首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ellis  J.I.  Schneider  D.C.  Thrush  S.F. 《Hydrobiologia》2000,440(1-3):379-391
Demonstrating spatial or temporal gradients of effects on macrobenthic communities can be a useful way of providing strong empirical evidence of natural or anthropogenic disturbance. Gradient designs for environmental assessment are sensitive to change for point source data, enabling the scale of the effects of a disturbance to be readily identified. If the spatial scale that is sampled from the point source is adequate, problems of selecting control sites can be avoided. However, sources of spatial variation in macrobenthic communities, which are not related to the impact, can confound the use of gradient designs. This can occur if the natural spatial structure overlaps that of the gradient and cannot be identified either as a location or environmental covariable. The ability to detect point source impacts using a gradient design against natural spatial variability was tested using benthic macrofaunal data collected from Manukau Harbour, New Zealand. Treated sewage wastewater is discharged into the north-west area of the Manukau Harbour. Sandflats in the vicinity of the outfall are also subject to physical disturbance from wind-waves and strong tides. Ordination techniques and the testing of a priori predictions were used to try and separate the relative effects of organic and physical disturbance on the benthic communities. While the occurrence of other environmental disturbances along a gradient of anthropogenic disturbance makes interpretation of community pattern more difficult, the use of a gradient sampling layout, ordination analysis and the testing of a priori predictions enabled impacts of the anthropogenic and natural environmental disturbances to be interpreted. Gradient designs, therefore, provide a method of assessing complex impacts that operate over broad spatial and temporal scales.  相似文献   

2.
Aims Forest vegetation variability may be explained by the complex interplay among several spatial structuring factors, including climate and topography. We modelled the spatial variability of forest vegetation assemblages and significant environmental variables along a complex environmental gradient or coenocline to produce a detailed cartographic database portraying the distribution of forests along it.Methods We combined an analysis of ordination coenoclines with kriging over 772 field data plots from the third Spanish National Forest Inventory in an Atlantic–Mediterranean transitional area (northern Spain).Important findings The best fitted empirical semivariogram revealed a strong spatial structure of forest species composition along the complex environmental gradient considered (the climatic–topographic gradient from north to south). The steady and gradual increase of semivariance with a marked lag distance indicates a gradual turnover of forest assemblages according to the climatic–topographic variations (regional or local). Two changes in the slope of the semivariogram suggest the existence of two different scales of spatial variation. The interpolation map by Kriging of forest vegetation assemblages along the main coenocline shows a clear spatial distribution pattern of trees and shrubs in accordance with the spatial variation of significant environmental variables. We concluded that the multivariate geostatistical approach is a suitable technique for spatial analysis of forest systems employing data from national forest inventories based on a regular network of field plots. The development of an assortment of maps describing changes in vegetation assemblages and variation in environmental variables is expected to be a suitable tool for an integrated forest management and planning.  相似文献   

3.
Floodplain forests are generally areas of high plant diversity compared with upland forests. Higher environmental heterogeneity, especially variation in belowground properties may help explain this high diversity. However, there is little information available on the spatial scale and pattern of belowground resources in floodplain forests. Geostatistics and coefficient of variation (CV) were used to describe the spatial variability of 20 soil properties ranging from essential plant nutrients, such as NH4 or PO4, to nonessential elements like Ti or V. The spatial variation of Si-to-(Al + Fe) ratio, an index of soil development, was also analyzed. Semivariograms and maps of selected properties were used to discriminate between the effect of flooding (and other mechanisms that may contribute to large scale trends in data) and local heterogeneity. The hypothesis that elements mainly cycled through biological processes (such as N) show different spatial properties than elements cycled through both biological and geological processes (such as P) or elements under strict geological control (such as Ti or V) is also presented. Redox potential was the most variable property (CV = 1.35) followed by mineral N, phosphate, organic matter, and carbon. Nonessential elements for organisms such as Si, Al, Ti, Rh, or V were less variable, supporting the hypothesis that biological control on soil properties leads to higher spatial variability. The range (the average distance within which the samples correlate spatially) varied between 3.89 m for water content to 18.5 m for the Si-to-(Al + Fe) ratio. The proportion of the total variance that can be modeled as spatial dependence (structural variance) was very variable, ranging between 0.34 for Fe and 0.96 for K. The addition of the large trend had a strong influence on the CV of most soil variables and created a gradient in C accumulation and the mineral weathering rate. The results suggest that flooding and other processes that are responsible for large spatial trends in the floodplain forest differentially affect biologically and geologically controlled variables with different turnover rates, thus providing a heterogeneous edaphic environment.  相似文献   

