首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Penicillin N was synthesized by coupling alpha-amino-alpha-p-nitrobenzyl-N-p-nitro-benzyloxycarbonyl-D-adipate with 6-aminopenicillanic acid benzyl ester, followed by removal of the protecting groups through hydrogenolysis. 2. alpha-Amino-alpha-p-nitrobenzyl-N-p-nitrobenzyloxycarbonyl-D-[5-14C]adipate was prepared by treating alpha-p-nitrobenzyl-N-p-nitrobenzyloxycarbonyl-D-glutamic acid with [14C]diazomethane followed by rearrangement with silver trifluoromethanesulphonate. 3. Coupling of alpha-amino-alpha-p-nitrobenzyl-N-p-nitrobenzyloxycarbonyl-D-[5-14C]adipate with 6-aminopenicillanic acid benzyl ester gave triprotected [10-14C]penicillin N. 4. 3H was introduced at C-6 of the Schiff's base derivative (10) by oxidation followed by reduction with NaB3H4. 5. The so-derived (6 alpha-3H)-labelled Schiff's base was hydrolysed to give 6-amino [6 alpha-3H]penicillanic acid benzyl ester p-toluenesulphonic acid salt, which after coupling as the free amine with alpha-amino-alpha-p-nitrobenzyl-N-pnitrobenzyloxycarbonyl-D-adipate and then hydrogenolysis, yielded [6alpha-3H]penicillin N. 6. Triprotected [10-14C]penicillin N and triprotected [6alpha-3H]penicillin N in admixture were hydrogenolysed to give [10-14C,6alpha-3H]penicillin N.  相似文献   

2.
Chicks convert both orally and intravenously administered 1alpha-hydroxy[6-3H]vitamin D3 rapidly to 1alpha,25-dihydroxy[6-3H]vitamin D3. The maximal accumulation of 1alpha,25-dihydroxy[6-3H]vitamin D3 in intestine precedes the intestinal absorption response to 1alpha-hydroxyvitamin D3 by at least 2 hours. Oral administration results in the highest concentrations of 1alpha,25-dihydroxy[6-3H]vitamin D3 in intestine, giving a level about 1.5 times that achieved with an intravenous dose. On the other hand, an oral dose of 1alpha-hydroxy[6-3H]vitaminD3 gives much lower amounts of both 1alpha-hydroxy[6-3H]vitamin D3 and 1alpha,25-dihydroxy[6-3H]vitamin D3 in bone and blood than an intravenous dose, which suggests that the 1alpha-hydroxy[6-3H]vitamin D3 may not be utilized as well by the oral route as by an intravenous route. Liver homogenates from both rat and chick convert 1alpha-hydroxy[6-3H]vitamin D3 to 1alpha,25-dihydroxy[6-3H]vitamin D3. However, intestinal homogenates from chick, but not rat, can also cary out this conversion, which may account for the higher concentration of 1alpha,25-dihydroxy[6-3H]vitamin D3 found in the intestine of chicks given an oral dose of 1alpha-hydroxy[6-3H]vitamin D3.  相似文献   

