首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have identified new lead candidates that possess inhibitory activity against Mycobacterium tuberculosis H37Rv chorismate mutase by a ligand-based virtual screening optimized for lead evaluation in combination with in vitro enzymatic assay. The initial virtual screening using a ligand-based pharmacophore model identified 95 compounds from an in-house small molecule database of 15,452 compounds. The obtained hits were further evaluated by molecular docking and 15 compounds were short listed based on docking scores and the other scoring functions and subjected to biological assay. Chorismate mutase activity assays identified four compounds as inhibitors of M. tuberculosis chorismate mutase (MtCM) with low K(i) values. The structural models for these ligands in the chorismate mutase binding site will facilitate medicinal chemistry efforts for lead optimization against this protein.  相似文献   

2.
Naturally occurring variants of the enzyme chorismate mutase are known to exist that exhibit diversity in enzyme structure, regulatory properties, and association with other proteins. Chorismate mutase was not annotated in the initial genome sequence of Mycobacterium tuberculosis (Mtb) because of low sequence similarity between known chorismate mutases. Recombinant protein coded by open reading frame Rv1885c of Mtb exhibited chorismate mutase activity in vitro. Biochemical and biophysical characterization of the recombinant protein suggests its resemblance to the AroQ class of chorismate mutases, prototype examples of which include the Escherichia coli and yeast chorismate mutases. We also demonstrate that unlike the corresponding proteins of E. coli, Mtb chorismate mutase does not have any associated prephenate dehydratase or dehydrogenase activity, indicating its monofunctional nature. The Rv1885c-encoded chorismate mutase showed allosteric regulation by pathway-specific as well as cross-pathway-specific ligands, as evident from proteolytic cleavage protection and enzyme assays. The predicted N-terminal signal sequence of Mtb chorismate mutase was capable of functioning as one in E. coli, suggesting that Mtb chorismate mutase belongs to the AroQ class of chorismate mutases. It was evident that Rv1885c may not be the only enzyme with chorismate mutase enzyme function within Mtb, based on our observation of the presence of chorismate mutase activity displayed by another hypothetical protein coded by open reading frame Rv0948c, a novel instance of the existence of two monofunctional chorismate mutases ever reported in any pathogenic bacterium.  相似文献   

3.
Chorismate mutase of Brevibacterium flavum, a common enzyme in phenylalanine and tyrosine biosynthesis, was separted into two different component, A and B, with molecular weights of 250,000 and 25,000, respectively, by ammonium sulfate fractionation or gel-filtration. Both components were essential for the enzymatic activity. In the presence of the reaction substrate, chorismate, the two components associated reversibly to give an active enzyme complex with a molecular weight of 320,000. Binding sites of the feedback inhibitors, phenylalanine and tyrosine, on the enzyme were localized on component A as determined by hybridization experiments with the wild-type and mutant components. Tyrosine repressed the synthesis of component B much more strongly than that of component A, while phenylalanine did not show any significant repressive effect on either component. The wild-type strain No. 2247 had four times more component A than component B. Elution patterns in gel, DEAE-cellulose or hydroxyapatite column chromatography as well as the disc-gel electrophoretic pattern of chorismate mutase component A and 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthetase activities completely overlapped, suggesting the presence of a bifunctional protein having the two activities. In accord with this suggestion, chorismate mutase as well as DAHP synthetase was insensitive to feedback inhibition by phenylalanine and tyrosine in all the 3-fluorophenylalanine-resistant mutants tested that excreted both phenylalanine and tyrosine. All the phenylalanine and tyrosine double auxotrophs defective in chorismate mutase lacked component B but not A.  相似文献   

4.
The inhibition of the bifunctional enzyme chorismate mutase-prephenate dehydrogenase (4-hydroxyphenylpyruvate synthase) by substrate analogues has been investigated at pH 6.0 with the aim of elucidating the spatial relationship that exists between the sites at which each reaction occurs. Several chorismate and adamantane derivatives, as well as 2-hydroxyphenyl acetate and diethyl malonate, act as linear competitive inhibitors with respect to chorismate in the mutase reaction and with respect to chorismate in the mutase reaction and with respect to prephenate in the dehydrogenase reaction. The similarity of the dissociation constants for the interaction of these compounds with the free enzyme, as determined from the mutase and dehydrogenase reactions, indicates that the reaction of these inhibitors at a single site prevents the binding of both chorismate and prephenate. However, not all the groups on the enzyme, which are responsible for the binding of these two substrates, can be identical. At lower concentrations, citrate or malonate prevents reaction of the enzyme with prephenate, but not with chorismate. Nevertheless, the combining sites for chorismate and prephenate are in such close proximity that the diethyl derivative of malonate prevents the binding of both substrates. The results lead to the proposal that the sites at which chorismate and prephenate react on hydroxyphenylpyruvate synthase share common features and can be considered to overlap.  相似文献   

