首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brenowitz SD  Regehr WG 《Neuron》2005,45(3):419-431
Associative learning is important on rapid timescales, but no suitable form of short-term plasticity has been identified that is both associative and synapse specific. Here, we assess whether endocannabinoids can mediate such plasticity. In the cerebellum, bursts of parallel fiber (PF) activity evoke endocannabinoid release from Purkinje cell dendrites that results in retrograde synaptic inhibition lasting seconds. We find that the powerful climbing fiber (CF) to Purkinje cell synapse regulates this inhibition. Compared to PF stimulation alone, coactivation of PF and CF synapses greatly enhanced endocannabinoid-mediated inhibition of PF synapses. Retrograde inhibition was restricted to PFs activated within several hundred milliseconds of CF activation. This associative plasticity reflects two aspects of calcium-dependent endocannabinoid release. First, PF-mediated activation of metabotropic glutamate receptors locally reduced the dendritic calcium levels required for endocannabinoid release. Second, CF and PF coactivation evoked localized supralinear dendritic calcium signals. Thus, endocannabinoids mediate transient associative synaptic plasticity.  相似文献   

2.
Endocannabinoids (eCBs) act as modulators of synaptic transmission through activation of a number of receptors, including, but not limited to, cannabinoid receptor 1 (CB1). eCBs share CB1 receptors as a common target with Δ9-tetrahydrocannabinol (THC), the main psychoactive ingredient in marijuana. Although THC has been used for recreational and medicinal purposes for thousands of years, little was known about its effects at the cellular level or on neuronal circuits. Identification of CB1 receptors and the subsequent development of its specific ligands has therefore enhanced our ability to study and bring together a substantial amount of knowledge regarding how marijuana and eCBs modify interneuronal communication. To date, the eCB system, composed of cannabinoid receptors, ligands and the relevant enzymes, is recognized as the best-described retrograde signalling system in the brain. Its impact on synaptic transmission is widespread and more diverse than initially thought. The aim of this review is to succinctly present the most common forms of eCB-mediated modulation of synaptic transmission, while also illustrating the multiplicity of effects resulting from specializations of this signalling system at the circuital level.  相似文献   

3.
Synapses in the central nervous system can be highly plastic devices, being able to modify their efficacy in relaying information in response to several factors. Calcium ions are often fundamental in triggering synaptic plasticity. Here, we will shortly review the effects induced by postsynaptic increases of calcium concentration at GABAergic and glycinergic synapses. Both postsynaptic and presynaptic mechanisms mediating changes in synaptic strength will be examined. Particular attention will be devoted to phenomena of retrograde signaling and, specifically, to the recently discovered role, played by the endocannabinoid system in retrograde synaptic modulation.  相似文献   

4.
Electrical synapses are an omnipresent feature of nervous systems, from the simple nerve nets of cnidarians to complex brains of mammals. Formed by gap junction channels between neurons, electrical synapses allow direct transmission of voltage signals between coupled cells. The relative simplicity of this arrangement belies the sophistication of these synapses. Coupling via electrical synapses can be regulated by a variety of mechanisms on times scales ranging from milliseconds to days, and active properties of the coupled neurons can impart emergent properties such as signal amplification, phase shifts and frequency-selective transmission. This article reviews the biophysical characteristics of electrical synapses and some of the core mechanisms that control their plasticity in the vertebrate central nervous system.  相似文献   

5.
Mathematical theory of chemical synaptic transmission is suggested in which the modes of operation of chemical synapses are given as consequencies of some fundamental theoretical principles presented in the form of systems of quantum and macroscopic postulates. These postulates establish transmitter transfer rules between 3 component parts — cytoplasmic, vesicular and external pools of neurotransmitter. The main features of the transfers are determined by special properties of the dividing membranes (synaptic and vesicle) which show high selectivity towards the direction of the transmitter quantum transfer. The formulation of a previously unknown effect of transmitter quantum transfer from the vesicular pool into the cytoplasmic one is introduced: it is postulated that each arriving presynaptic impulse not only releases a constant fraction of the current contents of the cytoplasmic pool into the synaptic cleft (external pool), but also realizes practically simultaneous transmitter transfer from the vesicular pool into the cytoplasmic one. Zone structure of the vesicular pool is postulated. In accordance with basic equations of the theory a nonlinear control system (dynamic synaptic modulator — DYSYM) of transmitter release from the terminal is constructed.Depending on the parameters relation two types of synapses are classified — those with rapid and slow demobilization. Analytical dependencies of the transmitter pools sizes on the stimulation frequency are introduced. By fitting the frequency dependencies to the empirical data model parameters are determined corresponding to a set of experimentally studied synaptic junctions. Different aspects of the chemical synapse behaviour under the influence of presynaptic stimulation are simulated.  相似文献   