3.
Biosynthesis of methanopterin   总被引:6,自引:0,他引:6  
R H White 《Biochemistry》1990,29(22):5397-5404
The biosynthetic pathway for the generation of the methylated pterin in methanopterins was determined for the methanogenic bacteria Methanococcus volta and Methanobacterium formicicum. Extracts of M. volta were found to readily cleave L-7,8-dihydroneopterin to 7,8-dihydro-6-(hydroxymethyl)pterin, which was confirmed to be a precursor of the pterin portion of the methanopterin. [methylene-2H]-6-(Hydroxymethyl)pterin was incorporated into methanopterin by growing cells of M. volta to an extent of 30%. Both the C-11 and C-12 methyl groups of methanopterin originate from [methyl-2H3]methionine, as confirmed by the incorporation of two C2H3 groups into 6-ethyl-7-methylpterin, a pterin-containing fragment derived from methanopterin. Cells grown in the presence of [methylene-2H]-6-(hydroxymethyl)pterin, [ethyl-2H4]-6-[1 (RS)-hydroxyethyl]pterin, [methyl-2H3]-6- (hydroxymethyl)-7-methylpterin, [ethyl-2H4, methyl-2H3]-6-[1 (RS)-hydroxyethyl]-7-methylpterin, and [1-ethyl-3H]-6-[1 (RS)-hydroxyethyl]-7-methylpterin showed that only the non-7-methylated pterins were incorporated into methanopterin. Cells extracts of M. formicicum readily condensed synthetic [methylene-3H]-7,8-H2-6-(hydroxymethyl)pterin-PP with methaniline to generate demethylated methanopterin, which is then methylated to methanopterin by the cell extract in the presence of S-adenosylmethionine. These observations indicate that the pterin portion of methanopterin is biosynthetically derived from 7,8-H2-6-(hydroxymethyl)pterin, which is coupled to methaniline by a pathway analogous to the biosynthesis of folic acid. This pathway for the biosynthesis of methanopterin represents the first example of the modification of the specificity of a coenzyme through a methylation reaction.  相似文献   

4.
We have identified a monoclonal antibody, B6B21, that significantly elevates long-term potentiation when applied to CA1 pyramidal cell apical dendrites in rat hippocampal slices and characterized its binding to N-methyl-D-aspartate-receptor complexes using extensively washed hippocampal membranes. Five micrograms of affinity-purified B6B21 per 100 micrograms of membranes gave a two- to threefold elevation in N-[1-(2-thienyl)cyclohexyl]-3,4-[3H]piperidine ([3H]TCP) binding. When [3H]TCP binding was stimulated by the combined addition of maximal concentrations of glutamate, glycine, and magnesium, B6B21 no longer stimulated [3H]TCP binding. Like glycine, B6B21 enhanced the effect of N-methyl-D-aspartate and glutamate in stimulating [3H]TCP binding. Moreover, B6B21 reversed 7-chlorokynurenic acid inhibition of [3H]TCP binding, but it had no effect on the inhibition of [3H]TCP binding by D-(-)-2-amino-5-phosphonovaleric acid. B6B21 increased the rate of association and dissociation of [3H]TCP, but had no effect on equilibrium binding. Glutamate, but not glycine, however, increased B6B21-enhancement of [3H]TCP association and dissociation. B6B21 binding at strychnine-insensitive glycine sites was confirmed by direct measurement of [3H]glycine binding. These results suggest that B6B21 binds directly to N-methyl-D-aspartate receptors and displays properties similar to glycine.  相似文献   

5.
Although 2-O-sulfated L-iduronic acid (IdoA) residues have been known to occur in heparin, 2-O-sulfated D-glucuronic acid (GlcA) residues have been reported only recently (Bienkowski, M. J., and Conrad, H. E. (1985) J. Biol. Chem. 250, 356-365). Disaccharides prepared by cleavage of heparin and N-deacetylated chondroitin 6-sulfate with nitrous acid were used to demonstrate a new sulfatase that catalyzed the removal of the 2-O-sulfate substituents from GlcA but not IdoA residues. The deamination products were labeled by NaB3H4 reduction to give disaccharides from heparin and chondroitin sulfate which had reducing terminal 2,5-anhydro-D-mannitol ([3H]AManR) and 2,5-anhydro-D-talitol ([3H]ATalR) residues, respectively. IdoA(2-SO4)-[3H]AManR(6-SO4) from heparin and GlcA(2-SO4)-[3H]ATalR(6-SO4) from chondroitin sulfate were purified for use as substrates. GlcA(2-SO4)-[3H]AManR(6-SO4) was prepared by epimerization of IdoA(2-SO4)-[3H]AManR(6-SO4) with hydrazine at 100 degrees C. Lysosomal enzyme preparations from chick embryo chondrocytes and from two normal human fibroblast cell lines catalyzed the removal of the 2-O-SO4 substituent from the uronic acid residues of IdoA(2-SO4)-[3H]AManR(6-SO4), GlcA(2-SO4)-[3H] AManR(6-SO4), and GlcA(2-SO4)-[3H]ATalR(6-SO4). In contrast, a lysosomal enzyme preparation from a human fibroblast cell line deficient in idurono-2-sulfatase (Hunter's-syndrome), which had no activity on the IdoA(2-SO4)-[3H]AManR(6-SO4), converted GlcA(2-SO4)-[3H]AManR(6-SO4) to a mixture of GlcA-[3H] AManR(6-SO4) and [3H]AManR(6-SO4). This enzyme also converted GlcA(2-SO4)-[3H]ATalR(6-SO4) to a mixture of GlcA-[3H]ATalR(6-SO4) and [3H]ATalR(6-SO4). Digestion of both GlcA(2-SO4)-[3H]AManR(6-SO4) and GlcA(2-SO4)-[3H]ATalR(6-SO4) was inhibited by 35SO2-4 and was arrested at the monosulfated disaccharide stage by 1,4-saccharolactone. The glucurono-2-sulfatase exhibited a pH optimum of 4. The results indicate that there exists a separate sulfatase for the removal of sulfate substituents from C-2 of GlcA residues in glycosaminoglycans.  相似文献   

