首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The lobular division, bronchial tree, and blood vessels in lungs of seven squirrel monkeys (Saimiri sciureus) were examined from the viewpoint of comparative anatomy. The right lung of the squirrel monkey consists of the upper, middle, lower, and accessory lobes, whereas the left lung consists of the upper, middle, and lower lobes. These lobes are completely separated by interlobular fissures. In three of seven examples examined the left middle lobe was lacking. The squirrel monkey lung has four bronchiole systems, i.e. dorsal, lateral, ventral, and medial, on both sides. The upper lobes are formed by the first branches of the dorsal bronchiole systems. The middle lobes are formed by the first branches of the lateral bronchiole systems. The remaining bronchioles constitute the lower lobes. In addition to the above lobes, in the right lung, the accessory lobe is present, being formed by the first branch of the ventral bronchiole system. The right pulmonary artery runs across the ventral side of the right upper lobe bronchiole, and then across the dorsal side of the right middle lobe bronchiole. Thereafter, it runs between the dorsal bronchiole and lateral bronchiole systems along the dorso-lateral side of the right bronchus. During its course, the right pulmonary artery gives off the arterial branches which run along each bronchiole. These branches run mainly along the dorsal or lateral side of the bronchioles. In the left lung, the pulmonary artery and its branches run the same course as in the right lung. The pulmonary veins run mainly the ventral or medial side of the bronchioles, and between the bronchioles.  相似文献   

2.
The author injected various colored celluloid solutions into the bronchial tree and blood vessels of the lungs of five adult Japanese monkeys (Macaca fuscata) in order to prepare cast specimens. These specimens were investigated from the comparative anatomical viewpoint to determine whether the bronchial ramification theory of the mammalian lung (Nakakuki, 1975, 1980) can be applied to the Japanese monkey lung or not. The bronchioles are arranged stereotaxically like those of other mammalian lungs. The four bronchiole systems, dorsal, ventral, medial, and lateral, arise from both bronchi, respectively, although some bronchioles are lacking. In the right lung, the bronchioles form the upper, middle, accessory, and lower lobes, while in the left lung, the upper and accessory lobes are lacking and bi-lobed middle and lower lobes are formed. In the right lung, the upper lobe is formed by the first branch of the dorsal bronchiole system. The middle lobe is the first branch of the lateral bronchiole system. The accessory lobe is the first branch of the ventral bronchiole system. The lower lobe is formed by the remaining bronchioles of the four bronchiole systems. In the left lung, the middle lobe is formed by the first branch of the lateral bronchiole system. The lower lobe is formed by the remaining bronchioles. Thus, the bronchial ramification theory of the mammalian lung applied well to the Japanese monkey lung. The right pulmonary artery runs across the ventral side of the right upper lobe bronchiole. It then runs along the dorso-lateral side of the right bronchus between the dorsal bronchiole system and the lateral bronchiole system. On its way, it gives off branches of the pulmonary artery which run along the dorsal or lateral side of each bronchiole except in the ventral bronchiole system. In the ventral bronchiole system, the branches run along the ventral side of the bronchioles. The distributions of the pulmonary artery in the left lung are the same as those in the right lung. The pulmonary veins do not always run along the bronchioles. Most of them run on the medial or ventral side of the bronchioles. Some of them run between the pulmonary segments. In the right lung, these pulmonary veins finally form the right upper lobe vein, right middle lobe vein and the right lower lobe pulmonary venous trunk before entering the left atrium. However, the right accessory lobe vein runs on the dorsal side of the bronchiole and pours into the right lower lobe pulmonary venous trunk. In four cases out of the five examples, part of the right lower lobe veins pour into the right middle lobe vein, while the others enter the right lower lobe pulmonary venous trunk. In the left lung, the branches of the pulmonary veins finally form the left middle lobe vein and the left lower lobe pulmonary venous trunk.  相似文献   

