首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Goulev Y  Charvin G 《Molecular cell》2011,41(3):243-244
In this issue, Trunnell et?al. (2011) show that in mitotic entry the positive feedback that drives the activation of cyclin-dependent kinase (Cdk) involves a very ultrasensitive step of phosphorylation of Cdc25C by Cdk, thus strongly contributing to the switch-like behavior of this essential cell-cycle transition.  相似文献   

2.
3.
《Cell reports》2023,42(4):112310
  1. Download : Download high-res image (159KB)
  2. Download : Download full-size image
  相似文献   

4.
5.
To determine the function and mechanism of action of the 8S-lipoxygenase (8-LOX) product of arachidonic acid, 8S-hydroxyeicosatetraenoic acid (8S-HETE), which is normally synthesized only after irritation of the epidermis, transgenic mice with 8-LOX targeted to keratinocytes through the use of a loricrin promoter were generated. Histological analyses showed that the skin, tongue, and stomach of transgenic mice are highly differentiated, and immunoblotting and immunohistochemistries of skin showed higher levels of keratin-1 expression compared with wild-type mice. The labeling index, however, of the transgenic epidermis was twice that of the wild-type epidermis. Furthermore, 8S-HETE treatment of wild-type primary keratinocytes induced keratin-1 expression. Peroxisome proliferator activated receptor alpha (PPARalpha) was identified as a crucial component of keratin-1 induction through transient transfection with expression vectors for PPARalpha, PPARgamma, and a dominant-negative PPAR, as well as through the use of known PPAR agonists. From these studies, it is concluded that 8S-HETE plays an important role in keratinocyte differentiation and that at least some of its effects are mediated by PPARalpha.  相似文献   

6.
The surge of LH that induces ovulation in mammals showing spontaneous ovulation is precipitated by the positive feedback of increasing oestrogens from the developing follicles in the ovary. In eutherians, exogenous oestrogens can mimic this effect by eliciting an LH surge in females, but not usually in males. The absence of a positive LH response to eutherian males is either due to an acute suppression by the secretory products of the testes during adulthood or the permanent disabling of the system by testosterone during early development. This phenomenon is examined in tammar wallabies, Macropus eugenii. The results show that the oestradiol-LH positive feedback response is sexually dimorphic in this marsupial. A surge in plasma LH occurred between 15 and 28 h after injection of 2.5 micrograms oestradiol benzoate kg-1 in 13 of 16 intact females and 4 of 4 ovariectomized females, but in none of 11 intact males. Five females each implanted with a 100 mg testosterone pellet 3 months earlier failed to produce an LH surge. Four males castrated in adulthood and three adult males castrated before puberty also failed to show an LH surge. However, three males castrated 24-26 days after birth showed an unambiguous LH surge when challenged with oestradiol benzoate during adulthood. Thus, in tammar wallabies, the ability to generate an LH surge to oestradiol is a sexually dimorphic response that is suppressed in the male by the organizational effects of the testes in early life and presumably supplemented by an inhibitory effect of circulating testosterone in adulthood.  相似文献   

7.
8.
9.
Quantitative analysis of organelle abundance, morphology and dynamics   总被引:1,自引:0,他引:1  
Recent data indicate that morphological characteristics of cell organelles are important for their function in the cell. These characteristics include not only their shape, number and size, but also their distribution in the cell. Moreover, the dynamics of processes that result in changes in these characteristics (e.g. organelle fission, fusion, autophagy, transport) influence the function of the cell. For a better understanding of these processes quantitative approaches are important. Here we give an overview of contemporary biochemical and microscopy methods that are used to quantify organelle abundance, morphology and the kinetics of the processes that cause changes in these properties.  相似文献   

10.
Control of organelle abundance is a fundamental unsolved problem in cell biology. Mechanisms for number control have been proposed in which organelle assembly is actively increased or decreased to compensate for deviations from a set-point, but such phenomena have not been experimentally verified. In this report we examine the control of centriole copy number. We develop a simple scheme to represent organelle inheritance as a first-order Markov process and describe two figures of merit based on entropy and convergence times that can be used to evaluate performance of organelle number control systems. Using this approach we show that segregation of centrioles by the mitotic spindle can shape the specificity of the steady-state centriole number distribution but is neither necessary nor sufficient for stable restoration of centriole number following perturbations. We then present experimental evidence that living cells can restore correct centriole copy number following transient perturbation, revealing a homeostatic control system. We present evidence that correction occurs at the level of single cell divisions, does not require association of centrioles with the mitotic spindle, and involves modulation of centriole assembly as a function of centriole number during S-phase. Combining our experimental and modeling results, we identify two processes required for error correction, de novo assembly and number-limiting, and show that both processes contribute to robust and stable homeostatic control of centriole number, yielding a system capable of suppressing biological noise at the level of organelle abundance.  相似文献   

