首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Artificial bovine rhodopsin pigments derived from synthetic retinal analogues carrying electron-withdrawing substituents (fluorine and chlorine) were prepared. The effects of the electron withdrawing substituents on the pKa values of the pigments and on the corresponding Schiff bases in solution were analyzed. The data suggest that the apparent pKa of the protonated Schiff base is above 16. However, the alternative possibility that the retinal Schiff base linkage in bovine rhodopsin is not accessible for titration from the aqueous bulk medium cannot be definitely ruled out.  相似文献   

2.
The 521-pigment extracted out of the retina of the Tokay gecko has the typical stereospecificity of the vertebrate visual pigments. This is true for the pigment in the chloride-depleted, "blue-shifted" state as well as for the normal pigment with added chloride. While in the chloride-deficient state, pigment regeneration occurred with both 11-cis- and 9-cis-retinals and the regenerated photopigments were also in the blue-shifted, chloride-depleted state. As with the native pigment, these regenerated pigments were bathochromically shifted to their normal positions by the addition of chloride. Chloride-deficient opsin by itself also responded to chloride for the pigment regenerated with 11-cis-retinal from such chloride-treated opsin was in the normal 521-position. Regeneration was always rapid, reaching completion in less than 5 min, and was significantly faster than for cow rhodopsin regenerating under the same conditions. This rapid rate was found with or without chloride, with both 11-cis- and 9-cis-retinals and in the presence of the sulfhydryl poison, p-hydroxymercuribenzoate (PMB). Like the native chloride-deficient pigment, the regenerated chloride-depleted photopigments responded to PMB by a blue shift beyond the position of the chloride-deficient state. The addition of chloride to these "poisoned" regenerated pigments caused a bathochromic shift of such magnitude as to indicate a repair of both the PMB and chloride-deficient blue shift. In this discussion the possible implications of these results to phylogenetic considerations are considered as well as to some molecular properties of the 521-pigment.  相似文献   

3.
K R Babu  A Dukkipati  R R Birge  B E Knox 《Biochemistry》2001,40(46):13760-13766
Short-wavelength visual pigments (SWS1) have lambda(max) values that range from the ultraviolet to the blue. Like all visual pigments, this class has an 11-cis-retinal chromophore attached through a Schiff base linkage to a lysine residue of opsin apoprotein. We have characterized a series of site-specific mutants at a conserved acidic residue in transmembrane helix 3 in the Xenopus short-wavelength sensitive cone opsin (VCOP, lambda(max) approximately 427 nm). We report the identification of D108 as the counterion to the protonated retinylidene Schiff base. This residue regulates the pK(a) of the Schiff base and, neutralizing this charge, converts the violet sensitive pigment into one that absorbs maximally in the ultraviolet region. Changes to this position cause the pigment to exhibit two chromophore absorbance bands, a major band with a lambda(max) of approximately 352-372 nm and a minor, broad shoulder centered around 480 nm. The behavior of these two absorbance bands suggests that these represent unprotonated and protonated Schiff base forms of the pigment. The D108A mutant does not activate bovine rod transducin in the dark but has a significantly prolonged lifetime of the active MetaII state. The data suggest that in short-wavelength sensitive cone visual pigments, the counterion is necessary for the characteristic rapid production and decay of the active MetaII state.  相似文献   

4.
Summary This report describes five selected experiments that describe the labile behavior of pigment-521 of the Tokay gecko and the relatively more stable properties of the second photopigment, pigment-467, of the same retina. Prepared in the chloride-deficient state, P521 is sensitive to mild temperature increases, is destroyed by NH2OH and NaBH4 in the dark, responds top-hydroxymercuribenzoate by a spectral shift to shorter wavelengths, exchanges some of its 11 -cis retinal for the 9 -cis isomer in the dark, and reacts to added chloride and nitrate by spectral shifts to longer and shorter wavelengths, respectively. Dissolved in Triton-X-100 it is irreversibly destroyed by only moderate increases in temperature. In all these responses, chloride ions act specifically to protect the pigment. Pigment-467, in contrast, is less sensitive to temperature, is not bleached by NH2OH and NaBH4 in the dark, does not exchange its prosthetic group and responds neither to chloride nor to nitrate by the typical P521 effects. With regard to molecular stability and access to the chromophoric structure there appears to be a dual system in the gecko retina with P521 showing similarities to the cone pigment iodopsin; P467 to rhodopsin. It is pointed out that this dual system may be associated with certain responses of the gecko retina that indicate physiological duality. This is the case even though there are no rods and cones, in the classical sense, in the gecko retina.Abbreviations PMB p-hydroxymercuribenzoate - DTT dithiothreitol, Cleland's reagent This work was supported by grant EY-02178 from the National Institutes of Health  相似文献   