6.
The stereochemical aspects of the L-lysine epsilon-dehydrogenase reaction were examined with (6R)-L-[6-3H]lysine and (6S)-DL-[6-3H]lysine. When (6S)-DL-[6-3H]lysine was used as a substrate, the tritium was found in the product, delta 1-piperideine-6-carboxylate. In contrast, the radioactivity from (6R)-L-[6-3H]lysine was not retained in the product. Thus, the pro-R hydrogen at the prochiral C-6 carbon of L-lysine is specifically abstracted by the enzyme: the enzyme behaves stereochemically as an amino acid D-dehydrogenase.  相似文献   

7.
1. (3RS,6R)-[6-2H1,6-3H1,6-14C], (3RS,6S)-[6-2H1,6-3H1,6-14C] and (3RS)-[6-3H1,6-14C]mevalonolactones were synthesised from R-[2H1,3H1,2-14C], S-[2H1,3H1,2-14C] and [3h1,2-14C]acetic acids respectively. 2. Each mevalonate was converted into cholesterol by a rat liver preparation. 3. Each cholesterol specimen was converted into androsta-1,4-diene-3,17-dione by incubation with Mycobacterium phlei in the presence of 2,2'.dipyridyl. Each specimen of androsta-1,4-diene-3,17-dione was converted into androsta-1,4-dien-3-one-17-ethylene ketail. 4. The samples of androsta-1,4-dien-3-one-17-ethylene ketal were each converted chemically into oestrones in which the methyl group at C-18 is the only carbon atom that originated from C-6 in mevalonolactone. 5. The oestrone from (3RS)-[6-3H1,6-14C]mevalonolactone was oxidised chemically to acetic acid which was converted into p-bromophenacyl acetate and the 3H/14C ratio was measured. 6. There was no overall loss of tritium from the methyl group of acetic acid, as measured by determining the 3H/14C ratios of the p-bromophenacyl esters, when the synthetic and degradative procedures 1 -- 5 were tested with [3H1,2-14C]acetic acid. 7. The oestrones derived from the 6R and 6S-mevalonolactones were oxidised. The chiralities of the resulting acetates were determined by an established procedure whereby the acetates were converted into 2S-malates which were examined for loss of tritium on equilibration with fumarate hydratase. 8. The oestrone from (3RS,6R)-[6-2H1,6-3H1,6-14C]mevalonate gave acetic acid which was converted into 2S-malate that retained 68.6% of its tritium after treatment with fumarate hydratase; the configuration of this acetic acid was R. 9. The oestrone from (3RS,6S)-E16-2H1,6-3H1,6-14C]mevalonate was oxidised to acetic acid which was converted into 2S-malate that retained 31.9% of its tritium after treatment with fumarate hydratase; the configuration of this acetic acid was S. 10. There was no overall change in the configuration of a chiral methyl group between C-6 of mevalonate and C-18 of oestrone. It is cncluded that the intramolecular migration of a chiral methyl group from C-15 in 2,3-oxidosqualene to C-13 in lanosterol is stereospecific and occurs with overall retention of configuration.  相似文献   