6.
7.
Wang Y  Lu LX 《生理科学进展》2000,31(3):283-288
目  录一、参与胞吐作用的相关蛋白 (一)突触囊泡膜蛋白 (二)突触前膜有关蛋白 (三)胞液可溶性蛋白质 (四)其他蛋白质二、突触囊泡泊靠和融合的分子机制突触传递是神经系统实现其功能的最基本方式。详细阐述突触传递的机制对人们理解神经信息传递的特异性、行为和可塑性以及学习和记忆等都是至关重要的。近年来,随着分子生物学的发展,在分子水平阐明突触传递的机制才有可能。神经末梢的突触前部分通常含有两类囊泡:一是透明的较小囊泡,含有乙酰胆碱、儿茶酚胺等经典递质;另一类是有致密核心的较大囊泡,含有神经肽类物质。迄今研究较深…  相似文献   

8.
Leech neurons exposed to salines containing inorganic Ca2+-channel blockers generate rhythmic bursts of impulses. According to an earlier model, these blockers unmask persistent Na+ currents that generate plateau-like depolarizations, each triggering a burst of impulses. The resulting increase in intracellular Na+ activates an outward Na+/K+ pump current that contributes to burst termination. We tested this model by examining systematically the effects of six transition metal ions (Co2+, Ni2+, Mn2+, Cd2+, La3+, and Zn2+) on the electrical activity of neurons in isolated leech ganglia. Each ion induced bursting activity, but the amplitude, form, and persistence of bursting differed with the ion used and its concentration relative to Ca2+. All ions tested suppressed chemical synaptic transmission between identified motor neurons, consistent with block of voltage-dependent Ca2+ currents in these cells. In addition, a strong correlation between suppression of synaptic transmission and burst amplitudes was obtained. Finally, burst duration was increased and the rate of repolarization decreased in reduced K+ saline, as expected for pump-dependent repolarization. These results provide further support for the hypothesis that a novel form of oscillatory electrical activity driven by persistent Na+ currents and the Na+/K+ pump occurs in leech ganglia exposed to Ca2+-channel blockers. Accepted: 15 May 1997  相似文献   

9.
10.
Karpova AY  Tervo DG  Gray NW  Svoboda K 《Neuron》2005,48(5):727-735
Inducible and reversible silencing of selected neurons in vivo is critical to understanding the structure and dynamics of brain circuits. We have developed Molecules for Inactivation of Synaptic Transmission (MISTs) that can be genetically targeted to allow the reversible inactivation of neurotransmitter release. MISTs consist of modified presynaptic proteins that interfere with the synaptic vesicle cycle when crosslinked by small molecule "dimerizers." MISTs based on the vesicle proteins VAMP2/Synaptobrevin and Synaptophysin induced rapid ( approximately 10 min) and reversible block of synaptic transmission in cultured neurons and brain slices. In transgenic mice expressing MISTs selectively in Purkinje neurons, administration of dimerizer reduced learning and performance of the rotarod behavior. MISTs allow for specific, inducible, and reversible lesions in neuronal circuits and may provide treatment of disorders associated with neuronal hyperactivity.  相似文献   

11.
Taurine and synaptic transmission   总被引:1,自引:0,他引:1  
  相似文献   

12.
The release of vasopressin and oxytocin from the supraoptic nucleus (SON) neurons is tonically regulated by excitatory glutamatergic and inhibitory GABAergic synaptic inputs. Acetylcholine is known to excite SON neurons and to elicit vasopressin release. Cholinergic receptors are located pre- and postsynaptically in the SON, but their functional significance in the regulation of SON neurons is not fully understood. In this study, we determined the role of presynaptic cholinergic receptors in regulation of the excitatory glutamatergic inputs to the SON neurons. The magnocellular neurons in the rat hypothalamic slices were identified microscopically, and the spontaneous miniature excitatory postsynaptic currents (mEPSCs) were recorded using the whole cell voltage-clamp technique. The mEPSCs were abolished by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (20 microM). Acetylcholine (100 microM) significantly increased the frequency of mEPSCs of 38 SON neurons from 1.87 +/- 0.36 to 3.42 +/- 0.54 Hz but did not alter the amplitude (from 19.61 +/- 0.90 to 19.34 +/- 0.84 pA) and the decay time constant of mEPSCs. Furthermore, the nicotinic receptor antagonist mecamylamine (10 microM, n = 16), but not the muscarinic receptor antagonist atropine (100 microM, n = 12), abolished the excitatory effect of acetylcholine on the frequency of mEPSCs. These data provide new information that the excitatory effect of acetylcholine on the SON neurons is mediated, at least in part, by its effect on presynaptic glutamate release. Activation of presynaptic nicotinic, but not muscarinic, receptors located in the glutamatergic terminals increases the excitatory synaptic input to the SON neurons of the hypothalamus.  相似文献   