5.
Visual pigments, oil droplets and photoreceptor types in the retinas of four species of true chameleons have been examined by microspectrophotometry. The species occupy different photic environments: two species of Chamaeleo are from Madagascar and two species of Furcifer are from Africa and the Arabian Peninsula. In addition to double cones, four spectrally distinct classes of single cone were identified. No rod photoreceptors were observed. The visual pigments appear to be mixtures of rhodopsins and porphyropsins. Double cones contained a pale oil droplet in the principle member and both outer segments contained a long-wave-sensitive visual pigment with a spectral maximum between about 555 nm and 610 nm, depending on the rhodopsin/porphyropsin mixture. Long-wave-sensitive single cones contained a visual pigment spectrally identical to the double cones, but combined with a yellow oil droplet. The other three classes of single cone contained visual pigments with maxima at about 480–505, 440–450 and 375–385 nm, combined with yellow, clear and transparent oil droplets respectively. The latter two classes were sparsely distributed. The transmission of the lens and cornea of C. dilepis was measured and found to be transparent throughout the visible and near ultraviolet, with a cut off at about 350 nm.  相似文献   

6.
Yokoyama S  Blow NS 《Gene》2001,276(1-2):117-125
We have isolated a full-length cDNA encoding a putative ultraviolet (UV)-sensitive visual pigment of the Tokay gecko (Gekko gekko). This clone has 57 and 59% sequence similarities to the gecko RH2 and MWS pigment genes, respectively, but it shows 87% similarity to the UV pigment gene of the American chameleon (Anolis carolinensis). The evolutionary rates of amino acid replacement are significantly higher in the three gecko pigments than in the corresponding chameleon pigments. The accelerated evolutionary rates reflect not only the transition from cones to rods in the retina but also the blue-shift in the absorption spectra of the gecko pigments.  相似文献   

7.
We have investigated the molecular properties of rod and cone visual pigments to elucidate the differences in the molecular mechanism(s) of the photoresponses between rod and cone photoreceptor cells. We have found that the cone pigments exhibit a faster pigment regeneration and faster decay of meta-II and meta-III intermediates than the rod pigment, rhodopsin. Mutagenesis experiments have revealed that the amino acid residues at positions 122 and 189 in the opsins are the determinants for these differences. In order to study the relationship between the molecular properties of visual pigments and the physiology of rod photoreceptors, we used mouse rhodopsin as a model pigment because, by gene-targeting, the spectral properties of the pigment can be directly correlated to the physiology of the cells. In the present paper, we summarize the spectroscopic properties of cone pigments and describe our studies with mouse rhodopsin utilizing a high performance charge coupled device (CCD) spectrophotometer.  相似文献   

