首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A genetic and physical map of bovine chromosome 3   总被引:2,自引:0,他引:2  
This paper reports a map of nine polymorphic microsatellite markers previously assigned to bovine chromosome 3 (BTA3) by somatic cell genetics. The linkage group covers 101 cM on the chromosome with an average intermarker distance of 13-9 cM. One marker (INRA200) was isolated from a peak of flow sorted chromosomes 2 and 3. Another marker (INRA197) was derived from a cosmid. The localization of the cosmid by in situ hybridization enabled the orientation of the linkage group on BTA3. Markers were relatively evenly spaced and consequently can be used to complement other mapping data about this chromosome. This establishes a framework of polymorphic markers that can be used to search for quantitative trait loci (QTL).  相似文献   

2.
N L Carson  N E Simpson 《Genomics》1991,11(2):379-388
A physical map for 13 loci on chromosome 10 was developed by determining the dosage of the corresponding DNA sequences in cell lines with unbalanced chromosome 10 rearrangements. Nine of the sequences were assigned to a smaller segment of the chromosome than previously and four sublocalizations were confirmed. The physical map covers most of chromosome 10, from 10p13 to 10q23. The linear order of loci within the physical map agrees with existing linkage maps of chromosome 10. A comparison between the physical map and existing genetic maps indicate an uneven distribution of recombination for chromosome 10. There appear to be hot spots of recombination in the regions defined by q21.1 and q22-q23. In addition, there is a suppression of recombination in the pericentromeric region in males which is not evident in females.  相似文献   

3.
A combined physical and genetic map of theCorynebacterium glutamicum ATCC 13032 chromosome was constructed using pulsed-field gel electrophoresis (PFGE) and hybridizations with cloned gene probes. Total genomic DNA was digested with the meganucleasesSwaI (5′-ATTTAAAT-3′),PacI (5′-TTAATTAA-3′), andPmeI (5′-GTTTAAAC-3′) yielding 26, 27, and 23 fragments, respectively. The chromosomal restriction fragments were then separated by PFGE. By summing up the lengths of the fragments generated with each of the three enzymes, a genome size of 3082 +/- 20 kb was determined. To identify adjacentSwaI fragments, a genomic cosmid library ofC. glutamicum was screened for chromosomal inserts containingSwaI sites. Southern blots of the PFGE gels were hybridized with these linking clones to connect theSwaI fragments in their natural order. By this method, about 90% of the genome could be ordered into three contigs. Two of the remaining gaps were closed by cross-hybridization of blottedSwaI digests using as probesPacI andPmeI fragments isolated from PFGE gels. The last gap in the chromosomal map was closed by hybridization experiments using partialSwaI digestions, thereby proving the circularity of the chromosome. By hybridization of gene probes toSwaI fragments separated by PFGE about 30 genes, including rRNA operons, IS element and transposon insertions were localized on the physical map.  相似文献   

4.
By in situ hybridization of probes for three cloned genes and eight genetically-linked polymorphic DNA markers, we have prepared a physical map of the distal long arm of chromosome 5. These results, together with the localizations of 11 genes and the genetic linkage map reported previously by us and by other investigators, represent a map that spans 55 cM.  相似文献   

5.
The physical map of the 3.6-megabase chromosome of Clostridium perfringens CPN50 was extended by positioning sites for the endonucleases SfiI and I-CeuI, and in parallel, the gene map was expanded by using a genome scanning strategy. This involved the cloning and sequencing of random chromosomal fragments, identification of the functions of the putative genes by database searches, and then hybridization analysis. The current gene map comprises almost 100 markers, many of which encode housekeeping functions while others are involved in sporulation or pathogenesis. Strikingly, most of the virulence genes were found to be confined to a 1,200-kb segment of the chromosome near oriC, while the pleiotropic regulatory locus, virRS, was situated toward the putative replication terminus. A comparison of the gene maps of three endospore-forming bacilli, C. perfringens, Clostridium beijerinckii, and Bacillus subtilis, revealed a similar order and distribution of key sporulation and heat shock genes which might reflect an ancient evolutionary relationship.  相似文献   

6.
A map of rat Chromosome (Chr) 10 was generated from 21 markers, mostly of conserved structural genes, by linkage analysis and fluorescence in situ hybridization. The study emphasizes the proximal third of the chromosome which, until now, has been relatively devoid of markers. Based on comparative analysis, our data suggest that genes on rat Chr 10 are conserved on mouse Chr 11, 16, 17 and human Chr 16, 5, and 17. Received: 22 November 1995 / Accepted: 29 January 1996  相似文献   

