首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, the process for ethyl ester production is studied using refined sunflower oil, and NaOH, KOH, CH3ONa, and CH3OK, as catalysts. In all cases, the reaction is carried out in a single reaction step. The best conversion is obtained when the catalyst is either sodium methoxide or potassium methoxide. We found that during the transesterification with ethanol, soap formation is more important than in the case of methanol. The saponification reaction consumes an important fraction of the catalyst. The amount of catalyst consumed by this reaction is 100% in the case of using hydroxides as catalyst (KOH or NaOH), and 25%, and 28% when using CH3ONa and CH3OK as catalysts, respectively. Ethanol increases the catalyst solubility in the oil-ethyl ester phase, thus accelerating the saponification reaction.It is possible to obtain high conversions in a one-step reaction, with a total glycerine concentration close to 0.25%.  相似文献   

2.
Coffee oil as a potential feedstock for biodiesel production   总被引:2,自引:1,他引:1  
A preliminary evaluation of the feasibility of producing biodiesel using oil extracted from defective coffee beans was conducted as an alternative means of utilizing these beans instead of roasting for consumption of beverage with depreciated quality. Direct transesterifications of triglycerides from refined soybean oil (reference) and from oils extracted from healthy and defective coffee beans were performed. Type of alcohol employed and time were the reaction parameters studied. Sodium methoxide was used as alkaline catalyst. There was optimal phase separation after reactions using both soybean and healthy coffee beans oils when methanol was used. This was not observed when using the oil from defective beans which required further processing to obtain purified alkyl esters. Nevertheless, coffee oil was demonstrated to be a potential feedstock for biodiesel production, both from healthy and defective beans, since the corresponding oils were successfully converted to fatty acid methyl and ethyl esters.  相似文献   

3.
Transesterification of canola oil was carried out with methanol, ethanol, and various mixtures of methanol/ethanol, keeping the molar ratio of oil to alcohol 1:6 and using KOH as a catalyst. Mixtures of alcohol increased the rate of transesterification reaction and produced methyl as well as ethyl esters. The increased rate was result of better solubility of oil in reaction mixture due to better solvent properties of ethanol than methanol and equilibrium due to methanol. With 3:3 molar ratio of methanol to ethanol {MEE (3:3)} the amount of ethyl ester formed was 50% that of methyl ester. Properties (acid value, viscosity, density) of all esters including mixed esters were within the limits of ASTM standards. Lubricities of these esters are in the order: ethyl ester>methyl ethyl ester>methyl ester.  相似文献   

4.
The most common catalysts for biodiesel production are homogeneous basic catalysts. In the present paper, a comparison is made of different basic catalysts (sodium methoxide, potassium methoxide, sodium hydroxide and potassium hydroxide) for methanolysis of sunflower oil. All the reactions were carried out under the same experimental conditions in a batch stirred reactor and the subsequent separation and purification stages in a decanter. The analytical methods included gas chromatography and the determination of fat and oil conventional parameters. The biodiesel purity was near 100 wt.% for all catalysts. However, near 100 wt.% biodiesel yields were only obtained with the methoxide catalysts. According to the material balance of the process, yield losses were due to triglyceride saponification and methyl ester dissolution in glycerol. Obtained biodiesel met the measured specifications, except for the iodine value, according to the German and EU draft standards. Although all the transesterification reactions were quite rapid and the biodiesel layers achieved nearly 100% methyl ester concentrations, the reactions using sodium hydroxide turned out the fastest.  相似文献   

5.
Enzymatic transesterification of soybean oil with methanol and ethanol was studied. Of the nine lipases that were tested in the initial screening, lipase PS from Pseudomonas cepacia resulted in the highest yield of alkyl esters. Lipase from Pseudomonas cepacia was further investigated in immobilized form within a chemically inert, hydrophobic sol-gel support. The gel-entrapped lipase was prepared by polycondensation of hydrolyzed tetramethoxysilane and iso-butyltrimethoxysilane. Using the immobilized lipase PS, the effects of water and alcohol concentration, enzyme loading, enzyme thermal stability, and temperature in the transesterification reaction were investigated. The optimal conditions for processing 10 g of soybean oil were: 35 degrees C, 1:7.5 oil/methanol molar ratio, 0.5 g water and 475 mg lipase for the reactions with methanol, and 35 degrees C, 1:15.2 oil/ethanol molar ratio, 0.3 g water, 475 mg lipase for the reactions with ethanol. Subject to the optimal conditions, methyl and ethyl esters formation of 67 and 65 mol% in 1h of reaction were obtained for the immobilized enzyme reactions. Upon the reaction with the immobilized lipase, the triglycerides reached negligible levels after the first 30 min of the reaction and the immobilized lipase was consistently more active than the free enzyme. The immobilized lipase also proved to be stable and lost little activity when was subjected to repeated uses.  相似文献   

