首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work we describe the optimization of a lead compound based on the quinazoline template to give a new series of potent pyrido[3,2-d]pyrimidines as histamine H4 receptor antagonists. The pyrido[3,2-d]pyrimidine ligands have significantly reduced hERG binding compared to clinical stage compound PF-3893787 while showing good affinities at the human and rodent histamine receptors. The receptor residence time of several of these new compounds was determined for the human H4R and compared with JNJ7777120 and PF-3893787. The pyrido[3,2-d]pyrimidines showed residence times lower than JNJ7777120 but comparable to the residence time of PF-3893787. Overall, the pyrido[3,2-d]pyrimidines show an excellent in vitro profile that warrants their further investigation in relevant models of human disease.  相似文献   

2.
The guanylhydrazone of 2-(4-chlorobenzyloxy)-5-bromobenzaldehyde, 1, with an IC(50) of 840 nM against the CCR5 receptor was identified using high-throughput screening. Optimization efforts led to the discovery of a novel piperidine series of CCR5 antagonists. In particular, the 4-hydroxypiperidine derivative, 6k, had improved potency against CCR5, and was a starting point for further optimization. SAR elaboration using parallel synthesis led to the identification of 10h, a potent CCR5 antagonist with an IC(50) of 11 nM.  相似文献   

3.
The discovery and structure-activity relationship of a novel series of indole-2-carboxamide antagonists of the cannabinoid CB(1) receptor is disclosed. Compound 26i was found to be a high potency, selective cannabinoid CB(1) antagonist.  相似文献   

4.
This letter describes the discovery and synthesis of a series of octahydropyrrolo[3,4-c]pyrrole based selective histamine hH4 receptor antagonists. The amidine compound 20 was found to be a potent and selective histamine H4 receptor antagonist with moderate clearance and a high volume of distribution.  相似文献   

5.
The process of discovery for highly potent prostaglandin D(2) (PGD(2)) receptor antagonists is reported. A series of N-(p-alkoxy)benzoyl-2-methylindole-4-acetic acids were synthesized and identified as a new class of selective PGD(2) receptor antagonists. Most of them exhibited strong PGD(2) receptor antagonism in binding studies and the cAMP formation assay. The structure-activity relationships (SAR), including subtype selectivity of the synthesized compounds, are also discussed.  相似文献   

6.
Herein the discovery of a novel class of aminoheterocyclic Na(v)1.7 antagonists is reported. Hit compound 1 was potent but suffered from poor pharmacokinetics and selectivity. The compact structure of 1 offered a modular synthetic strategy towards a broad structure-activity relationship analysis. This analysis led to the identification of aminopyrazine 41, which had vastly improved hERG selectivity and pharmacokinetic properties.  相似文献   

7.
The discovery of a novel series of 8-azabicyclo[3.2.1]octan-3-yl)-3-(4-chlorophenyl) propanamide antagonists of the vasopressin V1A receptor is disclosed. Compounds 47 and 48 were found to be high affinity, selective vasopressin V1A antagonists.  相似文献   

8.
Discovery of novel, orally active dual NK1/NK2 antagonists   总被引:1,自引:0,他引:1  
Exploration of the SAR around selective NK2 antagonists, SR48968 and ZD7944, led to the discovery that naphth-1-amide analogues provide potent dual NK1 and NK2 antagonists. ZD6021 inhibited binding of [3H]-NKA or [3H]-SP to human NK1 and NK2 receptors, with high-affinity (K(i)=0.12 and 0.62nM, respectively). In functional assays ZD6021 had, at 10(-7)M, in human pulmonary artery pK(B)=8.9 and in human bronchus pK(B)=7.3, for NK1 and NK2, respectively. Oral administration of ZD6021 to guinea pigs dose-dependently attenuated ASMSP induced extravasation of plasma proteins, ED(50)=0.5mg/kg, and NK2 mediated bronchoconstriction, ED(50)=13mg/kg.  相似文献   

9.
This review addresses key pharmacology and virology issues relevant in discovery and development of CCR5 antagonists as anti-HIV drugs, such as target validation, receptor internalization, allosterism, viral resistance and tropism. Recent progress in the discovery and development of CCR5 antagonists, SAR and clinical status are reviewed. Finally, modeling-based structure of CCR5 is discussed in the context of a small-molecule antagonism of the CCR5 receptor.  相似文献   

10.
Many ion channels are attractive therapeutic targets for the treatment of neurological or cardiovascular diseases; there is a continuous need for selective channel antagonists and/or agonists. Recently, several technologies have been developed that make exploration of the enormous diversity of venom-derived peptidic toxins more feasible. Integration of exogenomics with synthetic methods such as diselenide or fluorous bridges, backbone spacers, and N-to-C cyclization provides an emerging technology that promises to accelerate discovery and development of natural products based compounds. These drug-discovery efforts are complemented by novel approaches to modulate the activities of ion channels and receptors. Taken together, these technologies will advance our knowledge and understanding of ion channels and will accelerate their expansion as targets for first-in-class therapeutics.  相似文献   