8.
When [6-3H,6-14C]glucose was given in glucose loads to fasted rats, the average 3H/14C ratios in the glycogens deposited in their livers, relative to that in the glucoses administered, were 0.85 and 0.88. When [3-3H,3-14C]lactate was given in trace quantity along with unlabeled glucose loads, the average 3H/14C ratio in the glycogens deposited was 0.08. This indicates that a major fraction of the carbons of the glucose loads was converted to liver glycogen without first being converted to lactate. When [3-3H,6-14C]glucose was given in glucose loads, the 3H/14C ratios in the glycogens deposited averaged 0.44. This indicates that a significant amount of H bound to carbon 3, but not carbon 6, of glucose is removed within liver in the conversion of the carbons of the glucose to glycogen. This can occur in the pentose cycle and by cycling of glucose-6-P via triose phosphates: glucose----glucose-6-P----triose phosphates----glucose-6-P----glycogen. The contributions of these pathways were estimated by giving glucose loads labeled with [1-14C]glucose, [2-14C]glucose, [5-14C]glucose, and [6-14C]glucose and degrading the glucoses obtained by hydrolyzing the glycogens that deposited. Only a few per cent of the glucose carbons deposited in glycogen were deposited in liver via glucose-6-P conversion to triose phosphates. Between 4 and 9% of the glucose utilized by the liver was utilized in the pentose cycle. While these are relatively small percentages, since three NADP3H molecules are formed from each molecule of [3-3H]glucose-6-P utilized in the cycle, a major portion of the difference between the ratios obtained with [3-3H]glucose and with [6-3H]glucose is attributable to metabolism in the pentose cycle. Because 3H of [3-3H]glucose is extensively removed during the conversion of the glucose to glycogen within liver the extent of incorporation of the 3H into liver glycogen is not the measure of glucose's metabolism in other tissues before its carbons are deposited in liver glycogen. The distributions of 14C from the 14C-labeled glucoses into the carbons of the liver glycogens mean that at a minimum about 30% of the carbons of the glucose deposited in the glycogen were first converted to lactate or its metabolic equivalent.  相似文献   

9.
1alpha-Hydroxy [6-3H]vitamin D3 has been synthesized with a specific activity of 4 Ci/mmol, and its metabolism in rats has been studied. It is rapidly converted to 1alpha,25-dihydroxy [6-3H]vitamin D3 in vivo. Following an intravenous or oral dose, a maximal concentration of 1alpha,25-dihydroxy [6-3H]vitamin D3 is found 2 and 4 hours, respectively, before the maximal intestinal calcium transport response is observed. Similarly, 1alpha,25-dihydroxy[6-3H]vitamin D3 accumulation in bone precedes the bone calcium mobilization response. It appears, therefore, that the biological activity of 1alpha-hydroxyvitamin D3 is largely, if not exclusively, due to its conversion to 1alpha,25-dihydroxy[6-3H]vitamin D3 1alpha-Hydroxy[6-3H]vitamin D3 and 1alpha,25-dihydroxy[6-3H]vitamin D3 appear in intestine equally well after an oral or an intravenous dose of 1alpha-hydroxy[6-3H]vitamin D3. However, much less of both 1alpha-hydroxy[6-3H]vitamin D3 and 1alpha,25-dihydroxy[6-3H]vitamin D3 appears in bone and blood after an oral than after an intravenous dose. A much reduced bone calcium mobilization response is also noted following an oral dose as compared to an intravenous dose of 1alpha-hydroxyvitamin D3, suggesting that oral 1alpha-hydroxyvitamin D3 is not utilized as well as intravenously administered material.  相似文献   

