首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Floral structure is compared in Pelagodoxa and Sommieria (Arecaceae, Arecoideae). Male flowers have three free, imbricate sepals, three basally congenitally united and apically valvate petals, and six stamens. Anthers are dorsifixed and dehiscence introrse. The sterile gynoecium is tricarpellate. Female flowers have three free, imbricate sepals and three free, imbricate petals, which are slightly fused with the sepals at the base. Four to six staminodes are congenitally united at the base and fused with the ovary for a short distance. The gynoecium is syncarpous. Carpels are almost equal in early development; later the gynoecium becomes pseudomonomerous. The three stigmatic branches are equally developed, apical and sessile. The carpels are (syn-)ascidiate up to the level of the placenta and (sym-)plicate above. Each carpel has one ovule, in the sterile carpels it is aborted at anthesis. The fertile ovule is erect up to anthesis and pendant afterwards because of the bulging out of the ovary. Pollen tube transmitting tracts (PTTT) encompass the secretory epidermis of the ventral slits of each carpel. Floral structure in Pelagodoxa and Sommieria supports the sister group relationship between the two genera suggested in recent molecular phylogenies and reflects their close relationships to a major clade of pseudomonomerous arecoid palms from the Indo-Pacific region.  © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society , 2004, 146 , 27–39.  相似文献   

2.
Morphology and development of the female flowers in Geonoma interrupta are described and compared with other taxa within Arecaceae. Inflorescences are pleiothyrses. Cincinni are immersed in pits and arranged according to the Fibonacci pattern along the rachillae. The gynoecium is composed of three free carpels in early stages and later becomes pseudomonomerous. Two carpels are sterile; they develop to different degrees and are commonly unequal in size. The fertile carpel contains a single, crassinucellate, anatropous ovule. Styles are formed in each carpel. The style of the fertile carpel becomes basifixed as the ovary enlarges. The stigmas remain free and plicate during development and expose unicellular papillae at anthesis. Pollen tube transmitting tracts and a compitum are present in the ventral slits of the stigmas and the postgenitally united styles during anthesis. A septal nectary is formed by incomplete union of the flanks of the carpels at the base of the gynoecium, and nectar is secreted from an epithelium. It is suggested that in Geonoma as a whole, the attraction of pollinators to female flowers is due to a combination of nectar reward and partial mimicry of male flowers.  相似文献   

3.
The presence of a gynoecium composed of carpels is a key feature of angiosperms. The carpel is often regarded as a homologue of the gymnosperm megasporophyll (that is, an ovule-bearing leaf), but higher complexity of the morphological nature of carpel cannot be ruled out. Angiosperm carpels can fuse to form a syncarpous gynoecium. A syncarpous gynoecium usually includes a well-developed compitum, an area where the pollen tube transmitting tracts of individual carpels unite to enable the transition of pollen tubes from one carpel to another. This phenomenon is a precondition to the emergence of carpel dimorphism manifested as the absence of a functional stigma or fertile ovules in part of the carpels. Pseudomonomery, which is characterized by the presence of a fertile ovule (or ovules) in one carpel only, is a specific case of carpel dimorphism. A pseudomonomerous gynoecium usually has a single plane of symmetry and is likely to share certain features of the regulation of morphogenesis with the monosymmetric perianth and androecium. A genuine monomerous gynoecium consists of a single carpel. Syncarpous gynoecia can be abruptly transformed into monomerous gynoecia in the course of evolution or undergo sterilization and gradual reduction of some carpels. Partial or nearly complete loss of carpel individuality that precludes the assignment of an ovule (or ovules) to an individual carpel is observed in a specific group of gynoecia. We termed this phenomenon mixomery, since it should be distinguished from pseudomonomery.  相似文献   

4.
The fusion of carpels into a unified compound gynoecium is considered a dominant feature of angiosperm evolution and it also occurs by postgenital fusion during the gynoecium development in some apocarpous species. However, we found the reverse process, the separation of carpels from combined carpel primordia, during the development of the gynoecium in Phytolacca. Semithin sectioning and scanning electron microscopy were utilised to observe the structure and development of the gynoecia in Phytolacca acinosa and Phytolacca americana, fluorescence microscopy was utilised to observe the pollen tube growth in the gynoecia of the two species, and the topology method was applied to analyze the relationship between the gynoecium structure and pollen tube pathway. Although the gynoecia of P. acinosa and P. americana are both syncarpous, the degree of carpel fusion in the mature gynoecia of the two syncarpous species is different as a result of variant developmental processes. However, change in the degree of carpel fusion during the development of gynoecia in Phytolacca does not affect pollen tube growth because of the existence of the extragynoecial pollen-tube pathway. Thus, the change in the degree of carpel fusion in Phytolacca is primarily the result of diversification of developmental processes related to selection pressure.  相似文献   