4.
地质统计学在昆虫种群空间结构研究中的应用概述   总被引:35,自引:0,他引:35  
周强  张润杰 《动物学研究》1998,19(6):482-488
地质统计学是用来人间相关变量结构的统计学方法,地质统计学中的变差函数和变差图,可分析空间变量在不同方向或不同环境条件下的空间结构。  相似文献   

5.
The distribution of Aedes aegypti (L) (Diptera: Culicidae) oviposition in Buenos Aires City is spatially heterogeneous. Oviposition activity was monitored for a year with a grid of 279 traps at 850-m intervals that were serviced weekly. Geostatistics were used for the spatial analysis and generalized linear regression to model oviposition as a function of demographic and environmental variables. The proportion of weeks infested and the total number of eggs showed spatial continuity and were higher in areas that had higher densities of houses and were closer to industrial sites; they were lower in areas with higher human populations or higher densities of flats. When all sites were considered, the spatial structure showed a strong trend, but after regression, the residuals presented lower spatial dependence. When only infested sites were considered, the oviposition variables were spatially autocorrelated and the regression residuals showed little or no spatial dependence. The spatial pattern of Ae. aegypti oviposition in a highly urbanized city such as Buenos Aires seems to be related to the urbanization gradient. These urban environments might present different resource availability or continuity between patches of resources.  相似文献   

6.
To explain cultural and technological innovations in the Middle Stone Age (MSA) of southern Africa, scholars invoke several factors. A major question in this research theme is whether MSA technocomplexes are adapted to a particular set of environmental conditions and subsistence strategies or, on the contrary, to a wide range of different foraging behaviours. While faunal studies provide key information for addressing these factors, most analyses do not assess intra-technocomplex variability of faunal exploitation (i.e. variability within MSA phases). In this study, we assess the spatial variability of the Still Bay fauna in one phase (M1) of the Blombos Cave sequence. Analyses of taxonomic composition, taphonomic alterations and combustion patterns reveal important faunal variability both across space (lateral variation in the post-depositional history of the deposits, spatial organisation of combustion features) and over time (fine-scale diachronic changes throughout a single phase). Our results show how grouping material prior to zooarchaeological interpretations (e.g. by layer or phase) can induce a loss of information. Finally, we discuss how multiple independent subdivisions of archaeological sequences can improve our understanding of both the timing of different changes (for example in technology, culture, subsistence, environment) and how they may be inter-related.  相似文献   

7.
Direct gradient analyses in spatial genetics provide unique opportunities to describe the inherent complexity of genetic variation in wildlife species and are the object of many methodological developments. However, multicollinearity among explanatory variables is a systemic issue in multivariate regression analyses and is likely to cause serious difficulties in properly interpreting results of direct gradient analyses, with the risk of erroneous conclusions, misdirected research and inefficient or counterproductive conservation measures. Using simulated data sets along with linear and logistic regressions on distance matrices, we illustrate how commonality analysis (CA), a detailed variance‐partitioning procedure that was recently introduced in the field of ecology, can be used to deal with nonindependence among spatial predictors. By decomposing model fit indices into unique and common (or shared) variance components, CA allows identifying the location and magnitude of multicollinearity, revealing spurious correlations and thus thoroughly improving the interpretation of multivariate regressions. Despite a few inherent limitations, especially in the case of resistance model optimization, this review highlights the great potential of CA to account for complex multicollinearity patterns in spatial genetics and identifies future applications and lines of research. We strongly urge spatial geneticists to systematically investigate commonalities when performing direct gradient analyses.  相似文献   