10.
Human and rat erythrocytes were found to generate 3HOH from D-[6(N)-3H]glucose. The rate of 3HOH production represented 7-10% of the glycolytic flux. The generation of 3HOH appeared attributable, in part at least, to the detritiation of [3-3H]pyruvate during the interconversion of the 2-keto acid and L-alanine in the reaction catalyzed by glutamate-pyruvate transaminase. Indeed, purified pig heart glutamate-pyruvate transaminase, as well as homogenates prepared from rat erythrocytes or pancreatic islets, catalyzed the generation of 3HOH from L-[3-3H]alanine. When the production of tritiated pyruvate from L-[3-3H]alanine was coupled to the conversion of the 2-keto acid to L-lactate, the production of 3HOH accounted for one-third of the reaction velocity, the latter failing to display isotopic discrimination. In these experiments, the production of 3HOH was abolished by amino-oxyacetate. Likewise, in intact rat erythrocytes, aminooxyacetate inhibited the generation of 3HOH and tritiated L-alanine from D-[6-3H]glucose (or D-[1-3H]glucose), as well as the generation of 3HOH from L-[3-3H]alanine. In pancreatic islets, however, aminooxyacetate failed to affect significantly the generation of 3HOH from D-[6-3H]glucose. These findings indicate that the generation of 3HOH from D-[6-3H]glucose is mainly attributable to an intermolecular tritium transfer in transaminase reaction, at least in cells devoid of mitochondria.  相似文献   

11.
The effects of treatment of brain membranes with diethyl pyrocarbonate (DEP), a histidine-modifying reagent, on the binding of 3H-labeled Ro 15-4513 (ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a]- [1,4]benzodiazepine-3-carboxylate) and [3H]diazepam were compared. DEP pretreatment produced a dose-dependent decrease in [3H]diazepam binding, whereas low DEP concentrations enhanced the binding of [3H]Ro 15-4513. These effects were reversed by incubation with hydroxylamine after the treatment. The enhancement of [3H]Ro 15-4513 binding was due to an increase in the affinity of the binding sites (KD), without any effect on binding capacity (Bmax). The enhancement was perceived in cerebral cortical, cerebellar, and hippocampal membranes. DEP treatment decreased the displacement of [3H]Ro 15-4513 binding by diazepam and FG 7142 (N-methyl-beta-carboline-3-carboxamide) but not by Ro 15-4513 and Ro 19-4603 (tert-butyl-5,6-dihydro-5-methyl-6-oxo-4H-imidazol[1,5- a]thieno[2,3-f][1,4]diazepine-3-carboxylate). Although the stimulating effect of gamma-aminobutyric acid (GABA) on [3H]-diazepam binding was not affected by DEP treatment, such treatment reduced the inhibitory effect of GABA on [3H]Ro 15-4513 binding. The enhancement of [3H]Ro 15-4513 binding was observed in membranes pretreated with DEP in the presence of flunitrazepam, whereas such pretreatment reduced significantly the inhibitory effect of DEP on [3H]-diazepam binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Average doses to rat tissues from the ingestion of 2-[14C]thymidine were compared with those from methyl-[3H]thymidine or 6-[3H]thymidine. Among the three precursors, [14C]thymidine gave the highest dose to spleen and small intestine. The doses to other tissues from [14C]thymidine were almost the same or lower as compared with those from [3H]thymidine, irrespective of the 9 times higher beta-ray energy of 14C than that of 3H. In the case of [14C]thymidine, most of the dose was given by radioactivity incorporated into the organic tissue constituents (non-volatile radioactivity). In the case of [3H]thymidine, however, the dose contributions by non-volatile radioactivity were very small and the major contributions were rather from volatile radioactivity (3HHO), formed by degradation of [3H]thymidine. No significant difference in their total doses was found between the two [3H]precursors, but the dose from non-volatile radioactivity alone was 2-3 times higher with methyl-[3H]thymidine than with 6-[3H]thymidine. Estimates of the dose to cell nuclei in various tissues after the ingestion of [3H]thymidine were also made in order to predict more precisely possible radiation hazards.  相似文献   

