate MCP-1 release from A549 cells possibly through a PARs-related mechanism, suggesting that they are likely to contribute to MCP-1-related airway inflammatory disorders in man.  相似文献   

9.
Allergenic serine proteases are important in the pathogenesis of asthma. One of these, Pen c 13, is the immunodominant allergen produced by Penicillium citrinum. Many serine proteases induce cytokine expression, but whether Pen c 13 does so in human respiratory epithelial cells is not known. In this study, we investigated whether Pen c 13 caused IL-8 release and activated protease-activated receptors (PARs) in airway epithelial cells. In airway-derived A549 cells and normal human airway epithelial cells, Pen c 13 induced IL-8 release in a dose-dependent manner. Pen c 13 also increased IL-8 release in a time-dependent manner in A549 cells. Pen c 13 cleaved PAR-1 and PAR-2 at their activation sites. Treatment with Pen c 13 induced intracellular Ca(2+) mobilization and desensitized the cells to the action of other proteases and PAR-1 and PAR-2 agonists. Moreover, Pen c 13-mediated IL-8 release was significantly decreased in Ca(2+)-free medium and was abolished by the protease inhibitors, PMSF and 4-(2-aminoethyl) benzenesulfonyl fluoride. Blocking Abs against the cleavage sites of PAR-1 and PAR-2, but not of PAR-4, inhibited Pen c 13-induced IL-8 production, as did inhibition of phospholipase C. Pen c 13 induced IL-8 expression via activation of ERK 1/2, and not of p38 and JNK. In addition, treatment of A549 cells or normal human airway epithelial cells with Pen c 13 increased phosphorylation of ERK 1/2 by a Ca(2+)-dependent pathway. These finding show that Pen c 13 induces IL-8 release in airway epithelial cells and that this is dependent on PAR-1 and PAR-2 activation and intracellular calcium.  相似文献   

10.
The protease-activated receptor-2 (PAR-2), a G protein-coupled receptor activated by trypsin, contributes to the pathogenesis of inflammatory disease including asthma. Here, we examined the mechanisms by which stimulation of PAR-2 induces an increase in intracellular Ca2+ concentration ([Ca2+]i) in guinea pig tracheal epithelial cells. Trypsin (0.01-3 units/ml) dose-dependently induced a transient increase in [Ca2+]i, the increase being blocked by soybean trypsin inhibitor (SBTI 1 microM). An increase in [Ca2+]i was also induced by an agonist peptide for PAR-2 (SLIGRL-NH2, 0.001-10 microM) but not by thrombin (3 units/ml, an activator for PAR-1, PAR-3 or PAR-4). Repeated or cross stimulation of trypsin or SLIGRL-NH2 caused marked desensitization of the [Ca2+]i response. These responses of [Ca2+]i to trypsin and SLIGRL-NH2 were attenuated by a phospholipase C inhibitor, U-73122, and a Ca2+-ATPase inhibitor, thapsigargin (100 nM), while removal of Ca2+ and a L-type Ca2+-channel blocker, verapamil, were without significant effects. Further, trypsin was without effect on the rate of fura 2 quenching by Mn2+ entry as an indicator of Ca2+ influx. Thus, stimulation of PAR-2 appears to increase [Ca2+]i through the mobilization of Ca2+ from intracellular stores probably via phospholipase Cbeta-linked generation of a second messenger.  相似文献   

11.
Although mite major group 1 allergens, Der p 1 and Der f 1, were first isolated as cysteine proteases, some studies reported that natural Der p 1 exhibits mixed cysteine and serine protease activity. Clarifying whether the serine protease activity originates from Der p 1 or is due to contamination is important for distinguishing between the pathogenic proteolytic activities of group 1 allergens and mite-derived serine proteases. Recombinant mite group 1 allergens would be useful tool for addressing this issue, because they are completely free from contamination by mite serine proteases. Recombinant Der p 1 and Der f 1, and highly purified natural forms exhibited only cysteine protease activity. However, commercially available natural forms exhibited both activities, but the two activities were eluted into different fractions in size-exclusion column chromatography. The substrate specificity associated with the serine protease activity was similar to that of Der f 3. These results indicate that the serine protease activity does not originate from group 1 allergens.  相似文献   

