首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 6 毫秒
1.
Miniatured floating macrophyte based ecosystem (FME) designed with Eichornia as the major biota was evaluated for bioelectricity generation and wastewater treatment. Three fuel cell assemblies (non-catalyzed electrodes) embedded in FME were evaluated with domestic sewage and fermented distillery wastewater in continuous mode for 210 days. Fermented distillery effluents from biohydrogen production (dark-fermentation) process exhibited effective power generation with simultaneous waste remediation. Two fuel cell assemblies (A1 and A2) showed effective bioelectricity generation. Increasing the organic load of wastewater showed good correlation with both power generation (A1, 211.14 mA/m2; A2, 224.93 mA/m2) and wastewater treatment (COD removal, 86.67% and VFA removal 72.32%). Combining A1 and A2 assemblies depicted stabilized performance with respect to current and voltage along with significant decrease in ohmic and activation losses. FME also exhibited effective removal of nitrates, colour and turbidity from wastewater. The studied miniatured ecological system facilitates both energy generation and wastewater treatment with a sustainable perspective.  相似文献   

2.
A biodiesel wastewater treatment technology was investigated for neutral alkalinity and COD removal by microbial fuel cell. An upflow bio-filter circuit (UBFC), a kind of biocatalyst MFC was renovated and reinvented. The developed system was combined with a pre-fermented (PF) and an influent adjusted (IA) procedure. The optimal conditions were operated with an organic loading rate (OLR) of 30.0 g COD/L-day, hydraulic retention time (HRT) of 1.04 day, maintained at pH level 6.5-7.5 and aerated at 2.0 L/min. An external resistance of circuit was set at 10 k?. The purposed process could improve the quality of the raw wastewater and obtained high efficiency of COD removal of 15.0 g COD/L-day. Moreover, the cost of UBFC system was only US$1775.7/m3 and the total power consumption was 0.152 kW/kg treated COD. The overall advantages of this invention are suitable for biodiesel wastewater treatment.  相似文献   

3.
《Process Biochemistry》2014,49(6):973-980
The pseudo-capacitive behaviour of a high surface area carbon veil electrode in a tubular microbial fuel cell (MFC) was investigated as a mechanism to enhance power quality and energy efficiency. Accumulated charge and energy from the anodic biofilm after prolonged open circuit times (1–120 min) were compared against equivalent periods of steady state loading (R = 100–3000 Ω). A significant difference in the amount of accumulated charge with different loads was observed, resulting in 1.051 C (R = 100 Ω) compared to 0.006 C (R = 3 kΩ). The automated application of short open and closed circuit (0.5–10 s) cycles resulted in an increase of power/current production (closed circuit alone), but presented lower efficiency considering entire open and closed period. The cumulative charge on the carbon veil electrode with biofilm was 39,807 C m−2 at 100 Ω. Electrochemical Impedance Spectroscopy (EIS) showed that the Helmholtz layer presented a double layer capacitance of more than ten times the biofilm on electrode. The results indicate that the capacitive behaviour could be utilized to increase the power quality, i.e. its availability/applicability with respect to the operation of low power consuming devices.  相似文献   

4.
This study examines the effects of biofouling on the electrochemical properties of cation exchange membranes (CEMs), such as membrane electrical resistance (MER), specific proton conductivity (SC), and ion transport number (t+), in addition to on microbial fuel cell (MFC) performance. CEM biofouling using a 15.5 ± 4.6 μm biofilm was found to slightly increase the MER from 15.65 Ω cm2 (fresh Nafion) to 19.1 Ω cm2, whereas an increase of almost two times was achieved when the electrolyte was changed from deionized water to an anolyte containing a high cation concentration supporting bacterial growth. The simple physical cleaning of CEMs had little effect on the Coulombic efficiency (CE), whereas replacing a biofouled CEM with new one resulted in considerable increase of up to 59.3%, compared to 45.1% for a biofouled membrane. These results clearly suggest the internal resistance increase of MFC was mainly caused by the sulfonate functional groups of CEM being occupied with cations contained in the anolyte, rather than biofouling itself.  相似文献   

5.
Wang A  Sun D  Cao G  Wang H  Ren N  Wu WM  Logan BE 《Bioresource technology》2011,102(5):4137-4143
Hydrogen gas production from cellulose was investigated using an integrated hydrogen production process consisting of a dark fermentation reactor and microbial fuel cells (MFCs) as power sources for a microbial electrolysis cell (MEC). Two MFCs (each 25 mL) connected in series to an MEC (72 mL) produced a maximum of 0.43 V using fermentation effluent as a feed, achieving a hydrogen production rate from the MEC of 0.48 m3 H2/m3/d (based on the MEC volume), and a yield of 33.2 mmol H2/g COD removed in the MEC. The overall hydrogen production for the integrated system (fermentation, MFC and MEC) was increased by 41% compared with fermentation alone to 14.3 mmol H2/g cellulose, with a total hydrogen production rate of 0.24 m3 H2/m3/d and an overall energy recovery efficiency of 23% (based on cellulose removed) without the need for any external electrical energy input.  相似文献   