8.
1. Quantifying the relative importance of environmental filtering versus regional spatial structuring has become an intensively studied area in the context of metacommunity ecology. However, most studies have evaluated the role of environmental and spatial processes using taxonomic data sets of single snapshot surveys. 2. Here, we examined temporal changes in patterns and possible processes behind the functional metacommunity organization of stream fishes in a human‐modified landscape. Specifically, we (i) studied general changes in the functional composition of fish assemblages among 40 wadeable stream sites during a 3‐year study period in the catchment area of Lake Balaton, Hungary, (ii) quantified the relative importance of spatial and environmental factors as determinants of metacommunity structure and (iii) examined temporal variability in the relative role of spatial and environmental processes for this metacommunity. 3. Partial triadic analysis showed that assemblages could be effectively ordered along a functional gradient from invertebrate consuming species dominated by the opportunistic life‐history strategy, to assemblages with a diverse array of functional attributes. The analysis also revealed that functional fish assemblage structure was moderately stable among the sites between the sampling periods. 4. Despite moderate stability, variance partitioning using redundancy analyses (RDA) showed considerable temporal variability in the contribution of environmental and spatial factors to this pattern. The analyses also showed that environmental variables were, in general, more important than spatial ones in determining metacommunity structure. Of these, natural environmental variables (e.g. altitude, velocity) proved to be more influential than human‐related effects (e.g. pond area, % inhabited area above the site, nutrient enrichment), even in this landscape with relatively low variation in altitude and stream size. 5. Pond area was, however, the most important human stressor variable that was positively associated with the abundance of non‐native species with diverse functional attributes. The temporal variability in the relative importance of environmental and spatial factors was probably shaped by the release of non‐native fish from fish ponds to the stream system during flood events. 6. To conclude, both spatial processes and environmental control shape the functional metacommunity organization of stream fish assemblages in human‐modified landscapes, but their importance can vary in time. We argue, therefore, that metacommunity studies should better consider temporal variability in the ecological mechanisms (e.g. dispersal limitation, species sorting) that determine the dynamics of landscape‐level community organization.  相似文献   

9.
The relation of macrobenthic species turnover (beta diversity) and species plylogenetic variation with functional diversity patterns, across an environmental gradient induced by an aquaculture unit, in a coastal area of the island of Lesvos (NE Aegean) has been investigated in this study. The contribution of rare species response and species dispersal ability in the variation of functional diversity patterns along the environmental gradient, on a spatio-temporal scale, has been also examined. Our results revealed that benthic functional diversity was decreasing monotonically with increasing species turnover rate and hence with increasing spatial variability along the environmental gradient. Increased environmental stress which was detected in the immediate vicinity of the fish cages resulted to low species functional redundancy, since different species didn’t perform the same functional role at the most disturbed part of the established gradient. Functional diversity patterns were found to be correlated with species population size, whereas a strong linear relationship was also detected with phylogenetic diversity patterns, thus supporting the claim that wider local taxonomic trees can support a wider range of species functions even in small spatial scales. Rare species loss seemed to be one of the dominant factors ruling functional diversity variation. Species with the minimum possible dispersal ability, which were mostly rare, tend to diminish both in species number and population size faster than species with wider dispersal ability towards the most disturbed areas. The aforementioned results indicate that rare species variation and endemic species loss are critical factors in determining functional diversity loss across a human-induced environmental gradient in soft bottom benthic communities.  相似文献   