6.
The aim of this work was the study of the influence of the raw material composition on biodiesel quality, using a transesterification reaction. Thus, ten refined vegetable oils were transesterificated using potassium methoxide as catalyst and standard reaction conditions (reaction time, 1h; weight of catalyst, 1 wt.% of initial oil weight; molar ratio methanol/oil, 6/1; reaction temperature, 60 degrees C). Biodiesel quality was tested according to the standard [UNE-EN 14214, 2003. Automotive fuels. Fatty acid methyl esters (FAME) for diesel engines. Requirements and test methods]. Some critical parameters like oxidation stability, cetane number, iodine value and cold filter plugging point were correlated with the methyl ester composition of each biodiesel, according to two parameters: degree of unsaturation and long chain saturated factor. Finally, a triangular graph based on the composition in monounsaturated, polyunsaturated and saturated methyl esters was built in order to predict the critical parameters of European standard for whatever biodiesel, known its composition.  相似文献   

7.
Raphanus sativus (L. Var) is a perennial plant of the Brassicaceae (or Cruciferae) family whose oil has not been investigated in detail for biodiesel production, particularly when ethanol is used as the alcoholysis agent. In this work, response surface methodology (RSM) was used to determine the optimum condition for the ethanolysis of R. sativus crude oil. Three process variables were evaluated at two levels (2(3) experimental design): the ethanol:oil molar ratio (6:1 and 12:1), the catalyst concentration in relation to oil mass (0.4 and 0.8 wt% NaOH) and the alcoholysis temperature (45 and 65 degrees C). When the experimental results were tentatively adjusted by linear regression, only 58.15% of its total variance was explained. Therefore, a quadratic model was investigated to improve the poor predictability of the linear model. To apply the quadratic model, the 2(3) experimental design had to be expanded to a circumscribed central composite design. This allowed the development of a response surface that was able to predict 97.75% of the total variance of the system. Validation was obtained by performing one ethanolysis experiment at the conditions predicted by the model (38 degrees C, ethanol:oil molar ratio of 11.7:1 and 0.6 wt% NaOH). The resulting ester yield (104.10 wt% or 99.10% of the theoretical yield of 105.04 wt%) was shown to be the highest among all conditions tested in this study. The second ethanolysis stage of the best RSM product required 50% less ethanol and 90% less catalyst consumption. The amount of ethyl esters obtained after this procedure reached 94.5% of the theoretical yield. The resulting ethyl esters were shown to comply with most of the Brazilian biodiesel specification parameters except for oxidation stability. Addition of 500 ppm of BHT to the esters, however, complied with the specification target of 6h. The application of 2 wt% Magnesol after the second ethanolysis stage eliminated the need for water washing and helped generate a final product with less unreacted glycerides.  相似文献   

8.
Transesterification of vegetable oils (from soybeans and rice bran) into methyl and ethyl esters using a batch microwave system was investigated in this study. A critical comparison between the two alcohols was performed in terms of yields, quality, and reaction kinetics. Parameters tested were temperature (60, 70 and 80 °C) and time (5, 10, 15 and 20 min). At all tested conditions, more than 96% conversion rates were obtained for both ethanol and methanol. Use of microwave technology to assist the transesterification process resulted in faster reaction times and reduced catalyst requirement (about ten-fold decrease). Methanol required lower alcohol:oil ratios than normally used in conventional heating, whereas ethanol required higher molar ratios. All esters produced using this method met ASTM biodiesel quality specifications. Methanol performed better in terms of performance and costs, while ethanol may have some environmental and safety benefits.  相似文献   

9.
This work presents biodiesel production from soybean oil and bioethanol by multiple-stage Ultra-Shear reactor (USR). The experiments were carried out in the following conditions: reaction time from 6 to 12 min; catalyst concentration from 0.5% to 1.5% by weight of soybean oil; ethanol: soybean oil molar ratio from 6:1 to 10:1. The experimental design was used to investigate the influence of process variables on the conversion in biodiesel. The best ethyl ester conversion obtained was 99.26 wt.%, with ethanol:soybean oil molar ratio of 6:1, catalyst concentration of 1.35% and with 12 min of reaction time.  相似文献   

10.
A novel continuous reactor process has been developed for the production of biodiesel from fats and oils. The key feature of the process is its ability to operate continuously with a high reaction rate, potentially requiring less post reaction cleaning and product/reactant separation than currently established processes. This was achieved by atomising the heated oil/fat and then spraying it into a reaction chamber filled with methanol vapor in a counter current flow arrangement. This allows the continuous separation of product and the excess methanol stream in the reactor. The overall conversion based on a single cycle of this process has been between 50% and 96% of the feed stock materials. Conversions of 94-96% were achieved while operating with 5-7 g of sodium methoxide/L of methanol at methanol flow rate of 17.2 L/h and oil flow rate of 10 L/h. Additional variations in the reactant stoichiometry (i.e. reactant flow rates), catalyst type/concentration, and reaction temperature on the overall product conversion were investigated.  相似文献   