13.
Culturing clonal beta-cells (HIT-T15) overnight in the presence of phorbol ester [phorbol myristate acetate (PMA)] enhanced insulin secretion while causing downregulation of some protein kinase C (PKC) isoforms and most PKC activity. We show here that this enhanced secretion required the retention of PMA in the cell. Hence, it could not be because of long-lived phosphorylation of cellular substrates by the isoforms that were downregulated, namely PKC-alpha, -betaII, and -epsilon, but could be because of the continued activation of the two remaining diacylglycerol-sensitive isoforms delta and mu. The enhanced secretion did not involve changes in glucose metabolism, cell membrane potential, or intracellular Ca2+ handling, suggesting a distal effect. PMA washout caused the loss of the enhanced response, but secretion was then stimulated by acute readdition of PMA or bombesin. The magnitude of this restimulation appeared dependent on the mass of PKC-alpha, which was rapidly resynthesized during PMA washout. Therefore, stimulation of insulin secretion by PMA, and presumably by endogenous diacylglycerol, involves the activation of PKC isoforms delta and/or mu, and also PKC-alpha.  相似文献   

14.
15.
突触长时程增强形成与学习记忆的相关研究   总被引:4,自引:0,他引:4  
突触长时程增强(LTP)的形成与学习记忆有相似特征,将其作为记忆的一种模式加以研究,并深入探索LTP机制产生与静止突触的关系,长时程突触修饰与突触后神经细胞内Ca^2 的作用机制,学习行为后海马内出现的突触效能变化与行为学习之间的关系,以及BDNF对海马突触的LTP调节与长时记忆所涉及关于LTP的相关基因表达。  相似文献   

16.
Gabapentin and pregabalin are anticonvulsant drugs that are extensively used for the treatment of several neurological and psychiatric disorders. Gabapentinoids (GBPs) are known to have a high affinity binding to α2δ-1 and α2δ-2 auxiliary subunit of specific voltage-gated calcium channels. Despite the confusing effects reported on Ca (2+) currents, most of the studies showed that GBPs reduced release of various neurotransmitters from synapses in several neuronal tissues. We showed that acute in vitro application of pregabalin can reduce in a dose dependent manner synaptic transmission in both neuromuscular junctions and calyx of Held-MNTB excitatory synapses. Furthermore presynaptic Ca (2+) currents treated with pregabalin are reduced in amplitude, do not show inactivation at a clinically relevant low concentration of 100 μM and activate and deactivate faster. These results suggest novel modulatory role of acute pregabalin that might contribute to better understanding its anticonvulsant/analgesic clinical effects.  相似文献   

17.
Long-lasting postsynaptic potentials (PSPs) generated by decreases in membrane conductance (permeability) have been reported in many types of neurons. We investigated the possible role of such long-lasting decreases in membrane conductance in the modulation of synaptic transmission in the sympathetic ganglion of the bullfrog. The molecular basis by which such conductance-decrease PSPs are generated was also investigated. Synaptic activation of muscarinic cholinergic receptors on these sympathetic neurons results in the generation of a slow EPSP (excitatory postsynaptic potential), which is accompanied by a decrease in membrane conductance. We found that the conventional "fast" EPSPs were increased in amplitude and duration during the iontophoretic application of methacholine, which activates the muscarinic postsynaptic receptors. A similar result was obtained when a noncholinergic conductance-decrease PSP--the late-slow EPSP--was elicited by stimulation of a separate synaptic pathway. The enhancement of fast EPSP amplitude increased the probability of postsynaptic action potential generation, thus increasing the efficacy of impulse transmission across the synapse. Stimulation of one synaptic pathway is therefore capable of increasing the efficacy of synaptic transmission in a second synaptic pathway by a postsynaptic mechanism. Furthermore, this enhancement of synaptic efficacy is long-lasting by virtue of the long duration of the slow PSP. Biochemical and electrophysiological techniques were used to investigate whether cyclic nucleotides are intracellular second messengers mediating the membrane permeability changes underlying slow-PSP generation. Stimulation of the synaptic inputs, which lead to the generation of the slow-PSPs, increased the ganglionic content of both cyclic AMP and cyclic GMP. However, electrophysiological analysis of the actions of these cyclic nucleotides and the actions of agents that affect their metabolism does not provide support for such a second messenger role for either cyclic nucleotide.  相似文献   