5.
A new genus of Phytolaccaceae,Nowickea, includes two new species,N. xolocotzii andN. glabra, each known only from its type locality in the states of Jalisco and Morelos, Mexico, respectively.Nowickea exhibits close relationship withPhytolacca by a robust herbaceous growth habit, 7- to 10-carpellate ovary, carpels with terminal, basally connate styles, basal placentation, and fleshy fruits. It is distinguished by green, subequal, herbaceous, and often lanceolate tepals 3 to 12 mm long, ovary and fruit elevated on a well developed gynophore, obovoid or obpyriform fruits, and narrowly ellipsoid seeds.  相似文献   

6.
The morphology, anatomy, and histology of the gynoecia at or close to anthesis are described for 20 genera of palms selected to represent different taxonomic alliances and to include major gynoecial types within the family. Palms may have 1–10 carpels, but most have three. Fifteen genera, including 14 coryphoid palms and the monotypic Nypa fruticans, are apocarpous and the remainder, approximately 190, are syncarpous. Fusion of carpels in some gynoecia begins in the base, in others in the styles. Pseudomonomerous pistils occur in several different alliances: the ovarian parts of two carpels are reduced but three usually equal and functional styles and stigmas are present. The carpel is often follicular in shape with the ventral suture open or, more frequently, partially or completely closed. The carpel may be stipitate or sessile and usually has a conduplicate laminar part. Most carpels are spirally and laterally inserted on the receptacle, but the carpel in some unicarpellate genera (e.g., Thrinax) appears terminal. Stipes, ovarian parts, styles, and stigmas vary in structure and development. Septal nectaries which differ in size, in the presence or absence of specialized canals, and in position, characterize all genera of some groups but only some genera of others. Diverse vascular configurations in the bases of gynoecia vary according to the extent of the floral axis, the development of carpellary stipes, and the connation of the carpels and their adnation to the tip of the floral axis. Four types of carpellary vascular systems are present in the genera described: (1) most palm carpels have three major traces consisting of a dorsal bundle and two ventral bundles, and they may also have up to four pairs of lateral bundles or occasionally more; (2) in certain cocosoid palms no ventral bundles can be distinguished, but a dorsal bundle, many parallel lateral bundles, and a row of immature ventral strands vascularize each carpel; (3) carpels of Phytelephas have a dorsal bundle, two pairs of major lateral bundles and about four pairs of shorter lateral bundles, with no identifiable ventral bundles; (4) carpels of Nypa have many dichotomously branched bundles but none that are recognizable as dorsal, ventral, or lateral strands. Additional peripheral bundles or systems may be present in each of the above types. Ovules are supplied by 1–15 bundles. These are derived either from the carpellary stele; from ventral bundles only; from ventral, lateral, and dorsal bundles; or from a combination of these origins. Certain areas of the gynoecia or certain parts of dorsal carpellary walls in some genera are much less mature at anthesis than surrounding tissues. Implications for floral biology and relationships within the palms and of palms to other groups are discussed.  相似文献   

7.
The apocarpous gynoecia of three separate groups of higher advanced dicotyledons show postgenital fusion of their apical parts. In this fused region the pollen tube transmitting tissue of the carpels is united into a compitum, which provides advantages of a syncarpous to the apocarpous gynoecium. It is supposed that in at least some of these groups the general evolutionary trend of the angiosperms from apocarpy towards syncarpy is reversed.  相似文献   