13.
3H-labelled metabolites were determined in the perchloric acid-soluble fraction of blood plasma and liver of adult male Wistar rats, following the application of [5 - 3H]uridine. Ten minutes after the injection of uridine, only 20% of the total 3H activity of the plasma could be attributed to [3H]uridine. The remaining radioactivity was found chiefly in [3H]uracil (40%) and 3H2O (20%). In the liver, at 10 min, [3H]-uridine and [3H]uracil together accounted for less than 0.5% of the total radioactivity; about 70% of the radioactivity was due to [3H]beta-alanine, and 15% to 3H2O. 45 min after the injection, 70% of the radioactivity in the plasma was due to 3H2O, whereas uridine and uracil represented about 4% and 6%, respectively. At this time, about 55% of the radioactivity in the liver was due to [3H]beta-alanine, about 40% to 3H2O, and about 5% to unidentified metabolites; [3H]uridine and [3H]uracil were not observed. A comparison of the rate of catabolism of [5-3H]-uridine, [5-3H]cytidine and [6-3H]thymidine showed that cytidine is degraded in the organism 25 times more slowly than uridine or thymidine. The biological half lives for the total degradation of the [3H]nucleosides to 3H2O, based on the values in the plasma, were: uridine 1.1 h; thymidine 1.3 h; cytidine 25 h. Furthermore, the turnover time of exogenous uridine in the plasma was found to be 9 min, which gives a half life of 6 min for the metabolism of exogenous uridine to uracil.  相似文献   

14.
Double isotope procedures (3H and 14C) were used in vivo to investigate a) slow long-term gluconeogenic actions of adrenal glucocorticoids, and b) rapid stimulation of gluconeogenesis by glucagon. [U-14C,6-3H]Glucose was administered to normal and adrenalectomized rats. No effect was observed on the [6-3H]glucose half-life suggesting the dicarboxylic acid shuttle is unaffected by adrenalectomy; the Cori cycle is also not influenced. Loads of [14C]aspartate, [14C]glutamate, or [14C]alanine were given to normal and adrenalectomized rats. Simultaneously, in vivo transaminase activity was studied by measuring the appearance of 3H2O in body water after administration of [2-3H]aspartate, [2-3H]glutamate, or [2-3H]alanine, Adrenalectomy has no influence on the incorporation of glutamate or aspartate into glucose or on their in vivo transaminases. Diminution of incorporation of [14C]alanine into glucose and alanine transaminase activities occurs only when rats are given unphysiological loads. These studies support the contention that glucocorticoid rate-limiting actions occur in extrahepatic tissues to produce an increased flow of glucose precursors to the liver. [U-14C,3-3H]Glucose was used to investigate the effect of glucagon on the hepatic fructose-6-phosphate (F-6-P) cycle. Glucagon administration resulted in a rapid drop in the 3H/14C ratio of circulating glucose, suggesting an increase in F-6-P recycling caused by activation of FDPase with little or no decrease in phosphofructokinase. Such a change would direct substrate flux toward gluconeogenesis.  相似文献   