7.
Size and physical map of the Campylobacter jejuni chromosome.   总被引:9,自引:0,他引:9       下载免费PDF全文
The chromosome of Campylobacter jejuni is circular and approximately 1700 kb in circumference. The size of the genome was determined by field inversion gel electrophoresis of restriction endonuclease fragments using lambda DNA concatamers and yeast chromosomes to calibrate the size of the fragments. In view of the low (32-35%) G + C content of the campylobacter genome, enzymes that recognizes GC-rich sequences were used. Of the enzymes tested BssHII (G/C(G)CGC), NciI (CC/CGCG) and SalI (G/TCGAC) appeared to be usable. Hybridization of labeled fragments with two or more fragments from digests with a different restriction enzyme gave the information to order the fragments on the C jejuni chromosome. The localization on the genome of the flagellin and ribosomal gene clusters was determined.  相似文献   

8.
The mapping strategy for the bovine genome described in this paper uses large insert clones as a tool for physical mapping and as a source of highly polymorphic microsatellites for genetic typing, and was one objective of the BovMap Project funded by the European Union (UE). Eight-three cosmid and phage clones were characterized and used to physically anchor the linkage groups defining all the bovine autosomes and the X Chromosome (Chr). By combining physical and genetic mapping, clones described in this paper have led to the identification of the linkage groups corresponding to Chr 9, 12, 16, and 25. In addition, anchored loci from this study were used to orient the linkage groups corresponding to Chr 3, 7, 8, 9, 13, 16, 18, 19, and 28 as identified in previously published maps. Comparison of the estimated size of the physical and linkage maps suggests that the genetic length of the bovine genome may be around 4000 cM. Received: 1 July 1996 / Accepted: 13 September 1996  相似文献   

9.
There are about 17 chromosomes in yeast Saccharomycescerevisiae.A middle sized chromosome,chromosome V,waschosen in this work for studying and constructing the physi-cal maps.Chromosome V from strain A364a was isolatedby pulsed-field gradient gel electrophoresis(PFGE).Gelslices containing chromosome V DNA were digestedwith two rare cutting enzymes,NotⅠand SfiⅠ,and three6-Nt recognizing enzymes,SmaⅠ,SstⅡ and ApaⅠ.Several strategies-partial or complete digestions,digestion with different sets of two enzymes,and hybrid-ization with cloned genetically mapped probes(CAN1,URA3,CEN5,PRO3,CHO1,SUP19,RAD51,RAD3)——were used to align the restriction fragments.There are 9,9,15,17,and 20 sites for NotⅠ,SfiⅠ,SmaⅠ,SstⅡ and ApaⅠrespectively in the map of the A364a chromosome V.Itstotal length was calculated to be 620 Kb(Kilo-bases).Thedistributions of the cutting sites for these five enzymesthrough the whole chromosome are not uniform.A comp-arison between the physical map and the genetic map wasalso made.  相似文献   

10.
A physical and genetic map of the Stigmatella aurantiaca DW4/3.1 chromosome   总被引:3,自引:0,他引:3  
A physical map of the myxobacterium Stigmatella aurantiaca DW4/3.1 chromosome was constructed by pulsed-field gel (PFG) long-range mapping. One-and two-dimensional pulsed-field gel analyses were used together with reciprocal double-restriction, cross-hybridization and hybridization fingerprint analysis. These PFG results were confirmed by Smith-Birnstiel analysis, by Southern hybridization using linking clones and clones of a λ genomic library for the determination of adjacent restriction fragments and by transposon insertion mapping using defined genomic sequences for hybridization. It was thus possible to construct a circular restriction map of the single 9.35 Mbp chromosome of S. aurantiaca based on the endonucleases Asel and Spel. Genetic loci as well as the replication origin were located on the physical map by Southern hybridization using heterologous (derived from Myxococcus xanthus, Escherichia coli and Streptomyces lividans) and homologous probes that are mainly involved in development and ceil motility.  相似文献   

11.
Three maize (Zea mays) bacterial artificial chromosome (BAC) libraries were constructed from inbred line B73. High-density filter sets from all three libraries, made using different restriction enzymes (HindIII, EcoRI, and MboI, respectively), were evaluated with a set of complex probes including the 185-bp knob repeat, ribosomal DNA, two telomere-associated repeat sequences, four centromere repeats, the mitochondrial genome, a multifragment chloroplast DNA probe, and bacteriophage lambda. The results indicate that the libraries are of high quality with low contamination by organellar and lambda-sequences. The use of libraries from multiple enzymes increased the chance of recovering each region of the genome. Ninety maize restriction fragment-length polymorphism core markers were hybridized to filters of the HindIII library, representing 6x coverage of the genome, to initiate development of a framework for anchoring BAC contigs to the intermated B73 x Mo17 genetic map and to mark the bin boundaries on the physical map. All of the clones used as hybridization probes detected at least three BACs. Twenty-two single-copy number core markers identified an average of 7.4 +/- 3.3 positive clones, consistent with the expectation of six clones. This information is integrated into fingerprinting data generated by the Arizona Genomics Institute to assemble the BAC contigs using fingerprint contig and contributed to the process of physical map construction.  相似文献   