8.
Twenty-two genera representing sixty-two species of Cunoniaceae and Davidsonia were examined with respect to floral anatomy. Sepals are vascularized by three traces with the lateral traces of adjacent sepals united. Pancheria is unique for the family with species in which the sepals are vascularized by a single, undivided bundle. Petals, when present, and stamens, are uniformly one-trace structures. A general tendency exists within the family for the principal floral bundles to unite in various ways, with fusions evident between calyx, corolla, and androecial vascular supplies. Carpel number ranges from two to five and the gynoecium is generally surrounded by a prominent disc. Gynoecia of Ceratopetalum and Pullea are “half-inferior.” The number of ovules per carpel locule ranges from one to numerous. Ventral carpel sutures range from open to completely sealed at the level of placentation. Carpels of the apocarpous genus Spiraeanthemum (incl. Acsmithia) are vascularized by a dorsal bundle and either three or four bundles constituting the ovular and wing vasculation in the ventral position, a condition unlike other members of the family. Ovules are supplied by the median ventral bundle. More advanced bicarpellate gynoecia within the family are predominately vascularized by a dorsal and two ventral bundles although a variable number of additional lateral wall traces may be present. A major trend exists toward fusion of the ventral bundles of adjacent carpels in the ovary of both bicarpellate and multicarpellate plants. At the base of the styles the fused ventral strands separate and extend along with the dorsal carpellary bundles into styles of adjacent carpels. In Pullea the ventral bundles terminate within the ovules. The united ventral carpellary bundles in Aphanopetalum, Gillbeea, and Aistopetalum lie in the plane of the septa separating adjacent carpels. Ovules are vascularized by traces originating from the vascular cylinder at the base of the gynoecium or by traces branching from the ventral bundles. Ovular traces in each carpel are united, or remain as discrete bundles, prior to entering the placenta. Tannin and druses are common throughout all floral parts. Although floral anatomy generally supports the position of Cunoniaceae near Saxifragaceae and Davidsoniaceae, the evolutionary relationship of the Cunoniaceae to the Dilleniaceae is uncertain.  相似文献   

9.
Almost all angiosperms are angiospermous, i.e. the ovules are enclosed in carpels at anthesis and during seed development, but angiospermy develops in different ways across angiosperms. The most common means of carpel closure is by a longitudinal ventral slit in carpels that are partly or completely free. In such carpels, the closure process commonly begins at midlength of the prospective longitudinal slit and then proceeds downward and upward. Closure by a transverse slit is rarer, but it is prominent in groups of the ANITA grade and in a few early branching monocots (some Alismatales) and some early branching eudicots (a few Ranunculaceae and Nelumbonaceae), in these eudicots combined with a more or less developed longitudinal slit. In all these cases the carpels have a single ovule in ventral median position. In ANITA lines with pluriovulate carpels, there is only a short longitudinal slit in the uniformly ascidiate carpels. In carpels with a unifacial style the closure area is narrow; this pattern is rare and scattered mainly in some wind‐pollinated monocots and eudicots. In most angiosperms the carpels become closed before the ovules are visible from the outside of the still incompletely closed carpels (early carpel closure). This is notably the case in the ANITA grade and magnoliids. Delayed carpel closure, with the ovules visible before the carpels are closed, is much rarer and is concentrated in a few monocots (mainly some Alismatales and some Poales) and a few eudicots (mainly a few Ranunculales and many Caryophyllales, and scattered in some other eudicots). A kind of delayed carpel closure (with the placenta visible before closure but mostly not the ovules) also occurs in syncarpous gynoecia with a free central placenta. Most gynoecia with a free central placenta occur in the superasterids. In such gynoecia the individual carpel tips are not differentiated but the opening in young gynoecia has the shape of a circular diaphragm. In this case, when ovary septa and free carpel tips are missing, the number of carpels is sometimes unclear (Primulaceae, Lentibulariaceae, some Santalaceae). Extremely ascidiate carpels are concentrated in the ANITA grade, a few magnoliids and some early branching monocots. Aspects of potential advantages of plicate vs. ascidiate carpels with regard to flexibility of pollen tube transmitting tract differentiation are discussed. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178 , 556–591.  相似文献   

