首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dispersal is a key component of a species''s ecology and will be under different selection pressures in different parts of the range. For example, a long-distance dispersal strategy suitable for continuous habitat at the range core might not be favoured at the margin, where the habitat is sparse. Using a spatially explicit, individual-based, evolutionary simulation model, the dispersal strategies of an organism that has only one dispersal event in its lifetime, such as a plant or sessile animal, are considered. Within the model, removing habitat, increasing habitat turnover, increasing the cost of dispersal, reducing habitat quality or altering vital rates imposes range limits. In most cases, there is a clear change in the dispersal strategies across the range, although increasing death rate towards the margin has little impact on evolved dispersal strategy across the range. Habitat turnover, reduced birth rate and reduced habitat quality all increase evolved dispersal distances at the margin, while increased cost of dispersal and reduced habitat density lead to lower evolved dispersal distances at the margins. As climate change shifts suitable habitat poleward, species ranges will also start to shift, and it will be the dispersal capabilities of marginal populations, rather than core populations, that will influence the rate of range shifting.  相似文献   

2.
Phenotypic plasticity enables rapid responses to environmental change, and could facilitate range shifts in response to climate change. What drives the evolution of plasticity at range edges, and the capacity of range-edge individuals to be plastic, remain unclear. Here, we propose that accurately predicting when plasticity itself evolves or mediates adaptive evolution at expanding range edges requires integrating knowledge on the demography and evolution of edge populations. Our synthesis shows that: (i) the demography of edge populations can amplify or attenuate responses to selection for plasticity through diverse pathways, and (ii) demographic effects on plasticity are modified by the stability of range edges. Our spatially explicit synthesis for plasticity has the potential to improve predictions for range shifts with climate change.  相似文献   

3.
Aim Do species range shapes follow general patterns? If so, what mechanisms underlie those patterns? We show for 11,582 species from a variety of taxa across the world that most species have similar latitudinal and longitudinal ranges. We then seek to disentangle the roles of climate, extrinsic dispersal limitation (e.g. barriers) and intrinsic dispersal limitation (reflecting a species’ ability to disperse) as constraints of species range shape. We also assess the relationship between range size and shape. Location Global. Methods Range shape patterns were measured as the slope of the regression of latitudinal species ranges against longitudinal ranges for each taxon and continent, and as the coefficient of determination measuring the degree of scattering of species ranges from the 1:1 line (i.e. latitudinal range = longitudinal range). Two major competing hypotheses explaining species distributions (i.e. dispersal or climatic determinism) were explored. To this end, we compared the observed slopes and coefficients of determination with those predicted by a climatic null model that estimates the potential range shapes in the absence of dispersal limitation. The predictions compared were that species distribution shapes are determined purely by (1) intrinsic dispersal limitation, (2) extrinsic dispersal limitations such as topographic barriers, and (3) climate. Results  Using this methodology, we show for a wide variety of taxa across the globe that species generally have very similar latitudinal and longitudinal ranges. However, neither neutral models assuming random but spatially constrained dispersal, nor models assuming climatic control of species distributions describe range shapes adequately. The empirical relationship between the latitudinal and longitudinal ranges of species falls between the predictions of these competing models. Main conclusions We propose that this pattern arises from the combined effect of macroclimate and intrinsic dispersal limitation, the latter being the major determinant among restricted‐range species. Hence, accurately projecting the impact of climate change onto species ranges will require a solid understanding of how climate and dispersal jointly control species ranges.  相似文献   

4.
Assessing risks of local extinction and shifts in species ranges are fundamental tasks in ecology and conservation. Most studies have focused either on the border of species’ range or on complex spatiotemporal dynamics of populations within the spatial distribution of species. The internal properties of species ranges, however, have received less attention due to a general lack of simple tools. We propose a novel approach within a metapopulation framework to study species ranges based on simple mathematical rules. We formulate and test a model of population fluctuations through space to identify key factors that regulate population density. We propose that spatial variability in species abundance reflects the interaction between temporal variability in population dynamics and the spatial variability of population parameters. This approach, that we call range structure analysis, integrates temporal and spatial properties to diagnose how each parameter contributes to species occupancy throughout its geographic range.  相似文献   