6.
Construction of efficient performance of microbial fuel cells (MFCs) requires certain practical considerations. In the single chamber microbial fuel cell, there is no border between the anode and the cathode, thus the diffusion of the dissolved oxygen has a contrary effect on the anodic respiration and this leads to the inhibition of the direct electron transfer from the biofilm to the anodic surface. Here, a fed-batch single chambered microbial fuel cells are constructed with different distances 3 and 6?cm (anode- cathode spacing), while keeping the working volume is constant. The performance of each MFC is individually evaluated under the effects of vitamins & minerals with acetate as a fed load. The maximum open circuit potential during testing the 3 and 6?cm microbial fuel cells is about 946 and 791?mV respectively. By decreasing the distance between the anode and the cathode from 6 to 3?cm, the power density is decreased from 108.3?mW?m?2 to 24.5?mW?m?2. Thus, the short distance in membrane-less MFC weakened the cathode and inhibited the anodic respiration which affects the overall performance of the MFC efficiency. The system is displayed a maximum potential of 564 and 791?mV in absence & presence of vitamins respectively. Eventually, the overall functions of the acetate single chamber microbial fuel cell can be improved by the addition of vitamins & minerals and increasing the distance between the cathode and the anode.  相似文献   

7.
In the research and application of microbial fuel cell (MFC), how to incorporate MFCs into current wastewater infrastructure is an importance issue. Here, we report a novel strategy of integrating an MFC into a sequencing batch reactor (SBR) to test the energy production and the chemical oxygen demand (COD) removal. The membrane-less biocathode MFC is integrated with the SBR to recover energy from the aeration in the form of electricity and thus reduce the SBR operation costs. In a lab-scale integrated SBR-MFC system, the maximum power production of the MFC was 2.34 W/m(3) for one typical cycle and the current density reached up to 14 A/m(3) . As a result, the MFC contributed to the 18.7% COD consumption of the integrated system and also recovered energy from the aeration tank with a volume fraction of only 12% of the SBR. Our strategy provides a feasible and effective energy-saving and -recovering solution to upgrade the existing activated sludge processes.  相似文献   

8.
Anaerobic bioenergy production processes including fermentative biohydrogen (BioH2), anaerobic digestion (AD) and bioelectrochemical system have been investigated for converting municipal waste or various biomass feedstock to useful energy carriers. However, the performance of a microbial fuel cell (MFC) fed on the effluent from a two-stage biogas production process has not yet been investigated extensively in continuous reactor operation on complex substrates. In this study we have investigated the extent to which a microbial fuel cell (MFC) can reduce COD and recover further energy from the effluent of a two-stage biohydrogen and biomethane system. The performance of a four-module tubular MFC was determined at six different organic loadings (0.036–6.149 g sCOD L−1 d−1) in terms of power generation, COD removal efficiency, coulombic efficiency (CE) and energy conversion efficiency (ECE). A power density of 3.1 W m−3 was observed at the OLR = 0.572 g sCOD L−1 d−1, which resulted in the highest CE (60%) and ECE (0.8%), but the COD removal efficiency decreased at higher organic loading rates (35.1–4.4%). The energy recovery was 92.95 J L−1 and the energy conversion efficiency, based on total influent COD was found to be 0.48–0.81% at 0.572 g sCOD L−1 d−1. However, the energy recovery by the MFC is only reported for a four-module reactor and improved performance can be expected with an extended module count, as chemical energy remained available for further electrogenesis.  相似文献   

9.
Quantitative real-time PCR (qPCR) has been widely used in recent environmental microbial ecology studies as a tool for detecting and quantifying microorganisms of interest, which aids in better understandings of the complexity of wastewater microbial communities. Although qPCR can be used to provide more specific and accurate quantification than other molecular techniques, it does have limitations that must be considered when applying it in practice. This article reviews the principle of qPCR quantification and its applications to microbial ecology studies in various wastewater treatment environments. Here we also address several limitations of qPCR-based approaches that can affect the validity of quantification data: template nucleic acid quality, nucleic acid extraction efficiency, specificity of group-specific primers and probes, amplification of nonviable DNA, gene copy number variation, and limited number of sequences in the database. Even with such limitations, qPCR is reportedly among the best methods for quantitatively investigating environmental microbial communities. The application of qPCR is and will continue to be increasingly common in studies of wastewater treatment systems. To obtain reliable analyses, however, the limitations that have often been overlooked must be carefully considered when interpreting the results.  相似文献   