8.
Chicken pineal pinopsin is the first example of extra-retinal opsins, but little is known about its molecular properties as compared with retinal rod and cone opsins. For characterization of extra-retinal photon signaling, we have developed an overexpression system providing a sufficient amount of purified pinopsin. The recombinant pinopsin, together with similarly prepared chicken rhodopsin and green-sensitive cone pigment, was subjected to photochemical and biochemical analyses by using low-temperature spectroscopy and the transducin activation assay. At liquid nitrogen temperature (-196 degrees C), we detected two kinds of photoproducts, bathopinopsin and isopinopsin, having their absorption maxima (lambda(max)) at 527 and approximately 440 nm, respectively, and we observed complete photoreversibility among pinopsin, bathopinopsin, and isopinopsin. A close parallel of the photoreversibility to the rhodopsin system strongly suggests that light absorbed by pinopsin triggers the initial event of cis-trans isomerization of the 11-cis-retinylidene chromophore. Upon warming, bathopinopsin decayed through a series of photobleaching intermediates: lumipinopsin (lambda(max) 461 nm), metapinopsin I (460 nm), metapinopsin II (385 nm), and metapinopsin III (460 nm). Biochemical and kinetic analyses showed that metapinopsin II is a physiologically important photoproduct activating transducin. Detailed kinetic analyses revealed that the formation of metapinopsin II is as fast as that of a chicken cone pigment, green, but that the decay process of metapinopsin II is as slow as that of the rod pigment, rhodopsin. These results indicate that pinopsin is a new type of pigment with a chimeric nature between rod and cone visual pigments in terms of the thermal behaviors of the meta II intermediate. Such a long-lived active state of pinopsin may play a role in the pineal-specific phototransduction process.  相似文献   

9.
Purification of cone visual pigments from chicken retina   总被引:5,自引:0,他引:5  
A novel method for purification of chicken cone visual pigments was established by use of a 3-[(3-cholamidopropyl)dimethylammonio]-1- propanesulfonate-phosphatidylcholine (CHAPS-PC) mixture. Outer segment membranes isolated from chicken retinas were extracted with 0.75% CHAPS supplemented with 1.0 mg/mL phosphatidylcholine (CHAPS-PC system). After the extract was diluted to 0.6% CHAPS, it was loaded on a concanavalin A-Sepharose column. Elution from the column with different concentrations of methyl alpha-mannoside yielded three fractions: the first was composed of chicken violet, blue, and red in roughly equal amounts, the second predominantly contained chicken red, and the third was rhodopsin with a small amount of chicken green, which was separated from rhodopsin by DEAE-Sepharose column chromatography. Since CHAPS has little absorbance at both ultraviolet and visible regions, we could demonstrate the absolute absorption spectra of chicken red (92%) and rhodopsin (greater than 96%) in these regions. The maximum of the difference spectrum between either chicken red or rhodopsin and its photoproduct (all-trans-retinal oxime plus opsin) was determined to be 571 or 503 nm, respectively. Although chicken green was contaminated with a small amount of rhodopsin having a similar spectral shape, the maximum of its difference spectrum was located at 508 nm by taking advantage of the difference in susceptibility against hydroxylamine between these pigments. Although chicken blue and chicken violet were minor pigments present in the first fraction from the concanavalin A column, their maxima in the difference spectra were determined to be at 455 and 425 nm, respectively, by a partial bleaching method.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
T Baasov  N Friedman  M Sheves 《Biochemistry》1987,26(11):3210-3217
Factors affecting the C = N stretching frequency of protonated retinal Schiff base (RSBH+) were studied with a series of synthetic chromophores and measured under different conditions. Interaction of RSBH+ with nonconjugated positive charges in the vicinity of the ring moiety or a planar polyene conformation (in contrast to the twisted retinal conformation in solution) shifted the absorption maxima but did not affect the C = N stretching frequency. The latter, however, was affected by environmental perturbations in the vicinity of the Schiff base linkage. Diminished ion pairing (i.e., of the positively charged nitrogen to its anion) achieved either by substituting a more bulky counteranion or by designing models with a homoconjugation effect lowered the C = N stretch energy. Decreasing solvation of the positively charged nitrogen leads to a similar trend. These effects in the vicinity of the Schiff base linkage also perturb the deuterium isotope effect observed upon deuteriation of the Schiff base. The results are interpreted by considering the mixing of the C = N stretching and C = N-H bending vibration. The C = N mode is shifted due to electrostatic interaction with nonconjugated positive charges in the vicinity of the Schiff base linkage, an interaction that does not influence the isotope effect. Weak hydrogen bonding between the Schiff base linkage in bacteriorhodopsin (bR) and its counteranion or, alternatively, poor solvation of the positively charged Schiff base nitrogen can account for the C = N stretching frequency of 1640 cm-1 and the deuterium isotope effect of 17 cm-1 observed in this pigment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The role of the extracellular loop region of a short-wavelength sensitive pigment, Xenopus violet cone opsin, is investigated via computational modeling, mutagenesis, and spectroscopy. The computational models predict a complex H-bonding network that stabilizes and connects the EC2-EC3 loop and the N-terminus. Mutations that are predicted to disrupt the H-bonding network are shown to produce visual pigments that do not stably bind chromophore and exhibit properties of a misfolded protein. The potential role of a disulfide bond between two conserved Cys residues, Cys(105) in TM3 and Cys(182) in EC2, is necessary for proper folding and trafficking in VCOP. Lastly, certain residues in the EC2 loop are predicted to stabilize the formation of two antiparallel β-strands joined by a hairpin turn, which interact with the chromophore via H-bonding or van der Waals interactions. Mutations of conserved residues result in a decrease in the level of chromophore binding. These results demonstrate that the extracellular loops are crucial for the formation of this cone visual pigment. Moreover, there are significant differences in the structure and function of this region in VCOP compared to that in rhodopsin.  相似文献   