5.
Comparison of chorismate mutase isozyme patterns in selected plants   总被引:2,自引:2,他引:0       下载免费PDF全文
A wide variety of plants have been assayed to determine if they contain three isozymes of chorismate mutase (EC 5.4.99.5) as does alfalfa (Medicago sativa L.) or two isozymes, as does mung bean (Phaseolus aureus). The isozymes were separated by disc electrophoresis. All anthophyta with the exception of some closely related Leguminosae contained three isozymes of chorismate mutase. The one coniferophyta (a pine), and pterophyta (a fern) and one microphyllophyta (a Selaginella) assayed contained two isozymes of chorismate mutase. All plants assayed contained measurable chorismate mutase levels and at least two isozymes of chorismate mutase.  相似文献   

6.
The presence of exported chorismate mutases produced by certain organisms such as Mycobacterium tuberculosis has been shown to correlate with their pathogenicity. As such, these proteins comprise a new group of promising selective drug targets. Here, we report the high-resolution crystal structure of the secreted dimeric chorismate mutase from M. tuberculosis (*MtCM; encoded by Rv1885c), which represents the first 3D-structure of a member of this chorismate mutase family, termed the AroQ(gamma) subclass. Structures are presented both for the unliganded enzyme and for a complex with a transition state analog. The protomer fold resembles the structurally characterized (dimeric) Escherichia coli chorismate mutase domain, but exhibits a new topology, with helix H4 of *MtCM carrying the catalytic site residue missing in the shortened helix H1. Furthermore, the structure of each *MtCM protomer is significantly more compact and only harbors one active site pocket, which is formed entirely by one polypeptide chain. Apart from the structural model, we present evidence as to how the substrate may enter the active site.  相似文献   

7.
A direct and single-step method has been developed for the synthesis of mono and 2,3-disubstituted quinoxalines by using a AlCl(3) induced (hetero)arylation of 2,3-dichloroquinoxaline. Both symmetrical and unsymmetrical 2,3-disubstituted quinoxalines can be prepared conveniently by using this method under appropriate reaction conditions. The reaction proceeds via C-C bond formation and can be utilized for the preparation of a variety of quinoxaline derivatives from readily available starting materials and reagents. The molecular structure of a representative compound was confirmed by single crystal X-ray diffraction study. Some of the compounds synthesized were tested for chorismate mutase inhibitory properties in vitro and one compound showed promising activity representing one of the few examples of chorismate mutase inhibition by a heteroarene based small molecule.  相似文献   

8.
A series of novel N-aryl substituted thieno[2,3-d]pyrimidin-4(3H)-ones were designed and synthesized as potential inhibitors of chorismate mutase. Synthesis of this class of compounds was carried out by using Cu-mediated C-N bond forming reaction between thieno[2,3-d]pyrimidin-4(3H)-ones and aryl boronic acids. The reaction can be performed in an open flask as the conversion was found to be not sensitive to the presence of air or atmospheric moisture. A range of compounds were prepared by using this method and single crystal X-ray diffraction study was performed using a representative compound. In vitro pharmacological data of some of the compounds synthesized along with dose response studies using active molecules are presented. In silico interactions of these molecules with chorismate mutase are also presented.  相似文献   

9.
Several regulated enzymes involved in aromatic amino acid synthesis were studied in Bacillus subtilis and B. licheniformis with reference to organization and control mechanisms. B. subtilis has been previously shown (23) to have a single 3-deoxy-d-arabinoheptulosonate 7-phosphate (DAHP) synthetase but to have two isozymic forms of both chorismate mutase and shikimate kinase. Extracts of B. licheniformis chromatographed on diethylaminoethyl (DEAE) cellulose indicated a single DAHP synthetase and two isozymic forms of chorismate mutase, but only a single shikimate kinase activity. The evidence for isozymes has been supported by the inability to find strains mutant in these activities, although strains mutant for the other activities were readily obtained. DAHP synthetase, one of the isozymes of chorismate mutase, and one of the isozymes of shikimate kinase were found in a single complex in B. subtilis. No such complex could be detected in B. licheniformis. DAHP synthetase and shikimate kinase from B. subtilis were feedback-inhibited by chorismate and prephenate. DAHP synthetase from B. licheniformis was also feedback-inhibited by these two intermediates, but shikimate kinase was inhibited only by chorismate. When the cells were grown in limiting tyrosine, the DAHP synthetase, chorismate mutase, and shikimate kinase activities of B. subtilis were derepressed in parallel, but only DAHP synthetase and chorismate mutase were derepressible in B. licheniformis. Implications of the differences as well as the similarities between the control and the pattern of enzyme aggregation in the two related species of bacilli were discussed.  相似文献   