5.
Theory predicts that genetic variation should be reduced at range margins, but empirical support is equivocal. Here, we used genotyping‐by‐sequencing technology to investigate genetic variation in central and marginal populations of two species in the marine gastropod genus Crepidula. These two species have different development and dispersal types and might therefore show different spatial patterns of genetic variation. Both allelic richness and the proportion of private alleles were highest in the most central populations of both species, and lower at the margin. The species with low dispersal, Crepidula convexa, showed high degrees of structure throughout the range that conform to the pattern found in previous studies using other molecular markers. The northernmost populations of the high‐dispersing species, Crepidula fornicata, are distinct from more central populations, although this species has been previously observed to have little genetic structure over much of its range. Although genetic diversity was significantly lower at the range margin, the absolute reduction in diversity observed with these genomewide markers was slight, and it is not yet known whether there are functional consequences for the marginal populations.  相似文献   

6.
Widespread expansion of shrubs is occurring across the Arctic. Shrub expansion will substantially alter arctic wildlife habitats. Identifying which wildlife species are most affected by shrubification is central to predicting future arctic community composition. Through meta‐analysis, we synthesized the published evidence for effects of canopy‐forming shrubs on birds and mammals in the Arctic and Subarctic. We examined variation in species behaviour, distribution and population dynamics in birds and mammals in response to shrub cover (including shrub cover indicators such as shrub occurrence, extent, density and height). We also assessed the degree of heterogeneity in wildlife responses to shrub cover and synthesized the remaining literature that did not fit the criteria for our quantitative meta‐analyses. Species from higher green vegetation biomass habitats (high Normalized Difference Vegetation Index, NDVI, across their distribution) were more likely to respond positively to shrub cover, demonstrating the potential for species to expand from boreal to arctic habitats under shrubification. Wildlife populations located in the lowest vegetation biomass (low NDVI) areas of their species’ range had the greatest proportion of positive responses to shrub cover, highlighting how increases in performance at leading edges of invaders distributions may be particularly rapid. This demonstrates the need to study species at these leading edges to accurately predict expansion potential. Arctic specialists were poorly represented across studies (limited to 5 bird and 0 mammal species), this knowledge gap potentially explains the few reported negative effects of shrub cover (3 of 29 species). Species responses to shrub cover showed substantial heterogeneity and varied among sites and years in all studies with sufficient replication to detect such variation. Our study highlights the importance of responses at species range edges in determining outcomes of shrubification for arctic birds and mammals and the need for greater examination of potential wildlife losers under shrubification.  相似文献   

7.
The establishment and subsequent spread of invasive species is widely recognized as one of the most threatening processes contributing to global biodiversity loss. This is especially true for marine and estuarine ecosystems, which have experienced significant increases in the number of invasive species with the increase in global maritime trade. Understanding the rate and mechanisms of range expansion is therefore of significant interest to ecologists and conservation managers alike. Using a combination of population genetic surveys, environmental DNA (eDNA) plankton sampling and hydrodynamic modelling, we examined the patterns of introduction of the predatory Northern Pacific seastar (Asterias amurensis) and pathways of secondary spread within southeast Australia. Genetic surveys across the invasive range reveal some genetic divergence between the two main invasive regions and no evidence of ongoing gene flow, a pattern that is consistent with the establishment of the second invasive region via a human‐mediated translocation event. In contrast, hydrodynamic modelling combined with eDNA plankton sampling demonstrated that the establishment of range expansion populations within a region is consistent with natural larval dispersal and recruitment. Our results suggest that both anthropogenic and natural dispersal vectors have played an important role in the range expansion of this species in Australia. The multiple modes of spread combined with high levels of fecundity and a long larval duration in A. amurensis suggests it is likely to continue its range expansion and significantly impact Australian marine ecosystems.  相似文献   