11.
SphK (sphingosine kinase) is the major source of the bioactive lipid and GPCR (G-protein-coupled receptor) agonist S1P (sphingosine 1-phosphate). S1P promotes cell growth, survival and migration, and is a key regulator of lymphocyte trafficking. Inhibition of S1P signalling has been proposed as a strategy for treatment of inflammatory diseases and cancer. In the present paper we describe the discovery and characterization of PF-543, a novel cell-permeant inhibitor of SphK1. PF-543 inhibits SphK1 with a K(i) of 3.6 nM, is sphingosine-competitive and is more than 100-fold selective for SphK1 over the SphK2 isoform. In 1483 head and neck carcinoma cells, which are characterized by high levels of SphK1 expression and an unusually high rate of S1P production, PF-543 decreased the level of endogenous S1P 10-fold with a proportional increase in the level of sphingosine. In contrast with past reports that show that the growth of many cancer cell lines is SphK1-dependent, specific inhibition of SphK1 had no effect on the proliferation and survival of 1483 cells, despite a dramatic change in the cellular S1P/sphingosine ratio. PF-543 was effective as a potent inhibitor of S1P formation in whole blood, indicating that the SphK1 isoform of sphingosine kinase is the major source of S1P in human blood. PF-543 is the most potent inhibitor of SphK1 described to date and it will be useful for dissecting specific roles of SphK1-driven S1P signalling.  相似文献   

12.
Histamine is an important inflammatory mediator that is released in airways during an asthmatic response. However, current antihistamine drugs are not effective in controlling the disease. The discovery of the histamine H4 receptor (H4R) prompted us to reinvestigate the role of histamine in pulmonary allergic responses. H4R-deficient mice and mice treated with H4R antagonists exhibited decreased allergic lung inflammation, with decreases in infiltrating lung eosinophils and lymphocytes and decreases in Th2 responses. Ex vivo restimulation of T cells showed decreases in IL-4, IL-5, IL-13, IL-6, and IL-17 levels, suggesting that T cell functions were disrupted. In vitro studies indicated that blockade of the H4R on dendritic cells leads to decreases in cytokine and chemokine production and limits their ability to induce Th2 responses in T cells. This work suggests that the H4R can modulate allergic responses via its influence on T cell activation. The study expands the known influences of histamine on the immune system and highlights the therapeutic potential of H4R antagonists in allergic conditions.  相似文献   

13.
The discovery and development of 1-methylcyclopropene (1-MCP) was not done as a single step but rather was found by studying various aspects of ethylene action and the ethylene receptors. It was first noted that 2, 5-norbornadiene seemed to counteract ethylene. Studies showed it was a competitive inhibitor of ethylene responses, and knowledge that ethylene antagonists like ethylene agonists bound to silver in the same order as they were active as inhibitors was obtained. Ring strain appeared to be a primary factor that led to trans-cyclooctene then to diazocyclopentadiene. This same concept allowed for the use of chemical concepts that lead to cyclopropenes. More recent work indicates additional factors can come into play in the development of ethylene antagonists at the receptor level and these are now being utilized to find additional and improved antagonists. 1-MCP is likely to remain a primary means of controlling ethylene responses for the immediate future.  相似文献   

14.
Muscarinic acetylcholine receptors (mAChRs) consisting of five known subtypes, are widely distributed in both central and peripheral nervous systems for regulation of a variety of critical functions. The present theoretical study describes correlations between experimental and calculated molecular properties of 15 α-substituted 2,2-diphenylpropionate antimuscarinics using quantum chemical and pharmacophore generation methods to characterize the drug mAChR properties and design new therapeutics. The calculated stereoelectronic properties, such as total energies, bond distances, valence angles, torsion angles, HOMO–LUMO energies, reactivity indices, vibrational frequencies of ether and carbonyl moieties, and nitrogen atom proton affinity were found to be well correlated when compared with experimentally determined inhibition constants from the literature using three muscarinic receptor assays: [3H]NMS receptor binding, α-amylase release from rat pancreas, and guinea pig ileum contraction. In silico predicted toxicity on rat oral LD50 values correlated well with the [3H]NMS binding in N4TG1 cells and α-amylase release assays, but not the ileum contraction assay. Next, to explore the functional requirements for potent activity of the compounds, we developed a preliminary 3D pharmacophore model using the in silico techniques. The resulting model contained a hydrogen bond acceptor site on the carbonyl oxygen atom and a ring aromatic feature on one of the two aromatic rings in these compounds. This model was used as a template to search an in-house database for novel analogs. We found compounds equal in inhibition potency to atropine and, importantly, six not reported before as antimuscarinics. These results demonstrate that this QSAR approach not only provides a basis for understanding the molecular mechanism of action but a pharmacophore to aid in the discovery and design of novel potent muscarinic antagonists.  相似文献   