15.
The radiolabeled agonist [3H]hydroxybenzylisoproterenol ([3H]HBI) and antagonist [125I]iodopindolol ([125I]IPIN) were used to investigate the properties of beta-adrenergic receptors on membranes prepared from L6 myoblasts and S49 lymphoma cells. The high affinity binding of (-)-[3H]HBI to membranes prepared from L6 myoblasts was stereoselectively inhibited by the active isomers of isoproterenol and propranolol. The density of receptors determined with (-)-[3H]HBI was less than that determined with [125I]IPIN. The binding of (-)-[3H]HBI was inhibited by guanine nucleotides, suggesting an agonist-mediated association of the receptor with a guanine nucleotide-binding protein, presumably the stimulatory guanine nucleotide-binding protein (Ns) of adenylate cyclase. Results obtained in studies with membranes prepared from wild-type S49 lymphoma cells and the adenylate cyclase-deficient variant (cyc-) were similar to those obtained in experiments carried out with membranes prepared from L6 myoblasts. Thus, the high affinity binding of (-)-[3H]HBI to membranes prepared from wild-type and cyc- S49 lymphoma cells was stereoselectively inhibited by the active isomers of isoproterenol and propranolol, and was inhibited by GTP. Moreover, the density of sites determined with (-)-[3H]HBI was less than that determined with [125I]IPIN. These results suggest either that cyc- cells contain a partially functional Ns, or alternatively, that the inhibitory guanine nucleotide-binding protein (Ni) is capable of interacting with beta-adrenergic receptors.  相似文献   

16.
6-N-[3-3H]Trimethyl-dl-lysine was synthesized from 6-N-acetyl-l-lysine by the following chemical scheme: 6-N-acetyl-l-lysine → 2-keto-6-N-acetylcaproic acid → 2-[3-3H]keto-6-N-acetylcaproic acid → 2-[3-3H]keto-6-N-acetylcaproic acid oxime → 6-N-[3-3H]acetyl-dl-lysine → dl-[3-3H]lysine → 2-N-[3-3H]formyl-dl-lysine → 2-[3-3H]formyl-6-N-trimethyl-dl-lysine → 6-N-[3-3H]trimethyl-dl-lysine. Using a 70% ammonium sulfate fraction obtained from a high-speed rat kidney supernatant, the cosubstrate and cofactor requirements for 6-N-trimethyl-l-lysine hydroxylase activity as measured by tritium release from 6-N-[3-3H]trimethyl-dl-lysine were: α-ketoglutarate, ferrous ions, l-ascorbate, and oxygen, with added catalase showing a slight but distinct stimulatory effect. On incubation with the crude rat kidney preparation, the release of tritium from 6-N-[3-3H]trimethyl-dl-lysine was linear with both time of incubation and protein concentration. Hydroxylation of 6-N-trimethyl-l-lysine, as measured by tritium release from the labeled substrate, was examined in rat kidney, heart, liver, and skeletal muscle tissues, and found to be most active in the kidney.  相似文献   

17.
To clarify the biosynthetic pathway to 2-phenylethanol (2), the deuterium-labeled putative precursor, [2H8]L-phenylalanine ([2H8-1]), was fed to the flowers of Rosa 'Hoh-Jun' and R. damascena Mill. throughout maturation, ceasing feeding at the commencement of petal unfurling and at full bloom. Based on GC-MS analyses, [2H8]-1 was incorporated into both 2 and 2-phenylethyl beta-D-glucopyranoside (3) when the flowers were fed until full bloom, whereas no such incorporation into 2 was apparent when feeding was ceased earlier. In both species of rose, the labeling pattern for 2 was almost identical to that for 3, and indicated the presence of [2H6]-, [2H7]- and [2H8]-2, and [2H6]-, [2H7]- and [2H8]-3. This may be ascribed to the equilibrium between 2 and 3. The labeling pattern for 2 and 3 also indicated that these compounds were produced from 1 via several routes, the route involving phenylpyruvic acid being the major one.  相似文献   