8.
The process of range expansion often selects for traits that maximize invasion success at range edges. For example, during range expansion, individuals with greater dispersal and colonization ability will be selected for towards range edges. For wind dispersed plants, however, there exists a fundamental trade-off between dispersal and colonization ability (germination success and growth) that is mediated by seed size; smaller seeds often have greater dispersal ability but poorer colonization ability. We investigated the nature of the dispersal/colonization trade-off by comparing dispersal ability (wing loading ratio: seed mass/wing area), germination success and growth related traits across multiple populations of a coastal exotic invasive plant species (Gladiolus gueinzii Kunze) along its entire introduced distribution in eastern Australia. We found that G. gueinzii had significantly greater dispersal ability towards its range edges which was mediated by a decrease in seed mass. However, this was not associated with a decrease in probability of germination or growth after 3 months. In fact, seeds from range edge populations had significantly faster germination times. Our results suggest that a shift towards greater dispersal ability does not have an associated negative effect on the colonization ability of G. gueinzii and may be a key factor in promoting further range expansion of this exotic invasive species.  相似文献   

9.
Local adaptation at range edges influences species’ distributions and how they respond to environmental change. However, the factors that affect adaptation, including gene flow and local selection pressures, are likely to vary across different types of range edge. We performed a reciprocal transplant experiment to investigate local adaptation in populations of Plantago lanceolata and P. major from central locations in their European range and from their latitudinal and elevation range edges (in northern Scandinavia and Swiss Alps, respectively). We also characterized patterns of genetic diversity and differentiation in populations using molecular markers. Range‐centre plants of P. major were adapted to conditions at the range centre, but performed similarly to range‐edge plants when grown at the range edges. There was no evidence for local adaptation when comparing central and edge populations of P. lanceolata. However, plants of both species from high elevation were locally adapted when compared with plants from high latitude, although the reverse was not true. This asymmetry was associated with greater genetic diversity and less genetic differentiation over the elevation gradient than over the latitudinal gradient. Our results suggest that adaptation in some range‐edge populations could increase their performance following climate change. However, responses are likely to differ along elevation and latitudinal gradients, with adaptation more likely at high‐elevation. Furthermore, based upon these results, we suggest that gene flow is unlikely to constrain adaptation in range‐edge populations of these species.  相似文献   

10.
王丹  王孝安  郭华  王世雄  郑维娜  刘史力 《生态学报》2013,33(14):4409-4415
植物群落构建机制是生态学研究的热点之一.长久以来这个难题并没有得到很好的解释,且争议较多.生态位理论或中性理论,或是二者的共同作用,这样的结论在不同的研究中都有印证.以黄土高原子午岭地区的草地群落为例,对3种不同的草地群落(5a的弃耕地、阴坡和阳坡的草地)进行了野外群落学调查,采用Mantel test和主轴邻距法(PCNM)分析方法,研究了空间地理距离和环境资源差异对于草本植物群落分布的影响,结果表明:地理距离和环境差异共同解释了群落组成相似性的79.3%,剔除环境因子的影响,地理距离解释了群落组成相似性的33.8%;而剔除地理距离的影响,环境因子解释了群落组成相似性的14.2%.无论是生态位理论还是中性理论,其在黄土高原草本群落构建过程中都有作用,但中性理论扮演了更为重要的角色.  相似文献   

11.
12.
13.
Data from a national butterfly monitoring scheme were analysed to test the theory that animal populations are more variable towards the edges of species ranges Nine of the 24 species tested fluctuated with significantly greater amplitude nearer their northern limits, providing the first clear evidence of this phenomenon among ectotherms With some species, the pattern of fluctuations also varied across ranges with populations increasing and decreasing more gradually, and perhaps cyclically, over several generations in the north  相似文献   

14.
While it is generally recognized that noncontiguous (long‐distance) dispersal of small numbers of individuals is important for range expansion over large geographic areas, it is often assumed that colonization on more local scales proceeds by population expansion and diffusion dispersal (larger numbers of individuals colonizing adjacent sites). There are few empirical studies of dispersal modes at the front of expanding ranges, and very little information is available on dispersal dynamics at smaller geographic scales where we expect contiguous (diffusion) dispersal to be prevalent. We used highly polymorphic genetic markers to characterize dispersal modes at a local geographic scale for populations at the edge of the range of a newly invasive grass species (Brachypodium sylvaticum) that is undergoing rapid range expansion in the Pacific Northwest of North America. Comparisons of Bayesian clustering of populations, patterns of genetic diversity, and gametic disequilibrium indicate that new populations are colonized ahead of the invasion front by noncontiguous dispersal from source populations, with admixture occurring as populations age. This pattern of noncontiguous colonization was maintained even at a local scale. Absence of evidence for dispersal among adjacent pioneer sites at the edge of the expanding range of this species suggests that pioneer populations undergo an establishment phase during which they do not contribute emigrants for colonization of neighbouring sites. Our data indicate that dispersal modes change as the invasion matures: initial colonization processes appear to be dominated by noncontiguous dispersal from only a few sources, while contiguous dispersal may play a greater role once populations become established.  相似文献   