11.
This research was aimed at studying the acceleration of the catalytic activity of calcium oxide (CaO) for developing an effective heterogeneous catalyst for biodiesel production by the transesterification of plant oil with methanol. CaO was activated by pretreatment with methanol and was used for the transesterification reaction. The activation and transesterification reaction conditions were examined. The obtained optimal reaction conditions were 0.1-g CaO, 3.9-g methanol, 15-g rapeseed oil, and 1.5-h activation time at room temperature that provided methyl ester in approximately 90% yield within a reaction time of 3h at 60 degrees C. The activation mechanism was also investigated, and the proposed mechanism is as follows. By pretreatment with methanol, a small amount of CaO gets converted into Ca(OCH(3))(2) that acts as an initiating reagent for the transesterification reaction and produces glycerin as a by-product. Subsequently, a calcium-glycerin complex, formed due to the reaction of CaO with glycerin, functions as the main catalyst and accelerates the transesterification reaction.  相似文献   

12.
Yang R  Su M  Zhang J  Jin F  Zha C  Li M  Hao X 《Bioresource technology》2011,102(3):2665-2671
Poly (sodium acrylate) supporting NaOH (NaOH/NaPAA) was prepared by in situ polymerization of aqueous solution of acrylic acid with an over-neutralization by adding excess of NaOH. NaOH/NaPAA presented a promising selectivity for water absorbency and good water retention with negligible swelling capacity in the organic solvents of methanol, glycerol, rubber seed oil methyl esters, and rubber seed oil. NaOH/NaPAA catalysts showed a basic strength of 15.0 < H_ < 18.4 and their basicity increased with the increase of the NaOH loading amount. NaOH/NaPAA catalysts exhibited almost the same catalytic activity in the transesterification of rubber seed oil with methanol under the optimized reaction conditions compared to conventional homogeneous NaOH catalyst. Furthermore, the functional absorbent/catalyst system presented a good water resistance in the transesterification which retained high catalytic activity when a water concentration in the reaction system was less than 2 wt.%.  相似文献   

13.
《Chirality》2017,29(12):811-823
The synthesis of (R )‐1‐(pyridin‐4‐yl)ethyl acetate was achieved over tandem palladium‐lipase catalyst with 100% selectivity using 4‐acetyl pyridine as a reactant. The 2% w /w palladium and lipase catalyst was successfully co‐immobilized in the microenvironment of the mesocellular foam and characterized by various techniques. The palladium metal from catalyst hydrogenated 4‐acetyl pyridine to form 1‐(pyridin‐4‐yl)ethanol. The generated intermediate product then underwent kinetic resolution over lipase and selectively gave (R )‐1‐(pyridin‐4‐ yl)ethyl acetate. The catalytic conditions were then studied for optimal performance of both steps. The reaction conditions were optimized to 50 °C and toluene as a solvent. Both chemical and enzymatic kinetic models of the reaction were developed for a given set of reaction conditions and kinetic parameters were predicted. At optimal conditions, the obtained selectivity of intermediate (1‐(pyridin‐4‐yl)ethanol) was 51.38%. The final product yield of ((R )‐1‐(pyridin‐4‐yl)ethyl acetate) was 48.62%.  相似文献   

14.
Shi H  Bao Z 《Bioresource technology》2008,99(18):9025-9028
A new method which coupled the two-phase solvent extraction (TSE) with the synthesis of biodiesel was studied. Investigations were carried out on transesterification of methanol with oil-hexane solution coming from TSE process in the presence of sodium hydroxide as the catalyst. Biodiesel (fatty acid methyl esters) were the products of transesterification. The influential factors of transesterification, such as reaction time, catalyst concentration, mole ratio of methanol to oil and reaction temperature were optimized. The results showed that the optimal reaction parameters were sodium hydroxide concentration 1.1% by weight of rapeseed oil, mole ratio of methanol to oil 9:1, reaction time 120 min, and reaction temperature 55-60 degrees C. Under these conditions, the TG conversion would rise up to 98.2%. Based on the new method, biodiesel production process could be simplified and the biodiesel cost could be reduced.  相似文献   