3.
The bronchial ramification in one specimen of gorilla lung was examined from the viewpoint of comparative anatomy, on the basis of the fundamental structure of bronchial ramification in the mammalian lung (Nakakuki, 1975, 1980). The right lung of the gorilla consists of the upper, middle, lower, and accessory lobes. The right lung has the dorsal, lateral, and ventral bronchiole systems, but the medial bronchiole system is lacking. The upper lobe is formed by the first branch of the dorsal bronchiole system. The middle lobe is formed by the first branch of the lateral bronchiole system. The accessory lobe is formed by the first branch of the ventral bronchiole system. The remaining bronchioles constitute the lower lobe. The left lung consists of the middle and lower lobes; the upper and accessory lobes are lacking. The left lung has the dorsal and lateral bronchiole systems, but the ventral and medial bronchiole systems are lacking. The middle lobe is formed by the first branch of the lateral bronchiole system. The remaining bronchioles constitute the lower lobe. The bronchial ramifications of the gorilla lung are rather similar to those of the human lung.  相似文献   

4.
The bronchial ramification and lobular division in lungs of two chimpanzees (Pan troglodytes) were examined from the viewpoint of comparative anatomy, on the basis of the fundamental structure of bronchial ramification of the mammalian lung (Nakakuki, 1975, 1980). The right lung of the chimpanzee consists of the upper, middle, and lower lobes, whereas the left lung consists of the middle and lower lobes. The right and left lungs have the dorsal bronchiole system, lateral bronchiole system, and medial bronchiole system. The ventral bronchiole system is lacking on both sides. The right upper lobe is formed by the first branch of the dorsal bronchiole system. The right middle lobe is formed by the first branch of the lateral bronchiole system, and the right accessory lobe bronchiole is lacking. The remaining bronchioles constitute the right lower lobe. In the left lung, the upper and accessory lobes are lacking. The well developed middle lobe is formed by the first branch of the lateral bronchiole system. The left lower lobe is formed by the remaining bronchioles. Furthermore, these bronchioles are compared with those of the human lung byBoyden (1955).  相似文献   

5.
The bronchial tree and lobular division of the lungs of four white handed gibbons (Hylobates agilis) were examined from the viewpoint of comparative anatomy, based upon the fundamental structure of the bronchial ramifications of the mammalian lung (Nakakuki, 1975, 1980). The right lung of the white handed gibbon consists of the upper, middle, lower, and accessory lobes, whereas the left lung consists of the middle and lower lobes. Each lobe is separated by the interlobular fissure, on both sides. The right and left lungs have the dorsal bronchiole system, lateral bronchiole system, and ventral bronchiole system. The medial bronchiole system is lacking on both sides. In the right lung, the upper lobe is formed by the first branch of the dorsal bronchiole system. The middle lobe is formed by the first brach of the lateral bronchiole system, and the accessory lobe by the first branch of the ventral bronchiole system. The remaining bronchioles constitute the right lower lobe. In the left lung, the upper lobe bronchiole, which is the first branch of the dorsal bronchiole system, is lacking. Therefore, the middle lobe bronchiole, i.e. the first branch of the lateral bronchiole system, is well developed. The accessory lobe bronchiole, the first branch of the ventral bronchiole system, is also lacking. The remaining bronchioles constitute the left lower lobe. These features were compared with those of other apes and man.  相似文献   

6.
The lungs of three silvered lutongs (Presbytis cristata) were examined. The right and left lungs have the dorsal, lateral, ventral, and medial bronchiole systems, which arise from the corresponding sides of both bronchi, respectively. Bronchioles in the dorsal and lateral bronchiole systems are well developed, whereas those in the ventral and medial bronchiole systems are poorly developed and lack some portions. According to the fundamental structure of bronchial ramifications of the mammalian lung (Nakakuki, 1975, 1980), the right lung consists of the upper, middle, lower, and accessory lobes, whereas the left lung consists of a bilobed middle lobe and a lower lobe, in which the right upper lobe is extremely well developed. The right pulmonary artery runs across the ventral side of the right upper lobe bronchiole, and then across the dorsal side of the right middle lobe bronchiole. Initially it runs along the lateral side of the right bronchus and then gradually comes to run along the dorsal side. During its course, it gives off branches which run mainly along the dorsal or lateral side of the bronchiole. The left pulmonary artery runs across the dorsal side of the left middle lobe bronchiole, and then follows the same course as that in the right lower lobe. The pulmonary veins run medially or ventrally to the bronchioles, and finally enter the left atrium as four or five large veins.  相似文献   