15.
The evolution of dispersal at range margins received much attention recently, especially in the context of dynamic range shifts, such as those following climate change. However, much less attention has been devoted to study variation in and selection on dispersal at nonexpanding range margins, where populations are often small and isolated, and empirical test is dearly missing. To fill this gap, we tested whether dispersal of an ant‐dispersed perennial plant (Sternbergia clusiana) is quantitatively and/or qualitatively reduced toward a nonexpanding range margin. We evaluated plant investment in dispersal structures (elaiosome), seed removal rates, and the relative abundance, activity, and behavior of low‐ and high‐quality seed‐dispersing ants in six sites ranging from mesic Mediterranean site to arid site (>600 to <100 mm of annual rainfall, respectively), which marks the southern range margin of the species. In a set of cafeteria and baiting experiments, we found that overall seed removal rates, the contribution of high‐quality dispersers, maximum dispersal distance and dispersal‐conducive ant behavior decreased toward range margins. These findings agree with a lower investment in reward by range margin plant populations, as reflected by lower elaiosome/seed ratio, but not by variation in the reward chemistry. More than variation in traits controlled by the plants, the variation in ant–seed interactions could be attributed to reduced presence and activity of the more efficient seed‐dispersing ants in the marginal populations. Specifically, we found a mismatch between local distribution of potentially effective seed dispersers and that of the plant, even though those dispersers were observed in the study site. Interestingly, although the observed variation in the outcome of ant–seed interactions supported the prediction of reduced dispersal at nonexpanding range margins with small and isolated populations, the underlying mechanism seems to be incidental difference in the seed‐dispersing ant community rather than a plant‐mediated response to selection.  相似文献   

16.
  1. Understanding how abiotic conditions influence dispersal patterns of organisms is important for understanding the degree to which species can track and persist in the face of changing climate.
  2. The goal of this study was to understand how weather conditions influence the dispersal pattern of multiple nonmigratory grasshopper species from lower elevation grassland habitats in which they complete their life‐cycles to higher elevations that extend beyond their range limits.
  3. Using over a decade of weekly spring to late‐summer field survey data along an elevational gradient, we explored how abundance and richness of dispersing grasshoppers were influenced by temperature, precipitation, and wind speed and direction. We also examined how changes in population sizes at lower elevations might influence these patterns.
  4. We observed that the abundance of dispersing grasshoppers along the gradient declined 4‐fold from the foothills to the subalpine and increased with warmer conditions and when wind flow patterns were mild or in the downslope direction. Thirty‐eight unique grasshopper species from lowland sites were detected as dispersers across the survey years, and warmer years and weak upslope wind conditions also increased the richness of these grasshoppers. The pattern of grasshoppers along the gradient was not sex biased. The positive effect of temperature on dispersal rates was likely explained by an increase in dispersal propensity rather than by an increase in the density of grasshoppers at low elevation sites.
  5. The results of this study support the hypothesis that the dispersal patterns of organisms are influenced by changing climatic conditions themselves and as such, that this context‐dependent dispersal response should be considered when modeling and forecasting the ability of species to respond to climate change.
  相似文献   

