首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We tried some improvement of inosine production using an inosine-producing mutant of Escherichia coli which is deficient in purF (phosphoribosylpyrophosphate (PRPP) amidotransferase gene), purA (succinyl-adenosine 5'-monophosphate (AMP) synthetase gene), deoD (purine nucleoside phosphorylase gene), purR (purine repressor gene) and add (adenosine deaminase gene), and harboring the desensitized PRPP amidotransferase gene as a plasmid. The guaB (inosine 5'-monophosphate (IMP) dehydrogenase gene) disruption brought about a slightly positive effect on the inosine productivity. Alternatively, the gsk (guanosine-inosine kinase gene) disruption caused a considerable amount of guanosine accumulation together with a slight increase in the inosine productivity. The further addition of guaC (guanosine 5'-monophosphate (GMP) reductase gene) disruption did not lead to an increased guanosine accumulation, but brought about the decrease of inosine accumulation.  相似文献   

2.
A mutant of Escherichia coli with a partially defective phosphoribosylpyrophosphate synthetase (ribosephosphate pyrophosphokinase) has been characterized genetically. The genetic lesion causing the altered phosphoribosylpyrophosphate synthetase, prs, was mapped at 26 min on the linkage map by conjugation. Transductional analysis of the prs region established the gene order as purB-fadR-dadR-tre-pth-prs-hemA-trp. Two additional mutations were identified in the mutant: one in gsk, the gene encoding guanosine kinase, and one in lon, conferring a mucoid colony morphology. The contribution of each mutation to the phenotype of the mutant has been evaluated.  相似文献   

3.
H Mori  A Iida  S Teshiba    T Fujio 《Journal of bacteriology》1995,177(17):4921-4926
We attempted to clone an inosine kinase gene of Escherichia coli. A mutant strain which grows slowly with inosine as the sole purine source was used as a host for cloning. A cloned 2.8-kbp DNA fragment can accelerate the growth of the mutant with inosine. The fragment was sequenced, and one protein of 434 amino acids long was found. This protein was overexpressed. The overexpressed protein was purified and characterized. The enzyme had both inosine and guanosine kinase activity. The Vmaxs for guanosine and inosine were 2.9 and 4.9 mumol/min/mg of protein, respectively. The Kms for guanosine and inosine were 6.1 microM and 2.1 mM, respectively. This enzyme accepted ATP and dATP as a phosphate donor but not p-nitrophenyl phosphate. These results show clearly that this enzyme is not a phosphotransferase but a guanosine kinase having low (Vmax/Km) activity with inosine. The sequence of the gene we have cloned is almost identical to that of the gsk gene (K.W. Harlow, P. Nygaard, and B. Hove-Jensen, J. Bacteriol. 177:2236-2240, 1995).  相似文献   

4.
Purine-requiring mutants of Salmonella typhimurium LT2 containing additional mutations in either adenosine deaminase or purine nucleoside phosphorylase have been constructed. From studies of the ability of these mutants to utilize different purine compounds as the sole source of purines, the following conclusions may be drawn. (i) S. typhimurium does not contain physiologically significant amounts of adenine deaminase and adenosine kinase activities. (ii) The presence of inosine and guanosine kinase activities in vivo was established, although the former activity appears to be of minor significance for inosine metabolism. (iii) The utilization of exogenous purine deoxyribonucleosides is entirely dependent on a functional purine nucleoside phosphorylase. (iv) The pathway by which exogenous adenine is converted to guanine nucleotides in the presence of histidine requires a functional purine nucleoside phosphorylase. Evidence is presented that this pathway involves the conversion of adenine to adenosine, followed by deamination to inosine and subsequent phosphorolysis to hypoxanthine. Hypoxanthine is then converted to inosine monophosphate by inosine monophosphate pyrophosphorylase. The rate-limiting step in this pathway is the synthesis of adenosine from adenine due to lack of endogenous ribose-l-phosphate.  相似文献   

5.
Central nervous system (CNS) astrocytes release guanosine extracellularly, that exerts trophic effects. In CNS, extracellular guanosine (GUO) stimulates mitosis, synthesis of trophic factors, and cell differentiation, including neuritogenesis, is neuroprotective, and reduces apoptosis due to several stimuli. Specific receptor-like binding sites for eGUO in the nervous system may mediate its effects through both MAP kinase and PI3-kinase signalling pathways. Extracellular guanine (eGUA) also exerts several effects; the trophic effects of eGUO are likely regulated by conversion of eGUO to eGUA by a membrane located purine nucleoside phosphorylase (ecto-PNP) and by conversion of eGUA to xanthine by guanine deaminase.  相似文献   