7.
This case study examines the activity budgets of captive Diana monkeys (Cercopithecus diana diana) and discusses results in the context of what is known regarding captive and wild-type behaviour in this species and other guenons. The activities of a family group of Diana monkeys (two parents and four offspring) housed at Edinburgh Zoo, UK, were quantified using a 5-min interval scan sampling technique. The 5100 observation points collected showed that the subjects spent the largest proportion of their time observing (approx. 46%), followed by feeding (approx. 15%), playing (approx. 11%), mutual grooming (approx. 8%) and resting (approx. 7%). The daily activity budgets for each of the subjects were tallied and, at the end of the 10-day observation period, used to produce a data matrix consisting of nine behaviour variables per subject. Clear among-individual differences in activity were identified with canonical discriminant function analysis. This multivariate approach illustrated how the combined behaviours of the parent male were distinct from those of the rest of the family group. Within the remainder of the group, the three youngest offspring displayed similar activity budgets, whereas the overall behaviour of the eldest offspring (a female) was between that of its siblings and her mother.  相似文献   

8.
A population genetic study by blood protein electrophoresis revealed that populations of wild grivet monkeys in central Ethiopia show a comparatively low level of variability and less differentiation among local populations over broad geographical areas. This is evaluated by comparison with other wild primate studies using the same electrophoretic technique. A total of 196 blood samples, collected from 10 local populations comprising 11 troops distributed along approximately 600 km of the Awash River, were examined for 33 genetic loci. The low level of variability was indicated by the proportion of polymorphic loci (Ppoly), which was on average 11% with an average heterozygosity (H) of 3%. A tendency for lower genetic differentiation among local populations was shown by theG ST value of 0.09, an averageF ST of 0.08, andNei's genetic distance; ranging from 0.002 to 0.023. Considering paleoclimatological studies of the area and ecological traits of this species, these findings can be explained as a consequence of a comparatively recent and repeated series of rapid habitat expansions following severe climatic conditions.  相似文献   

9.
The menstrual cycles of 17 multiparous vervet monkeys were studied. Based on estradiol, progesterone, and LH profiles, ovulation is predicted to occur on day 13 of the 32.4-day menstrual cycle. Estradiol peaked on the day preceding the LH peak in 75% of cycles. Average luteal phase length (progesterone greater than 4 nmol/l) was 18 days, with progesterone rising above 4 nmol/l on the day of the LH peak. Vaginal cytology and perianal skin coloration exhibited too much within- and among-animal variability to be reliable indicators of menstrual cycle stages. Uterine biopsies of the proliferative phase were characterized by mild pseudostratification of the columnar epithelium and absence of glandular secretion; in contrast, those of the luteal phase had marked pseudostratification of the tall columnar epithelium with glandular secretions in the lumen. A few follicular-phase samples contained structures such as tortuous uterine glands with secretions. Such structures are more characteristic of the luteal phase. It is suggested that their presence can be explained by incomplete sloughing of the endometrium at menstruation, as this is known to be light or convert in this species.  相似文献   

10.
In the lung of the crab-eating monkey (Macaca fascicularis), the right pulmonary artery runs across the ventral side of the right upper lobe bronchiole and the dorsal side of the right middle lobe bronchiole. Thereafter, it courses along the dorso-lateral side of the right bronchus, between the dorsal and lateral bronchiole systems. During this course, the right pulmonary artery gives off arterial branches running mainly along the dorsal or lateral side of each bronchiole. The left pulmonary artery runs across the dorsal side of the left middle lobe bronchiole, and is then distributed as in the right lower lobe. The pulmonary veins run mainly along the ventral or medial side of the bronchiole in the upper and middle lobes whereas, in the lower lobe, they run ventrally, and between the bronchioles. Finally they enter the left atrium as four large veins.  相似文献   

11.
S. Ferri  N. Ferreira 《Protoplasma》1985,128(2-3):224-226
Summary Close contacts between endothelial and smooth muscle cells in teleost (Prochilodus scrofa) blood vessels are described for the first time in the present study. More frequently are seen finger-like, club-shaped or foot-like endothelial processes that come into close contact with the plasma membrane of a smooth muscle cell. Rarely, some myoendothelial contacts occur between the finger-like protrusions that arise from both the endothelial and from the smooth muscle cells. The functional significance of the myoendothelial connection is discussed.  相似文献   