10.
Kuroki G  Conn EE 《Plant physiology》1988,86(3):895-898
Discs excised from Solanum tuberosum L. cv White Rose tubers demonstrated a 4.5-fold increase in chorismate mutase activity 48 hours after excision. Incubation in the presence of cycloheximide (25 micromolar) or actinomycin D (100 micromolar) completely inhibited the wound response suggesting de novo synthesis of chorismate mutase. Ratios of activity in the presence of the activator tryptophan to that in the absence of tryptophan remained relatively constant during the induction period. This indicated either a constant ratio of tryptophan sensitive to tryptophan insensitive isozymes, or that only one form of chorismate mutase was present. Chromatography of crude extracts on three different columns yielded only one peak of chorismate mutase activity, activated by tryptophan in each case. Incubation under white light had no effect on chorismate mutase activity when compared to dark controls.  相似文献   

11.
The effect of pH on chorismate mutase/prephenate dehydratase (chorismate pyruvate mutase/prephenate hydro-lyase (decarboxylating) EC 5.4.99.5/EC 4.2.1.51) from Escherichia coli K12 has been studied. While the maximum velocity of both activities is independent of pH, Km for chorismate or prephenate shows a complex pH dependence. Differences in mutase activity in acetate/phosphate/borate and citrate/phosphate/borate buffers were traced to inhibition by citrate. When a variety of analogues of citrate were tested as possible inhibitors of the enzyme, several were found to inhibit mutase and dehydratase activities to different extents, and by different mechanisms. Thus citrate competitively inhibits mutase activity, but inhibits dehydratase activity by either a non-competitive or an uncompetitive mechanism. Conversely, cis- and trans-aconitate competitively inhibit dehydratase activity, but are partially competitive inhibitors of mutase activity. The differential effects of these inhibitors on the two activities are consistent with the existence of two distinct active sites, but additionally suggest some degree of interconnection between them. The implications of these results for possible mechanisms of catalysis by chorismate mutase/prephenate dehydratase are discussed.  相似文献   

12.
Chorismate mutase from Streptomyces aureofaciens was purified 12-fold. This enzyme preparation did not show any activity when tested for anthranilate synthetase, prephenate dehydrogenase, or prephenate dehydratase. The catalytic activity of chorismate mutase has a broad optimum between pH 7 and 8. The initial velocity data followed regular Michaelis-Menten kinetics with a K(m) of 5.3 x 10(-4) M, and the molecular weight of the enzyme was determined by sucrose gradient centrifugation to be 50,000. Heat inactivation of chorismate mutase, which occurs above temperatures of 60 C, is reversible. The enzyme activity can be restored even when chorismate mutase is treated at the temperature of a boiling-water bath for 15 min. Heat-denatured and renatured enzymes showed the same Michaelis constant and the same molecular weight as the native enzyme. l-Phenylalanine, l-tyrosine, l-tryptophan, and metabolites of the aromatic amino acid pathway were tested as potential modifiers of chorismate mutase activity. The activity of the enzyme was inhibited by none of these substances. Chorismate mutase of S. aureofaciens was not repressed in cells grown in minimal medium supplemented with l-phenylalanine, l-tyrosine, or l-tryptophan.  相似文献   

13.
Candida maltosa synthesizes phenylalanine and tyrosine only via phenylpyruvate and p-hydroxyphenylpyruvate. Tryptophan is absolutely necessary for the enzymatic reaction of chorismate mutase and prephenate dehydrogenase; activity of prephenate dehydratase can be increased 2.5-fold in the presence of tryptophan. Activation of the chorismate mutase, prephenate dehydratase and prephenate dehydrogenase by tryptophan is competitive with respect to chorismate and prephenate with Ka 0.06mM, 0.56mM and 1.7mM. In addition tyrosine is a competitive inhibitor of chorismate mutase (Ki = 0.55mM) and prephenate dehydrogenase (Ki = 5.5mM).  相似文献   