11.
TANK‐binding kinase 1 (TBK1) activation is a central event in type I interferon production in anti‐virus innate immunity. However, the regulatory mechanism underlying TBK1 activation remains unclear. Here we report that Raf kinase inhibitory protein (RKIP) is essential for TBK1 activation and type I interferon production triggered by viral infection. Upon viral infection, RKIP is phosphorylated at serine 109 (S109) by TBK1. Phosphorylation of RKIP enhances its interaction with TBK1 and in turn promotes TBK1 autophosphorylation. Mutation of RKIP S109 to alanine abrogates the interaction between RKIP and TBK1, and the anti‐viral function of RKIP. RKIP deficiency inhibits intracellular double‐stranded RNA‐ or DNA‐induced type I interferon production. Consistently, RKIP deficiency renders the mice more susceptible to vesicular stomatitis virus (VSV) and herpes simplex virus (HSV) infections. This study reveals a previously unrecognized positive feedback loop between RKIP and TBK1 that is essential for type I interferon production in anti‐viral innate immunity.  相似文献   

12.
In developing limb skin, peripheral nerves are required for arterial differentiation, and guide the pattern of arterial branching. In vitro experiments suggest that nerve-derived VEGF may be important for arteriogenesis, but its role in vivo remains unclear. Using a series of nerve-specific Cre lines, we show that VEGF derived from sensory neurons, motoneurons and/or Schwann cells is required for arteriogenesis in vivo. Arteriogenesis also requires endothelial expression of NRP1, an artery-specific coreceptor for VEGF(164) that is itself induced by VEGF. Our results provide the first evidence that VEGF is necessary for arteriogenesis from a primitive capillary plexus in vivo, and show that in limb skin the nerve is indeed the principal source of this signal. They also suggest a model in which a 'winner-takes-all' competition for VEGF may control arterial differentiation, with the outcome biased by a VEGF(164)-NRP1 positive-feedback loop. Our results also demonstrate that nerve-vessel alignment is a necessary, but not sufficient, condition for nerve-induced arteriogenesis. Different mechanisms therefore probably underlie these endothelial patterning and differentiation processes.  相似文献   

13.
Perturbation of the input in open systems triggers a response which displaces the stationary state. It is shown that the gradients of this stationary displacement are comprised in the inverse matrix of the system. Hence the “trace criterion” of instability is examined in the inverse matrices of some positive and negative feedback oscillatory models. For positive feedback systems the results provide a phenomenological interpretation of instability, in terms of the control properties of the system. An objection to Clarke's conjecture is made.  相似文献   

14.
Differentiation often requires conversion of analogue signals to a stable binary output through positive feedback. Hedgehog (Hh) signalling promotes myogenesis in the vertebrate somite, in part by raising the activity of muscle regulatory factors (MRFs) of the Myod family above a threshold. Hh is known to enhance MRF expression. Here we show that Hh is also essential at a second step that increases Myod protein activity, permitting it to promote Myogenin expression. Hh acts by inducing expression of cdkn1c (p57Kip2) in slow muscle precursor cells, but neither Hh nor Cdkn1c is required for their cell cycle exit. Cdkn1c co-operates with Myod to drive differentiation of several early zebrafish muscle fibre types. Myod in turn up-regulates cdkn1c, thereby providing a positive feedback loop that switches myogenic cells to terminal differentiation.  相似文献   

15.
Recent experiments on ants and slime moulds have assessed the degree to which they make rational decisions when presented with a number of alternative food sources or shelter. Ants and slime moulds are just two examples of a wide range of species and biological processes that use positive feedback mechanisms to reach decisions. Here we use a generic, experimentally validated model of positive feedback between group members to show that the probability of taking the best of options depends crucially on the strength of feedback. We show how the probability of choosing the best option can be maximized by applying an optimal feedback strength. Importantly, this optimal value depends on the number of options, so that when we change the number of options the preference of the group changes, producing apparent "irrationalities". We thus reinterpret the idea that collectives show "rational" or "irrational" preferences as being a necessary consequence of the use of positive feedback. We argue that positive feedback is a heuristic which often produces fast and accurate group decision-making, but is always susceptible to apparent irrationality when studied under particular experimental conditions.  相似文献   