12.
Chinen A  Hamaoka T  Yamada Y  Kawamura S 《Genetics》2003,163(2):663-675
Zebrafish is becoming a powerful animal model for the study of vision but the genomic organization and variation of its visual opsins have not been fully characterized. We show here that zebrafish has two red (LWS-1 and LWS-2), four green (RH2-1, RH2-2, RH2-3, and RH2-4), and single blue (SWS2) and ultraviolet (SWS1) opsin genes in the genome, among which LWS-2, RH2-2, and RH2-3 are novel. SWS2, LWS-1, and LWS-2 are located in tandem and RH2-1, RH2-2, RH2-3, and RH2-4 form another tandem gene cluster. The peak absorption spectra (lambdamax) of the reconstituted photopigments from the opsin cDNAs differed markedly among them: 558 nm (LWS-1), 548 nm (LWS-2), 467 nm (RH2-1), 476 nm (RH2-2), 488 nm (RH2-3), 505 nm (RH2-4), 355 nm (SWS1), 416 nm (SWS2), and 501 nm (RH1, rod opsin). The quantitative RT-PCR revealed a considerable difference among the opsin genes in the expression level in the retina. The expression of the two red opsin genes and of three green opsin genes, RH2-1, RH2-3, and RH2-4, is significantly lower than that of RH2-2, SWS1, and SWS2. These findings must contribute to our comprehensive understanding of visual capabilities of zebrafish and the evolution of the fish visual system and should become a basis of further studies on expression and developmental regulation of the opsin genes.  相似文献   

13.
Retinal extracts of the Australian gecko, Phyllurus milii (White), have revealed the presence of a photosensitive pigment, unusual for terrestrial animals, because of its absorption maximum at 524 mµ. This pigment has an absorption spectrum which is identical in form with that of other visual chromoproteins. It is not a porphyropsin, for bleaching revealed the presence, not of retinene2, but of retinene1 as a chromophore. Photolabile pigments with characteristics similar to those of the Phyllurus visual pigment were also detected in retinal extracts of six other species of nocturnal geckos. The presence of this retinal chromoprotein adequately accounts for the unusual visual sensitivity curve described by Denton for the nocturnal gecko. This pigment may have special biological significance in terms of the unique phylogenetic position of geckos as living representatives of nocturnal animals which retain some of the characteristics of their diurnal ancestors. The occurrence of this retinene1 pigment, intermediate in spectral position between rhodopsin and iodopsin, is interpreted in support of the transmutation theory of Walls. The results and interpretation of this investigation point up the fact that, from a phylogenetic point of view, too great an emphasis on the duplicity theory may serve to detract attention from the evolutionary history of the retina and the essential unitarianism of the visual cells.  相似文献   