12.
The restriction enzymes AseI (ATTAAT), DraI (TTTAAA), and SspI (AATATT) cut the Streptomyces coelicolor A3(2) chromosome into 17, 8, and 25 fragments separable by pulsed-field gel electrophoresis (PFGE). The sums of their lengths indicated that the chromosome consists of about 8 Mb of DNA, some 75% more than that of Escherichia coli K-12. A physical map of the chromosome was constructed for AseI and DraI, using single and double digests, linking clones, cross-hybridization of restriction fragments, and locations of genetically mapped genes, insertion sequences, prophages, and the integrated SCP1 and SLP1 plasmids on the physical map. The physical map was aligned with the previously established genetic map, revealing that the two long opposite quadrants of the genetic map that are almost devoid of markers (the silent regions at 3 o'clock and 9 o'clock) are indeed physically long rather than being hot spots for genetic exchange. They must therefore contain long stretches of DNA different in function from the remainder of the genome. Consistent with this conclusion are the locations of significant deletions in both of the silent regions. Of these, a 40-kb deletion in the 9 o'clock region accompanied or followed integration of the SCP1 linear plasmid to produce the NF fertility state. PFGE analysis of Streptomyces lividans 66, a close relative of S. coelicolor A3(2), was hampered by the previously described susceptibility of its DNA to degradation during electrophoresis. However, ZX7, a mutant derivative of S. lividans lacking the DNA modification responsible for this degradation, yielded good PFGE preparations. Not more than 7 of the 17 S. coelicolor AseI fragments could be shared by the S. lividans strain.  相似文献   

13.
To increase the utility of the previously constructed physical map of the chromosome of Neisseria gonorrhoeae FA1090, 28 additional genetic markers were localized on the map. Cloned gonococcal genes were used to probe Southern blots of restriction enzyme-digested DNA separated on pulsed-field gels, thus identifying the fragment in each of several digests to which the probe hybridized and the map location of each gene. The addition of the new markers brings the total number of mapped loci for this strain to 68; the locations of all of those markers on the updated map are shown.  相似文献   

14.
Size and physical map of the chromosome of Haemophilus influenzae.   总被引:25,自引:15,他引:10       下载免费PDF全文
A variation of pulse-field electrophoresis, field-inversion gel electrophoresis, was used to determine the size and physical map of the chromosome of Haemophilus influenzae. The DNA of H. influenzae had a low G + C content (39%) and no restriction sites for the enzymes NotI or SfiI. However, a number of restriction enzymes (SmaI, ApaI, NaeI, and SacII) that recognized 6-base-pair sequences containing only G and C nucleotides were found to generate a reasonable number of DNA fragments that were separable in agarose gels by field-inversion gel electrophoresis. The sizes of the DNA fragments were calibrated with a lambda DNA ladder and lambda DNA restriction fragments. The sum of fragment sizes obtained with restriction digests yielded a value for the chromosome of 1,980 kilobase pairs. Hybridization of a labeled fragment with two or more fragments from a digest with a different restriction enzyme provided the information needed to construct a circular map of the H. influenzae chromosome.  相似文献   

15.
A combined physical and genetic map of theCorynebacterium glutamicum ATCC 13032 chromosome was constructed using pulsed-field gel electrophoresis (PFGE) and hybridizations with cloned gene probes. Total genomic DNA was digested with the meganucleasesSwaI (5-ATTTAAAT-3),PacI (5-TTAATTAA-3), andPmeI (5-GTTTAAAC-3) yielding 26, 27, and 23 fragments, respectively. The chromosomal restriction fragments were then separated by PFGE. By summing up the lengths of the fragments generated with each of the three enzymes, a genome size of 3082 +/- 20 kb was determined. To identify adjacentSwaI fragments, a genomic cosmid library ofC. glutamicum was screened for chromosomal inserts containingSwaI sites. Southern blots of the PFGE gels were hybridized with these linking clones to connect theSwaI fragments in their natural order. By this method, about 90% of the genome could be ordered into three contigs. Two of the remaining gaps were closed by cross-hybridization of blottedSwaI digests using as probesPacI andPmeI fragments isolated from PFGE gels. The last gap in the chromosomal map was closed by hybridization experiments using partialSwaI digestions, thereby proving the circularity of the chromosome. By hybridization of gene probes toSwaI fragments separated by PFGE about 30 genes, including rRNA operons, IS element and transposon insertions were localized on the physical map.  相似文献   