10.
Most angiosperms have gynoecia with two to five carpels. However, more than five carpels (here termed ‘multicarpellate condition’) are present in some representatives of all larger subclades of angiosperms. In such multicarpellate gynoecia, the carpels are in either one or more than one whorl (or series). I focus especially on gynoecia in which the carpels are in a single whorl (or series). In such multicarpellate syncarpous gynoecia, the closure in the centre of the gynoecium is imprecise as a result of slightly irregular development of the carpel flanks. Irregular bumps appear to stuff the remaining holes. In multicarpellate gynoecia, the centre of the remaining floral apex is not involved in carpel morphogenesis, so that this unspent part of the floral apex remains morphologically undifferentiated. It usually becomes enclosed within the gynoecium, but, in some cases, remains exposed and may or may not form simple excrescences. The area within the remaining floral apex is histologically characterized by a parenchyma of simple longitudinal cell rows. In highly multicarpellate gynoecia with the carpels in a whorl, the whorl tends to be deformed into an H‐shaped or star‐shaped structure by differential growth of the floral sectors, so that carpels become aligned in parallel rows, in which they face each other with the ventral sides. In this way, a fractionated compitum may still be functional. Multicarpellate gynoecia (with the carpels in one whorl or series) occur in at least one species in 37 of the 63 angiosperm orders. In contrast, non‐multicarpellate gynoecia are present in at least one species of all 63 orders. The basal condition in angiosperms is more likely non‐multicarpellate. Multicarpellate gynoecia are restricted to flowers that are not highly synorganized. In groups with synorganized androecium and gynoecium and in groups with elaborate monosymmetric flowers, multicarpellate gynoecia are lacking. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 174 , 1–43.  相似文献   

11.
Summary Detached pistils from inbred lines of Brassica oleracea L. var alboglabra were fed with okadaic acid (OA), an inhibitor of serine/threonine protein phosphatases, via the transpiration stream. Following self-pollination, pollen tubes were observed to have grown into or through the styles of pistils treated with OA, but not those of untreated controls. Treatment with 1 M OA was sufficient to completely overcome self-incompatibility (SI) in an inbred line homozygous for the S63 allele, though an OA concentration of 5 M was required to cause breakdown of SI in an inbred line homozygous for the S29 allele. At the higher concentration used, pollen tube growth was arrested before the pollen tubes reached the ovary, but this effect was also noted in cross-pollinated styles treated in the same manner. These data provide evidence for the involvement of type 1 and/or type 2A protein phosphatases in the Brassica SI signal transduction mechanism. Present address after November 1993: Department of Biology, Colorado State University, Fort Collins, Colorado, USA  相似文献   

12.
The inferior ovary of Boottia cordata, Ottelia alismoides, and their hybrid is appendicular in nature, the carpels are congenitally only slightly connate, and they are unsealed. All floral organs except the sepals originate from common primordia in the female and bisexual flowers. A flat residual floral apex is pressnt. There is a vestigial superior ovary of three ontogenetically fused carpels in the male flower of Boottia cordata. The hybrid is intermediate in many characteristics and has partially fertile stamens and staminodia. The sequence of development in all flowers is acropetal. These plants appear to be related to the Butomaceae and they show evolutionary tendencies parallel to those in the Nymphaeaceae.  相似文献   

13.
Genetic linkage maps of the guppy (Poecilia reticulata) were constructed from independent crosses between the Tuxedo strain and a feral line (Wildtype). Segregation patterns of random amplified polymorphic DNA (RAPD) markers and phenotypic markers were investigated in F2 offspring of Tuxedo × Wildtype and Wildtype × Tuxedo crosses. Among the 300 and 276 RAPD markers scored for the respective crosses, linkages were identified for 230 and 212, respectively. The Tuxedo × Wildtype and Wildtype × Tuxedo maps spanned 2100 Kosambi centiMorgans (cMK) and 1900 cMK, respectively, in 28 linkage groups. Average marker resolution was 10 cMK. Genome length was estimated at 4410 cMK and 4060 cMK for the respective crosses, with an average physical distance of 166 kbp/cMK. Several RAPD markers were closely linked to or mapped onto the loci for the sex-determining region (SdR), and the sex-linked black caudal-peduncle (Bcp) and red tail (Rdt) genes. These primary linkage maps are the initial step toward the construction of a composite high-density map to facilitate map-based cloning and marker-assisted selection of quantitative trait loci that are essential for the development of comprehensive breeding programs for the guppy.  相似文献   