14.
15.
Highly purified fractions of chorismate mutase 1 and 2 from etiolated seedlings of Sorghum bicolor were used as the antigen for antibody production in BALB/c mice. Tests for antigen-antibody complex formation were made by immunodiffusion, immunoprecipitation, and enzyme-linked immunosorbent assay (ELISA). These tests indicated the presence of specific antibodies for each isoenzyme in their antisera. However, in the same tests, no cross-reaction was found between chorismate mutase 1 and 2 and their antisera. This indicates no immunological similarity between the two isoenzymes of chorismate mutase from sorghum.  相似文献   

16.
The enzyme activities specified by the tyrA and pheA genes were studied in wildtype strain Salmonella typhimurium and in phenylalanine and tyrosine auxotrophs. As in Aerobacter aerogenes and Escherichia coli, the wild-type enzymes of Salmonella catalyze two consecutive reactions: chorismate --> prephenate --> 4-hydroxy-phenylpyruvate (tyrA), and chorismate --> prephenate --> phenylpyruvate (pheA). A group of tyrA mutants capable of interallelic complementation had altered enzymes which retained chorismate mutase T activity but lacked prephenate dehydrogenase. Similarly, pheA mutants (in which interallelic complementation does not occur) had one group with altered enzymes which retained chorismate mutase P but lacked prephenate dehydratase. Tyrosine and phenylalanine auxotrophs outside of these categories showed loss of both activities of their respective bifunctional enzyme. TyrA mutants which had mutase T were considerably derepressed in this activity by tyrosine starvation and consequently excreted prephenate. A new and specific procedure was developed for assaying prephenate dehydrogenase activity.  相似文献   

17.
A series of aza inhibitors (4-9) of chorismate mutase (E.C. 5.4.99.5) was designed, prepared, and evaluated against the enzyme by monitoring the direct inhibition of the chorismate, 1, to prephenate, 2, conversion. None of these aza inhibitors displayed tighter binding to the enzyme than the native substrate chorismate or greater inhibitory action than the previously reported ether analogue, 3. Furthermore, no time-dependent loss of enzyme activity was observed in the presence of the two potentially reactive aza inhibitors (7 and 9). These results in conjunction with inhibition data from a broader series of chorismate mutase inhibitors allowed a novel proposal for the mechanistic role of chorismate mutase to be developed. This proposed mechanism was computationally verified and correlated with crystallographic studies of various chorismate mutases.  相似文献   

18.
E Heyde 《Biochemistry》1979,18(13):2766-2775
The relationship between the sites for catalysis of two reactions by the bifunctional enzyme chorismate mutase--prephenate dehydrogenase has been investigated. The results are consistent with the occurrence of both reactions at one active site. Comparisons have been made between experimental data for the time course of the overall reaction and computer simulations, according to various models for the relationship between the mutase and dehydrogenase sites. A model based on a single active site is consistent with the time course data if a minor proportion of the chorismate that reacts can be converted through to (hydroxyphenyl)pyruvate without the intermediate release of prephenate. Consistent with this requirement, some channeling of radioactivity from chorismate to (hydroxyphenyl)pyruvate has been detected. A model based on two separate sites has also been considered; the simulations show that if this model applies there is no need to postulate any channeling of the intermediate, prephenate, between the sites and there must be marked inhibition of the dehydrogenase reaction by chorismate. Since channeling has been observed and chorismate increases the dehydrogenase rate under all conditions, the two-site model appears unlikely. Consistent with the one-site model are the observations that a variety of inactivating conditions cause parallel loss of mutase and dehydrogenase activity and that identical protection against inactivation of both mutase and dehydrogenase by iodoacetamide is afforded by prephenate.  相似文献   

19.
Biosynthesis of 4-Aminobenzoate in Escherichia coli   总被引:10,自引:8,他引:2       下载免费PDF全文
Two different mutations (pabA and pabB) affecting 4-aminobenzoate biosynthesis were obtained in strains of Escherichia coli lacking chorismate mutase and anthranilate synthetase activity, thus allowing study of the pathway of biosynthesis of 4-aminobenzoate by use of cell extracts of strains carrying the pab mutations. Two components with approximate molecular weights of 9,000 (component A) and 48,000 (component B) are concerned in the biosynthesis of 4-aminobenzoate from chorismate by E. coli. No diffusible intermediate compound could be detected.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号