12.
House dust mite allergens (HDM) cause bronchoconstriction in asthma patients and induce an inflammatory response in the lungs due to the release of cytokines, chemokines and additional mediators. The mechanism how HDM components achieve this is largely unknown. The objective of this study was to assess whether HDM components of Dermatophagoides pteronissinus with protease activity (Der p 1) and unknown enzymatic activity (Der p 2, Der p 5) induce biological responses in a human airway-derived epithelial cell line (A549), and if so, to elucidate the underlying mechanism(s) of action. A549 cells were incubated with HDM extract, Der p 1, recombinant Der p 2 and recombinant Der p 5. Cell desquamation was assessed by microscopy. The proinflammatory cytokines, IL-6 and IL-8, were measured by ELISA. Intracellular Ca2+ levels were assessed in A549 cells and in mouse fibroblasts expressing the human protease activated receptor (PAR)1, PAR2 or PAR4. HDM extract, Der p 1 and Der p 5 dose-dependently increased the production of IL-6 and IL-8. Added simultaneously, Der p 1 and Der p 5 further increased the production of IL-6 and IL-8. The action of Der p 1 was blocked by cysteine-protease inhibitors, while that of Der p 5 couldn't be blocked by either serine- or cysteine protease inhibitors. Der p 5 only induced cell shrinking, whereas HDM extract and Der p1 also induced cell desquamation. Der p 2 had no effect on A549 cells. Der p 1's protease activity causes desquamation and induced the release of IL6 and IL-8 by a mechanism independent of Ca2+ mobilisation and PAR activation. Der p 5 exerts a protease-independent activation of A549 that involves Ca2+ mobilisation and also leads to the production of these cytokines. Together, our data indicate that allergens present in HDM extracts can trigger protease-dependent and protease-independent signalling pathways in A549 cells.  相似文献   

13.
Protease-activated receptor-2 (PAR-2) plays a role in inflammatory reactions in airway physiology. Proteases cleaving the extracellular NH(2) terminus of receptors activate or inactivate PAR, thus possessing a therapeutic potential. Using RT-PCR and immunocytochemistry, we show PAR-2 in human airway epithelial cell lines human bronchial epithelial (HBE) and A549. Functional expression of PAR-2 was confirmed by Ca(2+) imaging studies using the receptor agonist protease trypsin. The effect was abolished by soybean trypsin inhibitor and mimicked by the specific PAR-2 peptide agonist SLIGKV. Amplitude and duration of PAR-2-elicited Ca(2+) response in HBE and A549 cells depend on concentration and time of agonist superfusion. The response is partially pertussis toxin (PTX) insensitive, abolished by the phospholipase C inhibitor U-73122, and diminished by the inositol 1,4,5-trisphosphate receptor antagonist 2-aminoethoxydiphenyl borate. Cathepsin G altered neither the resting Ca(2+) level nor PAR-2-elicited Ca(2+) response. Thermolysin, a prototypic bacterial metalloprotease, induced a dose-dependent Ca(2+) response in HBE, but not A549, cells. In both cell lines, thermolysin abolished the response to a subsequent trypsin challenge but not to SLIGKV. Thus different epithelial cell types express different PAR-2 with identical responses to physiological stimuli (trypsin, SLIGKV) but different sensitivity to modifying proteases, such as thermolysin.  相似文献   

14.
牛青霞  陈卓毅  林洁莲  郑坚 《生物磁学》2011,(15):2818-2821
目的:研究胰蛋白酶对IL-8释放的影响。方法:分离、培养人脐静脉内皮细胞(human umbilical vein endothelialcells,HU-VECs)、倒置显微镜观察形态变化,流式细胞术检测内皮细胞标志和蛋白酶活化受体.2(proteinase.activatedreceptor.2,PAR-2)表达,ELISA检测HUVECs培养上清中IL-8水平。结果:HUVECs表达内皮细胞标志和PAR-2。刺激16h,1g/ml胰蛋白酶和100MPAR-2激活肽组HUVECs单层均匀性降低。胰蛋白酶能够显著刺激HUVECs释放IL-8,PAR-2激活肽也诱导IL-8水平升高。蛋白酶抑制剂和PAR-2抑制肽均能够显著抑制胰蛋白酶诱导的IL-8释放。PAR-2激活肽和胰蛋白酶诱导升高的IL-8水平之间成正相关性。结论:胰蛋白酶很可能通过PAR-2激活促进血管内皮细胞释放IL-8。  相似文献   

15.