14.
Yuan C  Kuwata O  Liang J  Misra S  Balashov SP  Ebrey TG 《Biochemistry》1999,38(14):4649-4654
The binding of chloride is known to shift the absorption spectrum of most long-wavelength-absorbing cone-type visual pigments roughly 30 nm to the red. We determined that the chloride binding constant for this color shift in the gecko P521 visual pigment is 0.4 mM at pH 6.0. We found an additional effect of chloride on the P521 pigment: the apparent pKa of the Schiff base in P521 is greatly increased as the chloride concentration is increased. The apparent Schiff base pKa shifts from 8.4 for the chloride-free form to >10.4 for the chloride-bound form. We show that this shift is due to chloride binding to the pigment, not to the screening of the membrane surface charges by chloride ions. We also found that at high pH, the absorption maximum of the chloride-free pigment shifts from 495 to 475 nm. We suggest that the chloride-dependent shift of the apparent Schiff base pKa is due to the deprotonation of a residue in the chloride binding site with a pKa of ca. 8.5, roughly that of the Schiff base in the absence of chloride. The deprotonation of this site results in the formation of the 475 nm pigment and a 100-fold decrease in the pigment's ability to bind chloride. Increasing the concentration of chloride results in the stabilization of the protonated state of this residue in the chloride binding site and thus increased chloride binding with an accompanying increase in the Schiff base pK.  相似文献   

15.
Das J  Crouch RK  Ma JX  Oprian DD  Kono M 《Biochemistry》2004,43(18):5532-5538
In rhodopsin, the 9-methyl group of retinal has previously been identified as being critical in linking the ligand isomerization with the subsequent protein conformational changes that result in the activation of its G protein, transducin. Here, we report studies on the role of this methyl group in the salamander rod and cone pigments. Pigments were generated by combining proteins expressed in COS cells with 11-cis 9-demethyl retinal, where the 9-methyl group on the polyene chain has been deleted. The absorption spectra of all pigments were blue-shifted. The red cone and blue cone/green rod pigments were unstable to hydroxylamine; whereas, the rhodopsin and UV cone pigments were stable. The lack of the 9-methyl group of the chromophore did not affect the ability of the red cone and blue cone/green rod pigments to activate transducin. On the other hand, with the rhodopsin and UV cone pigments, activation was diminished. Interestingly, the red cone pigment containing the retinal analogue remained active longer than the native pigment. Thus, the 9-methyl group of retinal is not important in the activation pathway of the red cone and blue cone/green rod pigments. However, for the red cone pigment, the 9-methyl group of retinal appears to be critical in the deactivation pathway.  相似文献   

16.
We have obtained Raman spectra of a series of all-trans retinal protonated Schiff-base isotopic derivatives. 13C-substitutions were made at the 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15 positions while deuteration was performed at position 15. Based on the isotopic shifts, the observed C--C stretching vibrations in the 1,100-1,400 cm-1 fingerprint region are assigned. Normal mode calculations using a modified Urey-Bradley force field have been refined to reproduce the observed frequencies and isotopic shifts. Comparison with fingerprint assignments of all-trans retinal and its unprotonated Schiff base shows that the major effect of Schiff-base formation is a shift of the C14--C15 stretch from 1,111 cm-1 in the aldehyde to approximately 1,163 cm-1 in the Shiff base. This shift is attributed to the increased C14--C15 bond order that results from the reduced electronegativity of the Schiff-base nitrogen compared with the aldehyde oxygen. Protonation of the Schiff base increases pi-electron delocalization, causing a 6 to 16 cm-1 frequency increase of the normal modes involving the C8--C9, C10--C11, C12--C13, and C14--C15 stretches. Comparison of the protonated Schiff base Raman spectrum with that of light-adapted bacteriorhodopsin (BR568) shows that incorporation of the all-trans protonated Schiff base into bacterio-opsin produces an additional approximately 10 cm-1 increase of each C--C stretching frequency as a result of protein-induced pi-electron delocalization. Importantly, the frequency ordering and spacing of the C--C stretches in BR568 is the same as that found in the protonated Schiff base.  相似文献   