16.
Cancer-associated adipocytes (CAAs), which are adipocytes transformed by cancer cells, are of great importance in promoting the progression of breast cancer. However, the underlying mechanisms involved in the crosstalk between cancer cells and adipocytes are still unknown. Here we report that CAAs and breast cancer cells communicate with each other by secreting the cytokines leukemia inhibitory factor (LIF) and C-X-C subfamily chemokines (CXCLs), respectively. LIF is a pro-inflammatory cytokine secreted by CAAs, which promotes migration and invasion of breast cancer cells via the Stat3 signaling pathway. The activation of Stat3 induced the secretion of glutamic acid-leucine-arginine (ELR) motif CXCLs (CXCL1, CXCL2, CXCL3 and CXCL8) in tumor cells. Interestingly, CXCLs in turn activated the ERK1/2/NF-κB/Stat3 signaling cascade to promote the expression of LIF in CAAs. In clinical breast cancer pathology samples, the up-regulation of LIF in paracancerous adipose tissue was positively correlated with the activation of Stat3 in breast cancer. Furthermore, we verified that adipocytes enhanced lung metastasis of breast cancer cells, and the combination of EC330 (targeting LIF) and SB225002 (targeting C-X-C motility chemokine receptor 2 (CXCR2)) significantly reduced lung metastasis of breast cancer cells in vivo. Our findings reveal that the interaction of adipocytes with breast cancer cells depends on a positive feedback loop between the cytokines LIF and CXCLs, which promotes breast cancer invasion and metastasis.  相似文献   

17.
The programmed removal of organelles from differentiating lens fibre cells contributes towards lens transparency through formation of an organelle-free zone (OFZ). Disruptions in OFZ formation are accompanied by the persistence of organelles in lens fibre cells and can contribute towards cataract. A great deal of work has gone into elucidating the nature of the mechanisms and signalling pathways involved. It is apparent that multiple, parallel and redundant pathways are involved in this process and that these pathways form interacting networks. Furthermore, it is possible that the pathways can functionally compensate for each other, for example in mouse knockout studies. This makes sense given the importance of lens clarity in an evolutionary context. Apoptosis signalling and proteolytic pathways have been implicated in both lens fibre cell differentiation and organelle loss, including the Bcl-2 and inhibitor of apoptosis families, tumour necrosis factors, p53 and its regulators (such as Mdm2) and proteolytic enzymes, including caspases, cathepsins, calpains and the ubiquitin-proteasome pathway. Ongoing approaches being used to dissect the molecular pathways involved, such as transgenics, lens-specific gene deletion and zebrafish mutants, are discussed here. Finally, some of the remaining unresolved issues and potential areas for future studies are highlighted.  相似文献   

18.
19.
Peroxisome proliferator-activated receptor-delta (PPARdelta) is a nuclear receptor implicated in lipid oxidation and the pathogenesis of obesity and diabetes. This study was designed to examine the potential effect of PPARdelta on human cholangiocarcinoma cell growth and its mechanism of actions. Overexpression of PPARdelta or activation of PPARdelta by its pharmacological ligand, GW501516, at low doses (0.5-50 nM) promoted the growth of three human cholangiocarcinoma cell lines (CCLP1, HuCCT1, and SG231). This effect was mediated by induction of cyclooxygenase-2 (COX-2) gene expression and production of prostaglandin E2 (PGE2) that in turn transactivated epidermal growth factor receptor (EGFR) and Akt. In support of this, inhibition of COX-2, EGFR, and Akt prevented the PPARdelta-induced cell growth. Furthermore, PPARdelta activation or PGE2 treatment induced the phosphorylation of cytosolic phospholipase A2alpha (cPLA2alpha), a key enzyme that releases arachidonic acid (AA) substrate for PG production via COX. Overexpression or activation of cPLA2alpha enhanced PPARdelta binding to PPARdelta response element (DRE) and increased PPARdelta reporter activity, indicating a novel role of cPLA2alpha for PPARdelta activation. Consistent with this, AA enhanced the binding of PPARdelta to DRE, in vitro, suggesting a direct role of AA for PPARdelta activation. In contrast, although PGE2 treatment increased the DRE reporter activity in intact cells, it failed to induce PPARdelta binding to DRE in cell-free system, suggesting that cPLA2alpha-mediated AA release is required for PGE2-induced PPARdelta activation. Taken together, these observations reveal that PPARdelta induces COX-2 expression in human cholangiocarcinoma cells and that the COX-2-derived PGE2 further activates PPARdelta through phosphorylation of cPLA2alpha. This positive feedback loop plays an important role for cholangiocarcinoma cell growth and may be targeted for chemoprevention and treatment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号