Background

Excessive apoptosis of airway epithelium is reported to induce airway remodeling and inhibited airway epithelium repair is highly associated with development of asthma and chronic obstructive pulmonary disease. Der p 2 is a major allergen derived from Dermatophagoides pteronyssinus and commonly causes airway hypersensitiveness and asthma; however, the connection between Der p 2 and epithelial apoptosis remains unclear. This study was aimed to explore whether Der p 2 induces apoptosis of airway epithelial cells and the underlying mechanisms.

Results

Our results showed that recombinant Der p 2 (rDP2) inhibited cell growth and induced apoptosis of human bronchial epithelial cell BEAS-2B. Further investigation revealed that rDP2 increased intracellular reactive oxygen species, level of cytosolic cytochrome c and cleavage of caspase-9 and caspase-3. rDP2 also induced activation of p38 mitogen-activated protein kinase (P38) and c-Jun N-terminal kinase (JNK), and triggered proapoptotic signals including decrease of Bcl-2, increase of Bax and Bak, and upregulation of Fas and Fas ligand. In parallel, rDP2 inhibited glycogen synthase kinase 3beta and consequently enhanced degradation of cellular (FADD-like IL-1β-converting enzyme)-inhibitory protein (c-FLIP). Involvement of toll-like receptor (TLR)2 in rDP2-induced apoptosis was also demonstrated using specific small inhibitory RNA.

Conclusions

Our findings indicate that rDP2 suppresses cell growth and trigger apoptosis of BEAS-2B cells, which may attribute to induction of both intrinsic and extrinsic pathway via TLR2 and P38/JNK signaling and c-FLIP degradation. It suggests that Der p 2 may aggravate respiratory disorders through enhancement of apoptosis and the consequent airway injury.
  相似文献   

16.
The squamous cell carcinoma antigens 1 (SCCA1) and SCCA2 belong to the ovalbumin-serpin family. Although SCCA1 and SCCA2 are closely homologous, these two molecules have distinct properties; SCCA1 inhibits cysteine proteinases such as cathepsin K, L, and S, whereas SCCA2 inhibits serine proteinases such as cathepsin G and human mast cell chymase. Although several intrinsic target proteinases for SCCA1 and SCCA2 have been found, the biological roles of SCCA1 and SCCA2 remain unknown. A mite allergen, Der p 1, is one of the most immunodominant allergens and also acts as a cysteine proteinase probably involved in the pathogenesis of allergic diseases. We have recently shown that both SCCA1 and SCCA2 are induced by two related Th2-type cytokines, IL-4 and IL-13, in bronchial epithelial cells and that SCCA expression is augmented in bronchial asthma patients. In this study, we explored the possibility that SCCA proteins target Der p 1, and it turned out that SCCA2, but not SCCA1, inhibited the catalytic activities of Der p 1. We furthermore analyzed the inhibitory mechanism of SCCA2 on Der p 1. SCCA2 contributed the suicide substrate-like mechanism without formation of a covalent complex, causing irreversible impairment of the catalytic activity of Der p 1, as SCCA1 does on papain. In addition, resistance to cleavage by Der p 1 also contributed to the inhibitory mechanism of SCCA2. These results suggest that SCCA2 acts as a cross-class serpin targeting an extrinsic cysteine proteinase derived from house dust mites and that it may have a protective role against biological reactions caused by mites.  相似文献   