15.
Abstract

Enzymatic synthesis of ethyl lactate catalyzed by immobilized lipase has been investigated. The reaction variables (including the molar ratio of ethanol to acid, total substrate amount, temperature, reaction time and rotation speed) were selected in accordance with the Plackett–Burman design and were further optimized via response surface methodology. The molar ratio of ethanol to acid, total substrate amount and reaction time were screened out as significant variables for the optimization study. A 20-run, full-factorial, central composite design was used to construct the statistical model and the optimal conditions obtained were as follows: molar ratio of ethanol to acid of 8.3:1, total substrate amount of 0.4 g, reaction time of 26.87 h with temperature of 55°C and rotation speed of 150 rpm. Under the optimal conditions, the yield of ethyl lactate was up to 24.32%; close to the 25.13% obtained using the commercial lipase, Novozym 435. Due to the low cost and simple immobilization process, the lipase prepared in the present work could have great potential in enzymatic applications. Additionally, a kinetic model with inhibition by both ethanol and lactic acid following a ping-pong bi-bi mechanism was proposed.  相似文献   

16.
Rapeseed oil methyl esters preparation using heterogeneous catalysts   总被引:56,自引:0,他引:56  
The classical method of fatty acids methyl esters (FAME) production is based on triglyceride transesterification to methyl esters. Sodium hydroxide dissolved in methanol is used as a catalyst. The purpose of this work was to examine a heterogeneous catalyst, in particular calcium compounds, to produce methyl esters of rapeseed oil. This research showed that the transesterification of rapeseed oil by methyl alcohol can be catalysed effectively by basic alkaline-earth metal compounds: calcium oxide, calcium methoxide and barium hydroxide. Calcium catalysts, due to their weak solubility in the reaction medium, are less active than sodium hydroxide. However, calcium catalysts are cheaper and lead to decreases in the number of technological stages and the amount of unwanted waste products. It was found that the transesterification reaction rate can be enhanced by ultrasound as well as by introducing an appropriate reagent into a reactor to promote methanol solubility in the rapeseed oil. Tetrahydrofuran was used as additive to accelerate the transesterification process.  相似文献   

17.
Novozym 435, lipase B from Candida antarctica, was used in this study for the production of ethyl esters. For the first time, trans-hydroxy-fatty acid ethyl esters were synthesized in vitro in solvent-free media. We studied the effects of the substrate–ethanol molar ratio and enzyme synthetic stability of the biocatalyst. To determine the structure of the formed compounds, Fourier transformed infrared spectroscopy, nuclear magnetic resonance, and matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry were used, three less time-consuming structural techniques. trans-Hydroxy-fatty acid ethyl esters were synthesized with a reaction yield of 90 % or higher with optimal reaction conditions.  相似文献   

18.
The absorption of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from fish oil triacylglycerols and fish oil ethyl esters consumed in a high-fat meal (44 g total fat) by male volunteers was measured and compared to values previously reported for consumption in a low-fat meal (8 g total fat). Absorption of EPA, but not of DHA, from fish oil triacylglycerols was significantly improved from 69% to 90% by co-ingestion with the high-fat meal. Absorption of both EPA and DHA from fish oil ethyl esters was increased three-fold, to about 60%, by co-ingestion with the high-fat meal, indicating that absorption of fatty acid ethyl esters is highly dependent on the amount of co-ingested fat.  相似文献   

19.
The enantioselective hydrogenation of several α-keto acid derivatives with rhodium diphosphine catalysts has been investigated using a random screening approach. The neutral rhodium catalyst prepared in situ from bis(2,5-norbornadiene rhodium chloride) and NORPHOS has been found to be an excellent catalyst for preparing aliphatic α-hydroxy esters in high optical purities. The reaction parameters for the hydrogenation of ethyl 2-oxo-4-phenyl-butyrate, an intermediate for the ACE inhibitor Benazepril, were optimized and the best optical yields obtained were 96%.  相似文献   

20.
Biodiesel is an alternative fuel that has been used for partial or total substitution of diesel to reduce its environmental impacts. Prior studies on this topic have focused on the quest for better synthesis process, new catalysts and low-cost non-food and raw materials to improve the economic and sustainable production as well as product quality. In this study, acidic oil from macauba, a palm tree native to South America that has no food uses, was converted into biodiesel. The esterification and transesterification reactions were performed with methanol, ethanol and isobutanol with the goal of improving the cold properties of the biodiesel. The isobutyl ester exhibited the lowest freezing point temperature but underperformed outside of international specifications for kinematic viscosity; it also exhibited a low ester content. The methyl and ethyl esters were within the specifications of the international standards for ester content, density, kinematic viscosity and sulphur content. The ethyl ester produced from macauba oil displayed better properties in cold conditions than methyl and isobutyl esters studied here, with a cold filter plugging point of 0 °C. Its onset crystallisation temperature was reduced from ?5.96 to ?13.41 °C when subjected to fractional crystallisation. The ethyl ester exhibited the best lubricity value among the other esters studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号