6.
Clones resistant to 0.15% guanosine were isolated from rat hepatoma cells. Analysis of cell extracts from these clones revealed the presence of normal levels of purine nucleoside phosphorylase activity but less than 2% of the parental level of hypoxanthine-guanine phosphoribosyltransferase activity. In addition, the resistant cells transported guanosine and inosine at less than 2% of the rate of sensitive cells. Despite this low rate of transport, the resistant cells were still capable of metabolizing extracellular guanosine and inosine. The ability of the resistant cells to metabolize guanosine and inosine without requiring their direct transport lends support to the existence of a membrane localized form of purine nucleoside phosphorylase which metabolizes extracellular purine nucleosides.  相似文献   

7.
解淀粉芽胞杆菌关键酶基因过表达对鸟苷积累的影响   总被引:1,自引:0,他引:1  
【目的】研究鸟苷生物合成途径中的3个关键酶编码基因(prs,purF,guaB)过表达对解淀粉芽胞杆菌(Bacillus amyloliquefaciens)发酵生产鸟苷的影响。【方法】利用穿梭表达载体PBE43,构建含有prs、purF和guaB基因的单独表达载体和prs、purF基因的串联表达载体,将它们分别转入鸟苷生产菌B.amyloliquefaciens TA208后,通过实时定量PCR测定各工程菌株内相关基因的转录水平;通过酶活检测分析关键酶基因扩增对肌苷酸脱氢酶活性的影响;通过摇瓶发酵实验考察工程菌株与对照菌株的生长、耗糖和鸟苷积累情况。【结果】转录分析结果表明prs、purF和guaB基因过表达的同时都伴随着自身转录水平的显著上调。与此同时,prs和purF基因单独表达均轻微下调了嘌呤操纵子的转录水平,但是guaB基因的过表达并不影响嘌呤操纵子和prs基因的转录。酶活分析结果表明prs和purF基因扩增并不影响肌苷酸脱氢酶的活性,guaB基因的扩增使其活性提高了126%。摇瓶发酵实验发现prs和purF基因的单独过表达均未促进宿主菌合成鸟苷,而含guaB基因过表达载体的工程菌鸟苷产量较出发菌株提高20.7%。将prs和purF基因串联表达后,鸟苷产量提高14.4%,糖苷转化率增加6.8%。【结论】过表达guaB基因能够大幅提高鸟苷产量,而prs和purF基因只有实现协同表达才能对宿主菌积累鸟苷产生积极影响,为通过代谢工程技术提高鸟苷产量奠定了研究基础。  相似文献   

8.
Guanosine has long been known as an endogenous purine nucleoside deeply involved in the modulation of several intracellular processes, especially G-protein activity. More recently, it has been reported to act as an extracellular signaling molecule released from neurons and, more markedly, from astrocytes either in basal conditions or after different kinds of stimulation including hypoxia. Moreover, in vivo studies have shown that guanosine plays an important role as both a neuroprotective and neurotrophic agent in the central nervous system. Specific high-affinity binding sites for this nucleoside have been found on membrane preparations from rat brain. The present study was undertaken to investigate the distribution and metabolic profiles of guanosine after administering the nucleoside to gain a better understanding of the biological effects of this potential drug candidate. Rats were given an intraperitonal (i.p.) injection of 2, 4, 8 or 16 mg/kg of guanosine combined with 0.05% of [3H]guanosine. Plasma samples were collected 7.5, 15, 30, 60 and 90 min after the guanosine-mixture administration and analyzed by either a liquid scintillation counter or by HPLC connected to a UV and to an on-line radiochemical detector to measure the levels of guanosine and its metabolic products guanine, xanthine and uric acid. The levels of guanosine, guanine and xanthine were also measured in brain, lung, heart, kidney and liver tissue homogenates at the defined time points after the injection of 8 mg/kg of the guanosine-mixture. We found that the levels of radioactivity in plasma increased linearly in a dose- and time-dependent manner. Guanosine was widely distributed in all tissues examined in the present study, at almost twice its usual levels. In addition, guanine levels dramatically increased in all the organs. Interestingly, enzymatic analysis of the plasma samples showed the presence of a soluble purine nucleoside phosphorylase, a key enzyme in the purine salvage pathway and nucleoside catabolism. Since guanosine has been shown to be neuroprotective and astrocytes have been reported to play critical roles in mediating neuronal survival and functions in different neurodegenerative disorders, we also performed uptake and release.  相似文献   