17.
Induction of IL-6 release from human T cells by PAR-1 and PAR-2 agonists   总被引:4,自引:0,他引:4  
Proteinase-activated receptors (PAR) have been recognized as playing an important role in inflammation and immune response. However, little is known of the expression and function of PAR on human T cells. In this study, the expression of PAR on highly purified human T cells was determined and the secretion of IL-6 from cultured T cells in response to serine proteinases and agonist peptides of PAR was examined. The results showed that T cells express PAR-1, PAR-2 and PAR-3 proteins and genes. Thrombin, trypsin and tryptase, but not elastase, were able to stimulate concentration-dependent secretion of IL-6 from T cells following a 16 h incubation period. The specific inhibitors of thrombin, trypsin and tryptase inhibited the actions of these proteinases on T cells, indicating that the enzymatic activity is essential for their actions. Agonist peptides of PAR SFLLR-NH2, TFLLRN-NH2 and SLIGKV-NH2, but not TFRGAP-NH2, GYPGQV-NH2 and AYPGKF-NH2, are also capable of inducing IL-6 release from T cells. In conclusion, induction of IL-6 secretion from T cells by thrombin, trypsin and tryptase is probably through the activation of PAR, suggesting that serine proteinases are involved in the regulation of immune response of the body.  相似文献   

18.
Protease-activated receptors (PARs) are involved in the contribution of airway epithelial cells to the development of inflammation by release of pro- and anti-inflammatory mediators. Here, we evaluated in epithelial cells the influence of LPS and continuous PAR activation on PAR expression level and the release of the proinflammatory chemokine IL-8. We studied primary human small airway epithelial cells and two airway epithelial cell lines, A549 and HBE cells. LPS specifically upregulated expression of PAR-2 but not of PAR-1. Exposure of epithelial cells to PAR-1 or PAR-2 agonists increased the PAR-1 expression level. The PAR-2 agonist exhibited higher potency than PAR-1 activators. However, the combined exposure of epithelial cells to LPS and PAR agonists abrogated the PAR-1 upregulation. The PAR-2 expression level was also upregulated after exposure to PAR-1 or PAR-2 agonists. This elevation was higher than the effect of PAR agonists on the PAR-1 level. In contrast to the PAR-1 level, the PAR-2 level remained elevated under concomitant stimulation with LPS and PAR-2 agonist. Furthermore, activation of PAR-2, but not of PAR-1, caused production of IL-8 from the epithelial cells. Interestingly, both in the epithelial cell line and in primary epithelial cells, there was a potentiation of the stimulation of the IL-8 synthesis and release by PAR-2 agonist together with LPS. In summary, these results underline the important role of PAR-2 in human lung epithelial cells. Moreover, our study shows an intricate interplay between LPS and PAR agonists in affecting PAR regulation and IL-8 production.  相似文献   

19.
The trypsin-like protease Der p 3, a major allergen of the house dust mite Dermatophagoides pteronyssinus, is synthesized as a zymogen, termed proDer p 3. No recombinant source of Der p 3 has been described yet, and the zymogen maturation mechanism remains to be elucidated. The Der p 3 zymogen was produced in Pichia pastoris. We demonstrated that the recombinant zymogen is glycosylated at the level of its propeptide. We showed that the activation mechanism of proDer p 3 is intermolecular and is mediated by the house dust mite cysteine protease Der p 1. The primary structure of the proDer p 3 propeptide is associated with a unique zymogen activation mechanism, which is different from those described for the trypsin-like family and relies on the house dust mite papain-like protease Der p 1. This is the first report of a recombinant source of Der p 3, with the same enzymatic activity as the natural enzyme and trypsin. Glycosylation of the propeptide was found to decrease the rate of maturation. Finally, we showed that recombinant Der p 3 is inhibited by the free modified prosequence T(P1)R.  相似文献   

20.
Dose-dependent release of beta-hexoaminidase induced with thrombin was shown to be mediated by the PAR-1. This was further confirmed by means of agonist, antagonist and PAR desensitization. Acceleration of the mast cell mediator secretion by the Xa factor and PAR-2 agonist, was revealed. An increase in the mast cell release induced by thrombin and TRAP-6 was shown in the acute peritonitis model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号