10.
Among songbirds, growing evidence suggests that acoustic adaptation of song traits occurs in response to habitat features. Despite extensive study, most research supporting acoustic adaptation has only considered acoustic traits averaged for species or populations, overlooking intraindividual variation of song traits, which may facilitate effective communication in heterogeneous and variable environments. Fewer studies have explicitly incorporated sexual selection, which, if strong, may favour variation across environments. Here, we evaluate the prevalence of acoustic adaptation among 44 species of songbirds by determining how environmental variability and sexual selection intensity are associated with song variability (intraindividual and intraspecific) and short-term song complexity. We show that variability in precipitation can explain short-term song complexity among taxonomically diverse songbirds, and that precipitation seasonality and the intensity of sexual selection are related to intraindividual song variation. Our results link song complexity to environmental variability, something previously found for mockingbirds (Family Mimidae). Perhaps more importantly, our results illustrate that individual variation in song traits may be shaped by both environmental variability and strength of sexual selection.  相似文献   

11.
沈阳城市土壤全钾和碱解氮的空间变异性   总被引:9,自引:0,他引:9  
采用地统计学和地理信息系统(GIS)相结合的方法研究了沈阳城市土壤全钾、碱解氮2种土壤养分的空间变异性.结果表明:全钾的最佳拟合模型为指数模型,碱解氮的最佳拟合模型为高斯模型;其块金值/基台值[C0/(C0+C)]分别为10.65%和17.96%,说明沈阳城市土壤全钾和碱解氮的空间相关性较强,其空间变异主要是由结构性因素引起的.通过克立格插值对沈阳城市土壤全钾和碱解氮的空间分布特征进行分析发现:全钾的空间分布没有明显的规律性;碱解氮的空间分布则为周边高、城区中部低.  相似文献   

12.
13.
Adaptation to similar selective pressures can explain morphological convergence between closely related species in contact zones. Geostatistics and Geographical Information System were used to identify multi-scale patterns of morphological variability and test the hypothesis of morphological convergence due to local environmental pressures in the contact areas between Vipera aspis and Vipera latastei in the Iberian Peninsula. Nine morphological traits from 630 and 362 vipers at regional and local scale, respectively, were interpolated by Kriging to generate surfaces of morphological variation. Kriging is a geostatistical algorithm that allows investigating the spatial structure of data with statistical models. At both scales, a convergent north–south pattern in morphological variability was observed and the contact areas were identified as integration zones where intermediate vipers are found. Significant correlations were found between surfaces of univariate and multivariate traits, with precipitation and temperature seasonality. Thus, several morphological traits were apparently under local environmental selection. Nevertheless, the influence of biotic pressures and gene flow on morphological convergence of vipers in contact zones deserves further study.  相似文献   

14.
王波  毛任钊  曹健  王元仲  高云风  李冬梅 《生态学报》2006,26(12):4082-4090
随着工业和农业的快速发展,农田受到重金属污染的压力越来越大,其土壤环境质量的及时监测和掌握重金属在其空间的变异规律对农业生产具有十分重要的意义。利用地统计学和GIS技术对海河低平原区(肥乡县)农田土壤耕层(0—20Cm)8种重金属含量空间变异性进行了研究。结果表明:去除异常值后,8种重金属含量都符合正态分布,且其含量算术平均值未超过国家土壤环境质量二级标准。通过变异函数分析,Ph和Cr具有纯块金效应,Cu和Zn符合指数模型,Ni和Cd符合球状模型,地和As符合带基台值的线性模型。在该地区以2.0km为取样间距较大,以后调查时应该缩小间隔。Zn和Cd的空间变异性受人为因素影响较小,而Cu、Ni、Hg和As的空间变异性受人为因素影响较大,Ph和Cr在整个研究尺度上具有恒定的变异。Cu、Zn、Ni、Hg、As和Cd的变程差异较大,在2.5—13.7km之间。通过普通kriging法局部插值,Cu、Zn、Ni和As含量由西南部向东北部含量逐步升高,但是Hg却表现出相反的分布趋势。这将为当地正在开展的优势农产品区域布局规划提供理论依据。  相似文献   