9.
Guanosine metabolism in Neurospora crassa   总被引:1,自引:0,他引:1  
Two aspects of guanosine metabolism in Neurospora have been investigated. (a) The inability of adenine mutants (blocked prior to IMP synthesis) to use guanosine as a nutritional supplement; and (b) the inhibitory effect of guanosine on the utilization of hypoxanthine as a purine source for growth by these mutants. Studies on the utilization of guanosine indicated that the proportion of adenine derived from guanosine may be limiting for the growth of adenine mutants. In wild type, adenine is produced through the biosynthetic pathway when grown in the presence of guanosine. The amount of adenine produced through the de novo biosynthesis in wild type increases with increasing concentrations of guanosine in the medium. However, the total purine synthesis does not increase. Guanosine inhibits the uptake of hypoxanthine severely. In addition, guanosine and its nucleotide derivatives also inhibit the hypoxanthine phosphoribosyltransferase activity, at the same time stimulating the adenine phosphoribosyltransferase activity. Guanosine's effects on the uptake of hypoxanthine and its conversion to the nucleotide form may be the reasons why guanosine inhibits the utilization of hypoxanthine but not adenine by these mutants.  相似文献   

10.
Utilization of 2,6-diaminopurine by Salmonella typhimurium   总被引:2,自引:0,他引:2       下载免费PDF全文
The pathway for the utilization of 2,6-diaminopurine (DAP) as an exogenous purine source in Salmonella typhimurium was examined. In strains able to use DAP as a purine source, mutant derivatives lacking either purine nucleoside phosphorylase or adenosine deaminase activity lost the ability to do so. The implied pathway of DAP utilization was via its conversion to DAP ribonucleoside by purine nucleoside phosphorylase, followed by deamination to guanosine by adenosine deaminase. Guanosine can then enter the established purine salvage pathways. In the course of defining this pathway, purine auxotrophs able to utilize DAP as sole purine source were isolated and partially characterized. These mutants fell into several classes, including (i) strains that only required an exogenous source of guanine nucleotides (e.g., guaA and guaB strains); (ii) strains that had a purF genetic lesion (i.e., were defective in alpha-5-phosphoribosyl 1-pyrophosphate amidotransferase activity); and (iii) strains that had constitutive levels of purine nucleoside phosphorylase. Selection among purine auxotrophs blocked in the de novo synthesis of inosine 5'-monophosphate, for efficient growth on DAP as sole source of purine nucleotides, readily yielded mutants which were defective in the regulation of their deoxyribonucleoside-catabolizing enzymes (e.g., deoR mutants).  相似文献   

11.
The fluorescence properties of 3-methyl-isoxanthopterin (3-MI) incorporated into different oligonucleotides have been determined. This highly fluorescent guanosine analog has its absorption and fluorescence spectra well resolved from those of the normal nucleotides and the aromatic amino acids. The small shifts observed in absorption and fluorescence emission spectra upon incorporation of 3-MI into these oligonucleotides are consistent with a general solvent effect and do not suggest any contribution from the position of the probe from the 5' end, the sequence of nucleotides immediately 5' or 3' to the probe, or the single- or double-stranded nature of the oligomer. However, steady-state and time-resolved fluorescence studies indicate that the presence of a purine immediately 5' or 3' to the probe results in some dynamic but mostly static quenching in the single-stranded oligomer. Furthermore, a 3' purine is more effective than a 5' purine, and an adenine appears to be more effective than a guanine for these static quenching interactions. Formation of the double-stranded oligomer leads to an additional loss of quantum yield, which can also be ascribed primarily to static quenching. These results show that this new class of spectrally enhanced fluorescent purine analogs will be able to provide useful information concerning the perturbation of nucleic acid structures.  相似文献   