12.
To test whether the male could contribute to the birth peak seen in both wild and captive vervets, testicular volume and peripheral testosterone concentration were measured monthly in nine adults throughout a 14-month period. Volume was an average of 15% greater during the months of June to September, the period of natural breeding activity in the wild, than at other times of the year. Testosterone concentration rose throughout the time period but did not correlate with testicular volume. Quarterly biopsies of the right testis in animals either used for or withheld from breeding revealed the presence of spermatozoa and the existence of spermatogenesis throughout the year. There was no correlation of testicular volume with breeding status or biopsy. If these results from individually caged animals are representative of group-caged and wild animals, then such small seasonal changes are unlikely to affect year-round breeding. Therefore, a physiological contribution by the male to natural birth peaks seen in the wild and captivity is not readily apparent.  相似文献   

13.
Summary Immunoreactivity of regulatory peptides has been demonstrated in the fetal lung of Macaca mulatta by the peroxidase anti-peroxidase method. Serotonin-immunoreactive neuroepithelial bodies are distributed in the airways from the bronchi to the alveolar ducts. Many neuroepithelial bodies also show bombesin-like immunoreactivity; a very few are immunoreactive to somatostatin antiserum. Four populations of neuroepithelial bodies were identified which contain immunoreactivity for 1) serotonin alone, 2) serotonin and bombesin, 3) serotonin and somatostatin, and 4) serotonin, bombesin, and somatostatin. Since bombesin and somatostatin have been demonstrated to have opposite effects on the release of other peptide hormones, it seems likely that the presence of these same peptides in neuroepithelial bodies may have a similar regulatory role in the lung.  相似文献   

14.
Bandeiraea simplicifolia lectin (BS-I) stains vascular endothelium in various species. In humans, less than 10% of the specimens studied exhibit a reaction with BS-I. In the present histochemical study, the reactivity of BS-I with placental blood vessels and its correlation with the blood group from mother and newborn child was investigated. Acetone-fixed cryosections of representative tissue segments of human full-term placenta and umbilical cord were stained with BS-I. The staining pattern of tissues from patients with different blood groups was identical, although the reaction of BS-I in the placenta was heterogeneous. BS-I did not react with the umbilical cord. Vascular smooth muscle cells at the insertion site of the umbilical cord into the chorionic plate, and endothelium deeper in the chorionic plate, became progressively stained. The endothelial cells and tunica muscularis of smaller arteries and veins in stem villi lost their reactivity in parallel with decreasing vessel size. Arterioles and venules reacted heterogeneously. Capillaries, trophoblastic basement membranes, especially epithelial plates, and sometimes the syncytiotrophoblast were labelled in several terminal villi. The data indicate that 1) the placenta binds BS-I to fetal endothelium independent of the blood group, 2) cell-surface antigens on placental endothelial cells are expressed heterogeneously and 3) cell-surface glycans are constituted in an organ-specific manner on human endothelial cells.  相似文献   

15.
The lungs of four adult specimens of the vervet monkey (Cercopithecus aethiops) have been examined by transmission and scanning electron microscopy. A morphometric evaluation of the structural components directly involved in gas exchange has been carried out and the data have been modelled to estimate the anatomical diffusing capacity of the lung. The upper air-conducting airways of the lung were lined by an epithelium characterized by ciliated cells among which were dispersed goblet cells. The alveolar surface was lined by squamous type I pneumocytes and cuboidal type II granular pneumocytes. The blood-gas (tissue) barrier consisted of an epithelial cell, a common basal lamina, and an endothelial cell in the thin parts of the interalveolar septum. In the thicker parts of the septum, an interstitial space interposed between the basal laminae of the epithelial and endothelial cells contained supportive elements such as collagen, elastic tissue, and fibrocytes. The alveoli, the blood capillaries, and septal tissue composed 73%, 16%, and 11%, respectively, of the parenchyma. The harmonic and arithmetic mean thicknesses of the blood-gas (tissue) barrier were 0.311 micron and 1.048 microns; the surface area of the blood-gas (tissue) barrier per unit body weight was 50 cm2g-1, and the surface density was 117 mm2.mm3-1. The weight-specific total morphometric diffusing capacity was 0.11 mlO2 (sec.mbar.kg)-1. In comparison, the pulmonary morphometric characteristics of vervet monkey lung were superior to those of the other primates (Macaca irus, M. mulatta, and Homo sapiens) for which equivalent data are available. The gas-exchange potential of the lungs of the nonhuman primates as revealed by morphometric studies surpasses that of man, a feature that can be attributed to the relatively less energetic human lifestyle.  相似文献   