18.
Experiments on superfused slices of rat hippocampus showed that the nootropic drugs pyracetam, ethymizol, ambocarb, and nooglutil increase the amplitude of populational EPSP (pEPSP) of neurons of the dentate gyrus evoked by electrical stimulation of the perforant pathway (PP). Nootropes exert no effect on the process of presynaptic glutamate liberation from the PP axons, but increase the chemosensitivity of the postsynaptic AMPA/kainate receptors mediating EPSP generation in the dentate gyrus neurons. Inhibitors of protein kinase (A-buthamide) and guanylatecyclase (methylene blue) do not modify the effects of nootropes. The nootrope-induced potentiation of pEPSP does not develop against the background of the application of calmodulin inhibitor W-7. In the presence of protein kinase inhibitor C, polymixin B, nootropes reversibly depress pEPSP in the dentate gyrus neurons. Blocking of the NMDA receptor ionic channels by ketamine and of the voltage-dependent T-type calcium channels by Ni2+ does not significantly modify the effects of nootropic drugs. A blocker of Ca2+-ATPase of the Ca2+ stores sodium orthovanadate, potentiates the effects of nootropes. Dantrolene, which disrupts Ca2+ liberation from the non-mitochondrical depots, blocks the effects of nootropes and diminishes pEPSP depression evoked by nootropes in the presence of polymixin B. On the basis of presented data, it is supposed that nootropic drugs assist Ca2+ liberation from the neuronal depots and activate calmodulin-dependent protein kinase and protein kinase C. Protein kinases phosphorylate the intracellular domains of the AMPA/kainate receptors, and this process results in an increase in their sensitivity to excitatory amino acids.Neirofiziologiya/Neurophysiology, Vol. 26, No. 5, pp. 365–372, September–October, 1994.  相似文献   

19.
The effect of hydrogen peroxide (H2O2) on excitatory and inhibitory synaptic transmission was studied at the lobster neuromuscular junction. H2O2 produced a dose dependent decrease in the amplitude of the junction potential (Vejp). This decrease was due to changes in both presynaptic transmitter release and the postsynaptic response to the neurotransmitter. Observed presynaptic changes due to exposure to H2O2 were a decrease in the amount of transmitter released, that is, quantal content, as well as a decrease in the fast facilitation, that is, the amplitude increase of successive excitatory junction potentials at a rate of 3 Hz. To discern postsynaptic changes, glutamate, the putative excitatory neurotransmitter for this preparation was applied directly to the bathing medium in order to bypass the presynaptic release process. H2O2 produced a decreased response of the glutamate receptor/ ionophore. The action of H2O2 was not selective to excitatory (glutamate-mediated) transmission because inhibitory (GABA-mediated) transmission was also depressed by H2O2. This effect was primarily presynaptic since H2O2 produced no change in the postsynaptic response to applied GABA.  相似文献   

20.
The induction of long-term potentiation at CA3-CA1 synapses is caused by an N-methyl-d-aspartate (NMDA) receptordependent accumulation of intracellular Ca(2+), followed by Src family kinase activation and a positive feedback enhancement of NMDA receptors (NMDARs). Nevertheless, the amplitude of baseline transmission remains remarkably constant even though low frequency stimulation is also associated with an NMDAR-dependent influx of Ca(2+) into dendritic spines. We show here that an interaction between C-terminal Src kinase (Csk) and NMDARs controls the Src-dependent regulation of NMDAR activity. Csk associates with the NMDAR signaling complex in the adult brain, inhibiting the Src-dependent potentiation of NMDARs in CA1 neurons and attenuating the Src-dependent induction of long-term potentiation. Csk associates directly with Src-phosphorylated NR2 subunits in vitro. An inhibitory antibody for Csk disrupts this physical association, potentiates NMDAR mediated excitatory postsynaptic currents, and induces long-term potentiation at CA3-CA1 synapses. Thus, Csk serves to maintain the constancy of baseline excitatory synaptic transmission by inhibiting Src kinase-dependent synaptic plasticity in the hippocampus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号