12.
13.
为了研究肌苷和鸟苷生产菌中与产苷有关的嘌呤核苷合成途径的遗传背景,选择了pur操纵子的启动子序列、编码SAMP合成酶的purA基因和编码GMP合成酶的guaA基因,设计合适的引物,分别从野生菌、一株肌苷低产菌和肌苷鸟苷高产菌中扩增出相应片段,经克隆和测序后,对它们进行比较和分析。分析结果表明两株生产菌的purA基因发生了1个碱基缺失,导致阅读框发生移码突变;而鸟苷高产菌在pur操纵子的启动子部分和操纵子抑制蛋白结合区域发生了近10%的突变,可能影响整个操纵子的表达调控。  相似文献   

14.
A reduction in the incident light intensity has been used to elicit guanosine 5'-diphosphate 3'-diphosphate accumulation in cyanobacteria. Inhibitors of photophosphorylation, 2,4-dinitrophenol, and carbonyl cyanide-m-chlorophenyl hydrazone elicited accumulation in three species of cyanobacteria when they were grown on dinitrogen or nitrate, but not in cultures grown on ammonium or glutamine. Accumulation of guanosine 5'-diphosphate 3'-diphosphate also preceded a substantial reduction of the purine nucleoside triphosphate pools. This accumulation of guanosine 5'-diphosphate 3'-diphosphate is therefore not primarily dependent upon reduced ATP concentration or proton gradient potential, but rather upon the source of combined nitrogen. In this respect, incident light step down is not comparable with nutritional step-down procedures in heterotrophic bacteria.  相似文献   

15.
E R Mably  E Fung  F F Snyder 《Génome》1989,32(6):1026-1032
Two independent mutations of purine nucleoside phosphorylase were identified in the first-generation progeny of male mice that had been treated with the mutagen N-ethylnitrosourea and mated to untreated females. The common allele in inbred strains is Np-1a and the mutants are assigned the gene symbols Np-1e and Np-1f. Heterozygotes had approximately half normal purine nucleoside phosphorylase activity in erythrocytes and activity of homozygotes was 17 and 5% of NP-1A for NP-1E and NP-1F, respectively. The following properties are consistent with both Np-1e and Np-1f being point mutations: the expression of residual but markedly reduced activity with normal Michaelis constants for inosine and phosphate, altered isoelectric points, and increased thermal lability. The reduction in erythrocyte activity was also evident in other tissues. A metabolic consequence of the mutations was increased purine nucleoside excretion. Inosine and guanosine, total 150 +/- 84 microM, and inosine, deoxyinosine, guanosine, and deoxyguanosine, total 1490 +/- 190 microM, were present in urine of Np-1e/Np-1e and Np-1f/Np-1f mice, respectively, but not in normal urine, less than 10 microM.  相似文献   

16.
The metabolic fates of 8-bromoguanosine (8BrGuo) and 8-bromoguanosine-3'5'-cyclic monophosphate (8Br-cGMP) were examined in cultures of murine B lymphocytes. These compounds exert striking immunostimulatory effects upon bone marrow-derived lymphoid cells in vitro. Both 8BrGuo and 8Br-cGMP were resistant to metabolic processing by these cells. That purine metabolic pathways are intact and operant in B cells was demonstrated by the ready degradation and phosphorylation of native guanosine and cyclic GMP. Inaccessibilty of the substrate to the relevant enzymes was ruled out as an explanation by the observation that the brominated compounds also were resistant to processing in broken cell preparations. Moreover, 8BrGuo did not interfere with the cellular machinery for metabolizing native guanosine. The implications of these observations for studying the actions of purine nucleotides, cyclic nucleotides, and their enzymatic processing in B cells are discussed.  相似文献   

17.
We have characterized a new locus, BRA3, leading to deregulation of the yeast purine synthesis genes (ADE genes). We show that bra3 mutations are alleles of the GUK1 gene, which encodes GMP kinase. The bra3 mutants have a low GMP kinase activity, excrete purines in the medium, and show vegetative growth defects and resistance to purine base analogs. The bra3 locus also corresponds to the previously described pur5 locus. Several lines of evidence indicate that the decrease in GMP kinase activity in the bra3 mutants results in GMP accumulation and feedback inhibition of hypoxanthine-guanine phosphoribosyltransferase (HGPRT), encoded by the HPT1 gene. First, guk1 and hpt1 mutants share several phenotypes, such as adenine derepression, purine excretion, and 8-azaguanine resistance. Second, overexpression of HPT1 allows suppression of the deregulated phenotype of the guk1 mutants. Third, we show that purified yeast HGPRT is inhibited by GMP in vitro. Finally, incorporation of hypoxanthine into nucleotides is similarly diminished in hpt1 and guk1 mutants in vivo. We conclude that the decrease in GMP kinase activity in the guk1 mutants results in deregulation of the ADE gene expression by phenocopying a defect in HGPRT. The possible occurrence of a similar phenomenon in humans is discussed.  相似文献   

18.