17.
Abstract 1. Species would be expected to shift northwards in response to current climate warming, but many are failing to do so because of fragmentation of breeding habitats. Dispersal is important for colonisation and an individual‐based spatially explicit model was developed to investigate impacts of habitat availability on the evolution of dispersal in expanding populations. Model output was compared with field data from the speckled wood butterfly Pararge aegeria, which currently is expanding its range in Britain. 2. During range expansion, models simulated positive linear relationships between dispersal and distance from the seed location. This pattern was observed regardless of quantity (100% to 10% habitat availability) or distribution (random vs. gradient distribution) of habitat, although higher dispersal evolved at expanding range margins in landscapes with greater quantity of habitat and in gradient landscapes. Increased dispersal was no longer evident in any landscape once populations had reached equilibrium; dispersal values returned to those of seed populations. However, in landscapes with the least quantity of habitat, reduced dispersal (below that of seed populations) was observed at equilibrium. 3. Evolutionary changes in adult flight morphology were examined in six populations of P. aegeria along a transect from the distribution core to an expanding range margin in England (spanning a latitudinal distance of >200 km). Empirical data were in agreement with model output and showed increased dispersal ability (larger and broader thoraxes, smaller abdomens, higher wing aspect ratios) with increasing distance from the distribution core. Increased dispersal ability was evident in populations from areas colonised >30 years previously, although dispersal changes were generally evident only in females. 4. Evolutionary increases in dispersal ability in expanding populations may help species track future climate changes and counteract impacts of habitat fragmentation by promoting colonisation. However, at the highest levels of habitat loss, increased dispersal was less evident during expansion and reduced dispersal was observed at equilibrium indicating that, for many species, continued habitat fragmentation is likely to outweigh any benefits from dispersal.  相似文献   

18.
Aim I investigate the counter‐intuitive possibility that range shift promotes the formation of stable range edges. This might be expected because: (1) range‐shifting populations typically evolve increased dispersal on the expanding range edge; (2) increased dispersal steepens the relative slope of environmental gradients (gradients appear steeper to a more dispersive population); and (3) environmental gradients that are steep relative to dispersal encourage the formation of stable range edges (when gradients appear steep, adaptation on the range edge is swamped by maladapted genes). Methods I test the idea that populations take longer to evolve across an environmental gradient when those populations have already undergone a period of spread. I do this using an individual‐based coupled map lattice simulation, in which individuals carry heritable traits for dispersal probability and environment‐specific fitness. Results Numerous simulations across parameter space confirm that a period of range shift almost always results in a longer time to evolve through an environmental gradient. This occurs because of both the mechanism described above and the erosion of adaptive variation resulting from the serial foundering that occurs during range advance. Main conclusions This result suggests that species may often shift their range due to intrinsic changes in the population rather than extrinsic changes in the environment. The result also suggests a new mechanism regulating the speed of invasion, and sounds a cautionary note for climate change impacts: the longer a species tracks climate change, the less able it may be to track that change into the future.  相似文献   

19.
Prediction of species geographical ranges   总被引:11,自引:0,他引:11  
  相似文献   

20.
Species around the world are shifting their ranges in response to climate change. To make robust predictions about climate‐related colonizations and extinctions, it is vital to understand the dynamics of range edges. This study is among the first to examine annual dynamics of cold and warm range edges, as most global change studies average observational data over space or over time. We analyzed annual range edge dynamics of marine fishes—both at the individual species level and pooled into cold‐ and warm‐edge assemblages—in a multi‐decade time‐series of trawl surveys conducted on the Northeast US Shelf during a period of rapid warming. We tested whether cold edges show stronger evidence of climate tracking than warm edges (due to non‐climate processes or time lags at the warm edge; the biogeography hypothesis or extinction debt hypothesis), or whether they tracked temperature change equally (due to the influence of habitat suitability; the ecophysiology hypothesis). In addition to exploring correlations with regional temperature change, we calculated species‐ and assemblage‐specific sea bottom and sea surface temperature isotherms and used them to predict range edge position. Cold edges shifted further and tracked sea surface and bottom temperature isotherms to a greater degree than warm edges. Mixed‐effects models revealed that for a one‐degree latitude shift in isotherm position, cold edges shifted 0.47 degrees of latitude, and warm edges shifted only 0.28 degrees. Our results suggest that cold range edges are tracking climate change better than warm range edges, invalidating the ecophysiology hypothesis. We also found that even among highly mobile marine ectotherms in a global warming hotspot, few species are fully keeping pace with climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号