16.
Summary Eyes of vervets were fixed by several methods, and the iris capillaries were studied by electron microscopy. The capillaries have a continuous endothelium without fenestrae. Tight junctions are always present in intercellular clefts of the endothelium, and marginal folds are frequent. A rather thick basement membrane is present, similar to what is found in the human iris. Pericytes are frequent, and specialized areas of membrane contact between endothelium and pericytes are described. Peculiar marginal vacuoles are found in the endothelium after perfusion with hypertonic fixative.  相似文献   

17.
18.
Twenty early pregnancies were diagnosed and monitored in vervet monkeys by ultrasonography. Non-gravid uteri became increasingly echogenic from cycle days 7 to 26. The first definite sign of pregnancy was a gestational cavity of 2 mm (+/- 0.80) at 33.0 (+/- 1.48) days menstrual age, which was also used to date all subsequent features. Earlier signs, such as an endometrial line swelling or endometrial 'pregnancy' ring, as reported for other non-human primate species, could not be reliably and consistently used to diagnose pregnancy in vervet monkeys. A rapid increase of the gestational cavity size from days 37 to 49 corresponded closely to a rapid increase in plasma progesterone concentration from day 39 to 49. The first yolk sac was recognizable at 38.0 days (+/- 3.10) and measured 3.3 mm (+/- 0.40) in diameter. A heart beat could be detected at 45.5 (+/- 1.73) days and the size of the first measurable embryo at 35 days was 2 mm. The dating of most features was within the range reported for other non-human primate species.  相似文献   

19.
Summary In 76 specimens (amphibians, reptilians, mammals) belonging to 25 different vertebrate species, the region of the subcommissural organ (SCO) was investigated with the use of a primary antiserum raised against an extract of bovine Reissner's fiber+the immunoperoxidase procedure according to Sternberger et al. (1970).In the SCO of a toad (Bufo arenarum) and several species of reptiles (lacertilians, ophidians, crocodilians), the ependymal cells were the only type of secretory cell displaying vascular contacts, whereas in mammals ependymal and hypendymal cells established intimate spatial contacts with blood vessels. In Bufo arenarum, but especially in the reptilian species examined, the ependymo-vascular relationship was exerted by a population of ependymal cells having a rather constant location within the SCO and projecting to capillaries that showed a remarkably constant pattern of anatomical distribution. In the SCO of mammals the modality and degree of the structural relationships between secretory cells and blood vessels varied greatly from species to species. In the SCO of the armadillo and dog the secretory tissue was organized as a thick, highly vascularized layer with most of the cells oriented toward the capillaries. A rather opposite situation was found in the SCO of New-and Old-World monkeys, where vascular contacts were restricted to a few ependymal cells.Supported by Grant I/38259 from the Stiftung Volkswagenwerk, Federal Republic of Germany, and Grant RS-82-18 from the Dirección de Investigaciones, Universidal Austral de Chile  相似文献   

20.
Summary The luminal surface features and Junctional complexes from developing blood vessels in the rat central nervous system have been studied by high-voltage electron microscopy and scanning electron microscopy. Developing blood vessels exhibit three types of luminal projections; marginal folds or ridges at Junctional complexes, ridges not at Junctional complexes and microvilli. Both types of ridges are associated with troughs or depressions in the luminal surface of the endothelial cell. Those ridges not associated with Junctional complexes take part in the production of enclosed tunnels in the endothelial cell cytoplasm. Fusion of the external leaflets of Junctional complexes between adjacent endothelial cells occurred, initially, near the luminal surface of the blood vessel with other small fusion sites forming in the direction of the basal lamina secondarily. Further fusion activity to produce the zonula occludens type junction appeared to spread outwards from the smaller fusion sites.Supported in part by a NIH HVEM Travel Grant and the Medical College of Georgia  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号