Objectives

To deregulate the purine operon of the purine biosynthetic pathway and optimize energy generation of the respiratory chain to improve the yield of guanosine in Bacillus amyloliquefaciens XH7.

Results

The 5′-untranslated region of the purine operon, which contains the guanine-sensing riboswitch, was disrupted. The native promoter Pw in B. amyloliquefaciens XH7 was replaced by different strong promoters. Among the promoter replacement mutants, XH7purE::P41 gave the highest guanosine yield (16.3 g/l), with an increase of 23% compared with B. amyloliquefaciens XH7. The relative expression levels of the purine operon genes (purE, purF, and purD) in the XH7purE::P41 mutant were upregulated. The concentration of inosine monophosphate (IMP), the primary intermediate in the purine pathway, was also significantly increased in the XH7purE::P41 mutant. Combined modification of the low-coupling branched respiratory chains (cytochrome bd oxidase) improved guanosine production synergistically. The final guanosine yield in the XH7purE::P41△cyd mutant increased by 41% to 19 g/l compared with B. amyloliquefaciens XH7.

Conclusion

The combined modification strategy used in this study is a novel approach to improve the production of guanosine in industrial bacterial strains.
  相似文献   

19.
Katahira R  Ashihara H 《Planta》2006,225(1):115-126
To find general metabolic profiles of purine ribo- and deoxyribonucleotides in potato (Solanum tuberosum L.) plants, we looked at the in situ metabolic fate of various 14C-labelled precursors in disks from growing potato tubers. The activities of key enzymes in potato tuber extracts were also studied. Of the precursors for the intermediates in de novo purine biosynthesis, [14C]formate, [2-14C]glycine and [2-14C]5-aminoimidazole-4-carboxyamide ribonucleoside were metabolised to purine nucleotides and were incorporated into nucleic acids. The rates of uptake of purine ribo- and deoxyribonucleosides by the disks were in the following order: deoxyadenosine > adenosine > adenine > guanine > guanosine > deoxyguanosine > inosine > hypoxanthine > xanthine > xanthosine. The purine ribonucleosides, adenosine and guanosine, were salvaged exclusively to nucleotides, by adenosine kinase (EC 2.7.1.20) and inosine/guanosine kinase (EC 2.7.1.73) and non-specific nucleoside phosphotransferase (EC 2.7.1.77). Inosine was also salvaged by inosine/guanosine kinase, but to a lesser extent. In contrast, no xanthosine was salvaged. Deoxyadenosine and deoxyguanosine, was efficiently salvaged by deoxyadenosine kinase (EC 2.7.1.76) and deoxyguanosine kinase (EC 2.7.1.113) and/or non-specific nucleoside phosphotransferase (EC 2.7.1.77). Of the purine bases, adenine, guanine and hypoxanthine but not xanthine were salvaged for nucleotide synthesis. Since purine nucleoside phosphorylase (EC 2.4.2.1) activity was not detected, adenine phosphoribosyltransferase (EC 2.4.2.7) and hypoxanthine/guanine phosphoribosyltransferase (EC 2.4.2.8) seem to play the major role in salvage of adenine, guanine and hypoxanthine. Xanthine was catabolised by the oxidative purine degradation pathway via allantoin. Activity of the purine-metabolising enzymes observed in other organisms, such as purine nucleoside phosphorylase (EC 2.4.2.1), xanthine phosphoribosyltransferase (EC 2.4.2.22), adenine deaminase (EC 3.5.4.2), adenosine deaminase (EC 3.5.4.4) and guanine deaminase (EC 3.5.4.3), were not detected in potato tuber extracts. These results suggest that the major catabolic pathways of adenine and guanine nucleotides are AMP → IMP → inosine → hypoxanthine → xanthine and GMP → guanosine → xanthosine → xanthine pathways, respectively. Catabolites before xanthosine and xanthine can be utilised in salvage pathways for nucleotide biosynthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号