14.
The question whether the uniseriate perianth ofZanthoxylum L. s. str. is homologous with the calyx or the corolla of taxa included inFagara, or of an independent origin, has been controversial for a long time, but the arguments mostly have remained theoretical. The present investigation of floral structures indicates that there are two different types of uniseriate perianth inZanthoxylum s. str. Therefore, this taxon does not represent a natural group and should be united withFagara asZanthoxylum s.l. The infrageneric taxonomy of this genus is still very ambiguous. It is shown that differences in indumentum, number of sepals and petals (5-4-3) resp. perianth segments (4–9), stamens (3–6), and free carpels (1–5) are of systematic relevance. Particularly important but so far neglected is carpel shape, where an acrostylous and an anacrostylous-basistylous type can be recognized. Stigmata of 2 or more carpels mostly fuse to form a compitum. 4–5-merous flowers with calyx and corolla, and acrostylous carpels are considered as plesiomorphic character states in the genus. On the basis of ± corresponding morphological and phytochemical progressions a working hypothesis about the relationships withinZanthoxylum s.l. is presented in graphical form (Fig. 9).Adapted from a lecture held at the 10th Symposion on Morphology, Anatomy, and Systematics in Göttingen, February 1991.  相似文献   

15.
Floral morphology, anatomy and histology in the newly circumscribed order Celastrales, comprising Celastraceae, Parnassiaceae and Lepidobotryaceae are studied comparatively. Several genera of Celastraceae and Lepidobotrys (Lepidobotryaceae) were studied for the first time in this respect. Celastraceae are well supported as a group by floral structure (including genera that were in separate families in earlier classifications); they have dorsally bulged‐up locules (and thus apical septa) and contain oxalate druses in their floral tissues. The group of Celastraceae and Parnassiaceae is also well supported. They share completely syncarpous gynoecia with commissural stigmatic lobes (and strong concomitant development of the commissural vascular bundles but weak median carpel bundles), only weakly crassinucellar or incompletely tenuinucellar ovules with an endothelium, partly fringed sepals and petals, protandry in bisexual flowers combined with herkogamy by the movement of stamens and anther abscission, and stamens fused with the ovary. In contrast, Lepidobotryaceae are more distant from the other two families, sharing only a handful of features with Celastraceae (not Parnassiaceae), such as pseudohermaphroditic flowers, united stamen bases forming a collar around the gynoecium and seeds with a conspicuous aril. However, all three families together are also somewhat supported as a group and share petals that are not retarded in late floral bud development, 3‐carpellate gynoecia, ventral slits of carpels closed by long interlocking epidermal cells and pollen tube transmitting tissue encompassing several cell layers, both integuments usually more than two cell layers thick, and only weak or lacking floral indumentum. In some molecular analyses Celastrales form an unsupported clade with Malpighiales and Oxalidales. This association is supported by floral structure, especially between Celastrales and Malpighiales. Among Celastrales, Lepidobotryaceae especially share special features with Malpighiales, including a diplostemonous androecium with ten fertile stamens, epitropous ovules with an obturator and strong vascularization around the chalaza. © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society, 2005, 149 , 129–194.  相似文献   

16.
Fluorescence microscopy and histological studies have been used to show that in Illicium floridanum Ellis (Illiciaceae), a primitive apocarpous angiosperm, functional syncarpy is achieved by intercarpellary growth of pollen tubes. After pollen germinates on the separate stigmatic crests of the carpellary whorl, tubes grow within the carpels obliquely down and inward toward the central floral axis which is modified as a stigmalike “apical residuum.” In a restricted shallow region around the base of the apical residuum, some pollen tubes grow out between the unfused margins of the carpels and circumferentially around the surface of the apical residuum from where they may enter neighboring carpels. Some pollen germination and tube growth also occur on the apical residuum itself. The apical residuum with its associated unfused carpel margins acts as an extragynoecial compitum for pollen tube transfer between carpels, and, as such, is believed to represent a mechanism for increasing the efficiency of seed set. The pollen tube pathway of Illicium appears to be a primitive expression of a line of evolutionary development leading to syncarpous gynoecia through stages possibly exemplified by certain members of the Trochodendraceae (lower Hamamelididae).  相似文献   