10.
Feasibility of using chocolate industry wastewater as a substrate for electricity generation using activated sludge as a source of microorganisms was investigated in two-chambered microbial fuel cell. The maximum current generated with membrane and salt bridge MFCs was 3.02 and 2.3 A/m2, respectively, at 100 Ω external resistance, whereas the maximum current generated in glucose powered MFC was 3.1 A/m2. The use of chocolate industry wastewater in cathode chamber was promising with 4.1 mA current output. Significant reduction in COD, BOD, total solids and total dissolved solids of wastewater by 75%, 65%, 68%, 50%, respectively, indicated effective wastewater treatment in batch experiments. The 16S rDNA analysis of anode biofilm and suspended cells revealed predominance of β-Proteobacteria clones with 50.6% followed by unclassified bacteria (9.9%), α-Proteobacteria (9.1%), other Proteobacteria (9%), Planctomycetes (5.8%), Firmicutes (4.9%), Nitrospora (3.3%), Spirochaetes (3.3%), Bacteroides (2.4%) and γ-Proteobacteria (0.8%). Diverse bacterial groups represented as members of the anode chamber community.  相似文献   

11.
【背景】微生物燃料电池(Microbial Fuel Cell,MFC)作为一种新型的燃料电池资源,在产电的同时可应用于污水处理领域,达到资源最大化的目的。【目的】从MFC中分离获得一株可培养微生物,研究其产电特性及在污水处理中的微生物絮凝、重金属耐受、苯酚降解性能,为扩展产电菌资源库提供理论基础。【方法】利用WO_3纳米探针从MFC阳极中筛选获得一株具备产电和絮凝性能的菌株,命名为EFS1。运用循环伏安分析结合扫描电镜观测阳极电极;改变外电阻测定极化曲线和功率密度曲线。测定菌株的絮凝、重金属耐受及苯酚降解性能。【结果】经16S rRNA基因序列分析,结合形态学和生理生化鉴定菌株EFS1为微嗜酸寡养单胞菌(Stenotrophomonas acidaminiphila)。菌株EFS1具有稳定的产电周期,周期电压最高可达300m V,功率密度可达56.25m W/m~2;扫描电镜发现菌株存在直接接触电极及分泌电子中介体传递电子的方式;MFC内阻为1 000Ω左右。有氧条件下菌株的絮凝率可达到70%,存在电子受体的无氧环境中可达到80%;该菌株还具有良好的Cd~(2+)、Cu~(2+)、Mn~(2+)耐受性及苯酚降解性能,在48 h、2–4 mg/L时苯酚降解率达到了100%。【结论】研究验证了产电菌EFS1具备絮凝能力、重金属耐受、苯酚降解的可能性,为产电菌的开发及污水处理方面提供理论依据。  相似文献   

12.
Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Methanotrophic bacteria are capable of converting methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. This review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel.  相似文献   

13.
Uptake of ingested microparticles into small intestinal tissues and on to secondary organs has moved from being an anecdotal phenomenon to a recognised and quantifiable process, which is relevant to risk assessment of accidental exposure, treatment of multi-organ dysfunction syndrome and therapeutic uses of encapsulated drug or vaccine delivery. This review puts in context with the literature the findings of a morphological study of microparticle uptake, using two approaches.The first is a rat in vivo in situ model, appropriate to a study rooted in the exposure of human populations to microparticles. Latex microspheres 2 μm in diameter are the principal particle type used, although others are also investigated. Most data are based on microscopy, but analysis of macerated bulk tissue is also useful. Uptake occurs at early time points after a single dose and is shown to take place almost entirely at villous rather than Peyer's patch sites: however, multiple feeding and therefore a longer time-span produces a higher proportion of particles associated with Peyer's patches, albeit for very small total uptake at those later time points. Uptake is less affected by species, fasting and immunological competence than by age and reproductive status.The second approach uses in vitro methods to confirm the role of intercellular junctions in particle uptake. Particle-associated tight junction opening, in a Caco-2 monolayer, is reflected in changes in transepithelial resistance and particle uptake across the epithelial monolayer: Tight junction opening and particle uptake are both increased further by external irradiation, ethanol and sub-epithelial macrophages, but reduced by exposure to ice. An M cell model has looser tight junctions than Caco-2 cells, but a similar level of particle uptake. These results, along with the changes seen in junctional proteins after particle addition, confirm the role of tight junctions in uptake but suggest that adhering junctions are also important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号