17.
Sato K  Yamashita T  Imamoto Y  Shichida Y 《Biochemistry》2012,51(21):4300-4308
Visual pigments in rod and cone photoreceptor cells of vertebrate retinas are highly diversified photoreceptive proteins that consist of a protein moiety opsin and a light-absorbing chromophore 11-cis-retinal. There are four types of cone visual pigments and a single type of rod visual pigment. The reaction process of the rod visual pigment, rhodopsin, has been extensively investigated, whereas there have been few studies of cone visual pigments. Here we comprehensively investigated the reaction processes of cone visual pigments on a time scale of milliseconds to minutes, using flash photolysis equipment optimized for cone visual pigment photochemistry. We used chicken violet (L-group), chicken blue (M1-group), chicken green (M2-group), and monkey green (L-group) visual pigments as representatives of the respective groups of the phylogenetic tree of cone pigments. The S, M1, and M2 pigments showed the formation of a pH-dependent mixture of meta intermediates, similar to that formed from rhodopsin. Although monkey green (L-group) also formed a mixture of meta intermediates, pH dependency of meta intermediates was not observed. However, meta intermediates of monkey green became pH dependent when the chloride ion bound to the monkey green was replaced with a nitrate ion. These results strongly suggest that rhodopsin and S, M1, and M2 cone visual pigments share a molecular mechanism for activation, whereas the L-group pigment may have a special reaction mechanism involving the chloride-binding site.  相似文献   

18.
The chicken has four kinds of color visual pigments, in addition to rhodopsin. A chicken genomic DNA library was screened with cDNA of human red-sensitive pigment and a chicken genomic DNA fragment including rhodopsin exons 2, 3 and 4, and then a genomic DNA fragment encoding a visual pigment, possibly an iodopsin, was cloned. A cDNA library, constructed from chicken retina mRNA, was screened with the genomic DNA fragment and the cDNA of human red-sensitive pigment, and the cDNA encoding the pigment was cloned. The nucleotide sequence of this cDNA was similar to that of the human red-sensitive pigment, with identities of 78% for the nucleotide sequence and 84% for the amino acid sequence with human red-sensitive pigment.  相似文献   

19.
1.  Underwater downwelling quantal irradiance spectra were measured in estuarine and coastal areas under various tidal and rainfall conditions. At midday the available spectrum near the bottom has maximal irradiance in the region of about 570 to 700 nm in the estuary, whereas in offshore coastal areas greatest irradiance occurs between 500 and 570 nm. At twilight in an estuary, maximal underwater downwelling irradiance shifts to the 490–520 nm region.
2.  The visual pigment absorption maxima of 27 species of benthic crustaceans from semi-terrestrial, estuarine and coastal areas have values ranging from 483 to 516 nm. There is no obvious shift in the max from long wavelengths in estuarine species to shorter wavelengths in coastal species. The only match between max and midday spectrum was for a continental shelf species,Geryon quinquedens.
3.  The Sensitivity Hypothesis is predicted to account for the visual sensitivity of benthic crabs from estuarine and coastal areas. To assess the match between visual spectral sensitivity and environmental spectra, photon capture effectiveness was calculated for a range of idealized visual pigment absorption functions operating in the measured environmental spectra.
4.  All crab species are poorly adapted for maximal photon capture at midday, since pigments having max longer than 540 nm function best under all daytime spectral conditions. Photon capture of visual pigments with max near 500 nm improves dramatically at twilight, particularly at lower visual pigment densities and shallow depths. However, pigments having max at wavelengths longer than those for the crabs are equally or more efficient at photon capture. Therefore the Sensitivity Hypothesis is not supported for crustaceans.
  相似文献   

20.
Summary Microspectrophotometric and electroretinographic investigation of photoreceptor spectral sensitivity in the rudd Scardinius erythrophthalmus has revealed four spectral classes of cone with peak sensitivity in the ultra-violet, violet, green and red regions of the spectrum. These peak sensitivities were found to vary seasonally, and in response to artificial illumination, as a result of a change in the ratio of A1 to A2-based visual pigment in the cells. Short daylengths favoured the A2 pigment whereas long daylengths favoured the A1 analogue. Both the ultra-violet and violet-sensitive pigments have not previously been reported for the rudd. Evidence is presented supporting the hypothesis that the ultra-violet class of cells is not present in older fish.Abbreviation rvi response versus intensity (curve)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号