17.
The inflorescence of Houttuynia cordata produces 45–70 sessile bracteate flowers in acropetal succession. The inflorescence apical meristem has a mantle-core configuration and produces “common” or uncommitted primordia, each of which bifurcates to form a floral apex above, a bract primordium below. This pattern of organogenesis is similar to that in another saururaceous plant, Saururus cernuus. Exceptions to this unusual development, however, occur in H. cordata at the beginning of inflorescence activity when four to eight petaloid bract primordia are initiated before the initiation of floral apices in their axils. “Common” primordia also are lacking toward the cessation of inflorescence apical activity in H. cordata when primordia become bracts which may precede the initiation of an axillary floral apex. Many of these last-formed bracts are sterile. The inflorescence terminates with maturation of the meristem as an apical residuum. No terminal flowers or terminal gynoecia were found, although subterminal gynoecia or flowers in subterminal position may overtop the actual apex and obscure it. Individual flowers have a tricarpellate syncarpous gynoecium and three stamens adnate to the carpels; petals and sepals are lacking. The order of succession of organs is: two lateral stamens, median stamen, two lateral carpels, median carpel. The three carpel primordia almost immediately are elevated as part of a gynoecial ring by zonal growth of the receptacle below the attachment of the carpels. The same growth elevates the stamen bases so that they appear adnate to the carpels. The trimerous condition in Houttuynia is the result of paired or solitary initiations rather than trimerous whorls. Symmetry is bilateral and zygomorphic rather than radial. No evidence of spiral arrangement in the flower was found.  相似文献   

18.
A comparative study of the floral structure in the species of the genus Rhapis (Arecaceae, Coryphoideae, Rhapidinae) is presented. Flowers are mainly unisexual, with three sepals, three petals, 6 stamens or staminodes and three carpels or carpellodes. Some evidences of basal congenital and apical postgenital fusion of the carpels, first time reported in the genus, were observed in the gynoecium. Ovules are basally attached and crassinucellate; they appear to be slightly anatropous. The morphology of the filaments suggests a division of the species into two groups: Rhapis excelsa and R. subtilis exhibit thick and keeled filaments, whereas R. gracilis, R. humilis, R. laosensis, R. micrantha and R. multifida have slender, non-keeled filaments. Relationships of Rhapis with the rest of the genera of Rhapidinae are inferred on the light of floral structure.  相似文献   

19.
In the early development of Trochodendron aralioides (Trochodendraceae) inflorescences lateral flowers are initiated after the appearance of the floral pherophylls (subtending bracts). The terminal flower is preceded by metaxyphylls and is initiated earlier than the uppermost lateral flowers of the botryoid inflorescence. Small scales (interpreted as rudimentary perianth organs) precede the stamens. These scales are more distinct in the terminal flower than in the lateral flowers. In the radially symmetrical terminal flower, small scales (or metaxyphylls) and stamens are initiated in a spiral during early development. At anthesis, stamen phyllotaxis appears irregular or approximately whorled as a result of the rapid elongation and irregular slight curvature of the stamen filaments which distorts the originally regular pattern. Finally, the numerous carpels arise simultaneously in a single whorl. It takes about 9 months for flowers to develop and the 2-year reproductive cycle of T. aralioides is typical of many trees. The floral development of T. aralioides is compared with that of other basal eudicots. The bottle-shaped, unicellular stigmatic papillae and long, decurrent stigma of basally united carpels are similar to those of the Buxales¸ suggesting a close relationship.  相似文献   

20.
In direct contrast to mostHibbertia spp., the flowers ofH. fasciculata R. Br. ex D. C. bear only a single whorl of stamens and these stamens are arranged separately (not in typical bundles). The short filaments are appressed to the three carpels so that the inflated, porose and introrsive anthers form a centralized cluster obscuring the three ovaries. The three slender styles emerge at right angles from between the filaments. These styles curve upward and the stigmas form the three points of a triangle; each stigma is approximately one millimeter outside the centralized cluster of anthers. The flowers are nectarless and bear a bright yellow corolla. A pungent and unpleasant fragrance appears to be concentrated within the pollenkitt. When native bees attempt to forage for the pollen, within the cluster of anthers, the ventrally deposited loads of pollen, on the bees' abdomens, contact the outer triangle of stigmas. The major pollinators ofH. fasciculata are female bees in the polylectic genera,Lasioglossum (subgenusChilalictus, Halictidae) andLeioproctus (Colletidae). These bees carry an average of more than two pollen taxa when they are caught foraging onH. fasciculata. 78% of the 47 bees, captured onH. fasciculata carried the pollen from at least one sympatric taxon bearing nectariferous flowers (e.g., genera in theMyrtaceae, Compositae, andEpacridaceae). The pollination biology ofH. fasciculata is assessed in relation to the known radiation of bee-pollinated flowers in the genusHibbertia, and within theDilleniaceae s. l.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号