15.
Bacterial resistance is inevitable and is a growing concern. It can be addressed only by discovery and development of new agents. However the discovery and development of new antibacterial agents are at an all time low. This article broadly examines the historical as well as current status of antibacterial discovery and provides some perspective as how to address some of the challenges.  相似文献   

16.
Chemokines are chemotactic cytokines which recruit leukocytes to inflammatory sites. They also affect tumor development and metastasis by acting as growth factor, by attracting pro- or anti-tumoral leukocytes or by influencing angiogenesis. Platelet factor-4 (CXCL4/PF-4) was the first chemokine shown to inhibit angiogenesis. CXCL4L1/PF-4var, recently isolated from thrombin-stimulated platelets, differing from authentic CXCL4/PF-4 in three carboxy-terminally located amino acids, was found to be more potent than CXCL4/PF-4 in inhibiting angiogenesis and tumor growth. Both glycosaminoglycans (GAG) and CXCR3 are implicated in the activities of the PF-4 variants. This report reviews the current knowledge on the role of CXCL4/PF-4 and CXCL4L1/PF-4var in physiological and pathological processes. In particular, the role of CXCL4/PF-4 in cancer, heparin-induced thrombocytopenia and atherosclerosis is described.  相似文献   

17.
Focal adhesion kinase (FAK) is a member of a family of non-receptor protein-tyrosine kinases that regulates integrin and growth factor signaling pathways involved in cell migration, proliferation, and survival. FAK expression is increased in many cancers, including breast and prostate cancer. Here we describe perturbation of adhesion-mediated signaling with a FAK inhibitor, PF-573,228. In vitro, this compound inhibited purified recombinant catalytic fragment of FAK with an IC(50) of 4 nM. In cultured cells, PF-573,228 inhibited FAK phosphorylation on Tyr(397) with an IC(50) of 30-100 nM. Treatment of cells with concentrations of PF-573,228 that significantly decreased FAK Tyr(397) phosphorylation failed to inhibit cell growth or induce apoptosis. In contrast, treatment with PF-573,228 inhibited both chemotactic and haptotactic migration concomitant with the inhibition of focal adhesion turnover. These studies show that PF-573,228 serves as a useful tool to dissect the functions of FAK in integrin-dependent signaling pathways in normal and cancer cells and forms the basis for the generation of compounds amenable for preclinical and patient trials.  相似文献   

18.
Chemogenomics involves the combination of a compound's effect on biological targets together with modern genomics technologies. The merger of these two methodologies is creating a new way to screen for compound-target interactions, as well as map chemical and biological space in a parallel fashion. The challenge associated with mining complex databases has initiated the development of many novel in silico tools to profile and analyze data in a systematic way. The ability to analyze the combinatorial effects of chemical libraries on biological systems will aid the discovery of new therapeutic entities. Chemogenomics provides a tool for the rapid validation of novel targeted therapeutics, where a specific molecular target is modulated by a small molecule. Along with targeted therapies comes the ability to discovery pathway nodes where a single molecular target might be an essential component of more than one disease. Several disease areas will benefit directly from the chemogenomics approach, the most advanced being cancer. A genetic loss-of-function screen can be modulated in the presence of a compound to search for genes or pathways involved in the compound's activity. Several recent papers highlight how chemogenomics is changing with RNA interference-based screening and shaping the discovery of new targeted therapies. Together, chemical and RNA interference-based screens open the door for a new way to discovery disease-associated genes and novel targeted therapies.  相似文献   

19.
The construction of a EP(4) antagonists pharmacophore model and the discovery of a highly potent oxepinic series of EP(4) antagonists is discussed. Compound 1a exhibits an excellent selectivity profile toward EP(2) receptor subtype and low cytochrome P450 inhibition potential.  相似文献   

20.
The design of drugs with selective tissue distribution can be an effective strategy for enhancing efficacy and safety, but understanding the translation of preclinical tissue distribution data to the clinic remains an important challenge. As part of a discovery program to identify next generation liver selective HMG-CoA reductase inhibitors we report the identification of (3R,5R)-7-(4-((3-fluorobenzyl)carbamoyl)-5-cyclopropyl-2-(4-fluorophenyl)-1H-imidazol-1-yl)-3,5-dihydroxyheptanoic acid (26) as a candidate for treating hypercholesterlemia. Clinical evaluation of 26 (PF-03491165), as well as the previously reported 2 (PF-03052334), provided an opportunity for a case study comparison of the preclinical and clinical pharmacokinetics as well as pharmacodynamics of tissue targeted HMG-CoA reductase inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号