18.
The formation and metabolism of inositol pentakis-and hexakisphosphates (InsP5 and InsP6) were investigated in Xenopus laevis oocytes. After [3H]inositol injection, [3H]InsP5 and subsequently [3H]Insp6 increased progressively over 72 h. In intact oocytes, [3H]InsP5 was progressively converted to [3H]InsP6 from 6 to 72 h of incubation and was not metabolized to lower inositol phosphates. In contrast, [3H]InsP6 remained unmetabolized for up to 72 h. These data are consistent with the kinetics of the increases in [3H]InsP5 and [3H]InsP6 in [3H]inositol-labeled oocytes. The highly phosphorylated inositols showed significant changes during oogenesis and maturation. In oocytes incubated for 48 h after [3H]inositol injection, the radioactive incorporation into polyphosphoinositols increased progressively from stage 3 to stage 6, with 5- and 6-fold rises (cpm/mg protein) for [3H]InsP5 and [3H]InsP6, respectively. These developmental changes were associated with 5-fold increases in [3H]inositol tetrakisphosphate between stages 3 and 6 of oogenesis. Induction of oocyte maturation by progesterone (1 microM) during the last 12 of a 36-h incubation with [3H]inositol doubled the levels of [3H]InsP6 relative to [3H]InsP5, suggesting that the activity of inositol pentakisphosphate kinase increases during maturation. These results provide direct evidence for metabolic conversion of InsP5 to InsP6 in animal cells and show that the higher inositol polyphosphates, unlike the lower phosphoinositols, are extraordinarily stable. These species increase markedly during ovum development and may play a regulatory role in oogenesis and maturation.  相似文献   

19.
Internal radiolabelling procedures were used to radiolabel the oligosaccharide determinant of the glycopeptidolipids (GPL) from serovars 4 and 20 of the Mycobacterium avium complex. Mycobacteria were cultured in the presence of [6-3H]fucose, [2-3H]mannose or [methyl-3H]methionine, after which radiolabelled native lipid was extracted and distribution of radioactivity in native and deacetylated lipid was determined by thin-layer chromatographic methods. Incorporation of radiolabel was confirmed by examining acid hydrolysates of purified GPL for 3H-labelled sugars on cellulose thin-layer plates. Least incorporation of radiolabel into GPL was observed with [6-3H]fucose, whereas better incorporation was obtained with [2-3H]mannose and [methyl-3H]methionine. Use of [methyl-3H]methionine resulted in the radiolabelling of the methylated sugars in both the oligosaccharide determinant and the 3,4-di-O-methylrhamnose located at the terminus of the peptide core. Use of [2-3H]mannose resulted in the incorporation of radioactivity into the oligosaccharide determinant as 2-O-methylfucose, found in the GPL of both serovars 4 and 20. GPL radiolabelled with [2-3H]mannose were subsequently examined in macrophage cultures and found to be relatively inert to degradation by those phagocytic cells. These results substantiate earlier findings with the GPL of serovar 20 and indicate that these mycobacterial components may play a role in pathogenesis.  相似文献   

20.
The isotopic discrimination, diastereotopic specificity and intramolecular hydrogen transfer characterizing the reaction catalyzed by phosphomannoisomerase are examined. During the monodirectional conversion of D-[2-3H]mannose 6-phosphate to D-fructose 6-phosphate and D-fructose 1,6-bisphosphate, the reaction velocity is one order of magnitude lower than with D-[U-14C]mannose 6-phosphate and little tritium (less than 6%) is transferred intramolecularly. Inorganic phosphate decreases the reaction velocity but favours the intramolecular transfer of tritium. Likewise, when D-[1-3H]fructose 6-phosphate prepared from D-[1-3H]glucose is exposed solely to phosphomannoisomerase, the generation of tritiated metabolites is virtually restricted to 3H2O and occurs at a much lower rate than the production of D-[U-14C]mannose 6-phosphate from D-[U-14C]fructose 6-phosphate. However, no 3H2O is formed when D-[1-3H]fructose 6-phosphate generated from D-[2-3H]glucose is exposed to phosphomannoisomerase, indicating that the diastereotopic specificity of the latter enzyme represents a mirror image of that of phosphoglucoisomerase. Advantage is taken of such a contrasting enzymic behaviour to assess the back-and-forth flow through the reaction catalyzed by phosphomannoisomerase in intact cells exposed to D-[1-3H]glucose, D-[5-3H]glucose or D-[6-3H]glucose. Relative to the rate of glycolysis, this back-and-forth flow amounted to approx. 4% in human erythrocytes and rat parotid cells, 9% in tumoral cells of the RINm5F line and 47% in rat pancreatic islets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号