16.
Results concerning the precise location of the ompT gene (encoding the outer membrane protease OmpT) on the Escherichia coli chromosome were obtained which disagree with published restriction sites in the gene. It is shown that the gene, together with appY, is present on a 3.075 PstI fragment, encompassing positions 596–598 of the E. coli physical map.  相似文献   

17.
Vinculin is a cytoskeletal protein component of adherens type cell junctions. The gene had been mapped to 10q11.2-qter. We have used a combination of physical and genetic mapping techniques to refine this localization. Hybridization of the vinculin cDNA probe, HV1, to a human-rodent somatic hybrid panel initially suggested a position of either 10q11.2 or 10q22.1-10q23. Genetic recombination mapping in three-generation families with multiple endocrine neoplasia type 2 (MEN2) indicated a position distal to D10S22 (10q21.1) in 10q22.1-10q23. This was confirmed by hybridization of the vinculin cDNA to flow-sorted translocation derivative chromosomes containing the q21-qter portion of chromosome 10. We conclude that the vinculin locus maps in 10q22.1-q23, distal to D10S22.  相似文献   

18.
Pâques F  Richard GF  Haber JE 《Genetics》2001,158(1):155-166
The instability of simple tandem repeats, such as human minisatellite loci, has been suggested to arise by gene conversions. In Saccharomyces cerevisiae, a double-strand break (DSB) was created by the HO endonuclease so that DNA polymerases associated with gap repair must traverse an artificial minisatellite of perfect 36-bp repeats or a yeast Y' minisatellite containing diverged 36-bp repeats. Gene conversions are frequently accompanied by changes in repeat number when the template contains perfect repeats. When the ends of the DSB have nonhomologous tails of 47 and 70 nucleotides that must be removed before repair DNA synthesis can begin, 16% of gene conversions had rearrangements, most of which were contractions, almost always in the recipient locus. When efficient removal of nonhomologous tails was prevented in rad1 and msh2 strains, repair was reduced 10-fold, but among survivors there was a 10-fold reduction in contractions. Half the remaining events were expansions. A similar decrease in the contraction rate was observed when the template was modified so that DSB ends were homologous to the template; and here, too, half of the remaining rearrangements were expansions. In this case, efficient repair does not require RAD1 and MSH2, consistent with our previous observations. In addition, without nonhomologous DSB ends, msh2 and rad1 mutations did not affect the frequency or the distribution of rearrangements. We conclude that the presence of nonhomologous ends alters the mechanism of DSB repair, likely through early recruitment of repair proteins including Msh2p and Rad1p, resulting in more frequent contractions of repeated sequences.  相似文献   

19.
A W Linnane  P Nagley 《Plasmid》1978,1(3):324-345
The attainment of the map of functions coded in the yeast mitochondrial genome represents the end of an era of development in mitochondrial genetics. Following the earliest genetic studies, where first the respiration-deficient petite mutants, then subsequently the other types of mitochondrial mutants, were characterized, it was realized that a genetic approach to the questions of mitochondrial biogenesis and the genetic function of mtDNA would yield much useful information. A period of intensive investigation into the behavior of mitochondrial genes in genetic crosses followed, and it was concluded that the purely genetic techniques of transmissional and recombinational analysis could not yield a map of the genetic loci, although basic rules for mitochondrial genetic manipulation were established. The concurrent studies of the nature of the deletions in petite mtDNA led to the recognition that an analysis of the behavior of genetic loci in petite mutants would provide the method for genetically mapping the positions of loci in mtDNA where conventional genetic crosses between grande strains had failed. This thesis was first confirmed by our studies of the frequencies of coretention and loss of individual loci in large populations of petite isolates, which produced the first circular genetic map of drug resistance loci on mtDNA. Subsequent to this genetic mapping phase, we established a general procedure for determining the physical map position of any mitochondrial genetic locus or mtDNA sequence by introducing the use of a molecular library of petite mutants carrying physically and genetically defined segments of mtDNA. These petites can be tested for the retention or loss of genetic loci or particular nucleotide sequences. This general solution to the mapping problem and the physical map of the Saccharomyces cerevisiae mitochondrial genome obtained, which has been confirmed by studies using restriction enzymes, has provided the field with a molecular point of reference for the many current genetic and biochemical investigations into the structure and function of mtDNA in yeast.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号