15.
The loss of biodiversity has become a matter of urgent concern and a better understanding of local drivers is crucial for conservation. Although environmental heterogeneity is recognized as an important determinant of biodiversity, this has rarely been tested using field data at management scale. We propose and provide evidence for the simple hypothesis that local species diversity is related to spatial environmental heterogeneity. Species partition the environment into habitats. Biodiversity is therefore expected to be influenced by two aspects of spatial heterogeneity: 1) the variability of environmental conditions, which will affect the number of types of habitat, and 2) the spatial configuration of habitats, which will affect the rates of ecological processes, such as dispersal or competition. Earlier, simulation experiments predicted that both aspects of heterogeneity will influence plant species richness at a particular site. For the first time, these predictions were tested for plant communities using field data, which we collected in a wooded pasture in the Swiss Jura mountains using a four-level hierarchical sampling design. Richness generally increased with increasing environmental variability and "roughness" (i.e. decreasing spatial aggregation). Effects occurred at all scales, but the nature of the effect changed with scale, suggesting a change in the underlying mechanisms, which will need to be taken into account if scaling up to larger landscapes. Although we found significant effects of environmental heterogeneity, other factors such as history could also be important determinants. If a relationship between environmental heterogeneity and species richness can be shown to be general, recently available high-resolution environmental data can be used to complement the assessment of patterns of local richness and improve the prediction of the effects of land use change based on mean site conditions or land use history.  相似文献   

16.
Theory relating species richness to ecosystem variability typically ignores the potential for environmental variability to promote species coexistence. Failure to account for fluctuation‐dependent coexistence may explain deviations from the expected negative diversity–ecosystem variability relationship, and limits our ability to predict the consequences of increases in environmental variability. We use a consumer‐resource model to explore how coexistence via the temporal storage effect and relative nonlinearity affects ecosystem variability. We show that a positive, rather than negative, diversity–ecosystem variability relationship is possible when ecosystem function is sampled across a natural gradient in environmental variability and diversity. We also show how fluctuation‐dependent coexistence can buffer ecosystem functioning against increasing environmental variability by promoting species richness and portfolio effects. Our work provides a general explanation for variation in observed diversity–ecosystem variability relationships and highlights the importance of conserving regional species pools to help buffer ecosystems against predicted increases in environmental variability.  相似文献   

17.
Macroalgae are unavoidable biological elements when monitoring and assessing costal environments. However, these tasks can be difficult to address because macroalgae a) present a high natural variability across a range of spatial and temporal scales, b) they imply a high sampling and laboratory processing effort and good taxonomical expertise (as they are a very diverse group of species), and c) there is insufficient knowledge about their structural and functional characteristics. This work addressed how the vertical (intertidal zonation) and horizontal (latitudinal gradient) variability of macroalgae assemblages are structured across continental Portugal, as well as how some surrogates for species-level biodiversity measures (namely functional groups and thallus morphology approaches) respond to such large-scale variability. Particularly, it was tested if intertidal zonation patterns are higher than fine-scale horizontal variation, and however, if vertical variation decreases along broad-scale horizontal variation. To do so, cover per species was taken (using a photographical and GIS methodological approach) from five sites located along the shoreline and along respective upper- mid- and lower-intertidal zones. The work findings include that both intertidal and latitudinal gradients impose deep structural changes on assemblages patterns. That is, broad-scale processes along Portuguese latitudes act as strongly as vertical stress gradients on assemblages patterns. Functional groups and thallus morphology approaches were useful to generalize the latitudinal assemblages patterns, where some groups emerge at the expense of others, and may improve biodiversity understanding and ecological synthesis. Because these surrogates decrease taxonomical expertise needs and can provide insight into the functional structure of macroalgal communities, their patterns founded may be particularly useful as reference data for further monitoring, so that shifts in such patterns might represent early warning surrogate approaches to detect environmental impact changes. Ultimately, to generate broader databases on rocky shore assemblages diversity (from species-level to functional groups and thallus morphologies approaches) can be useful for large-scale comparisons and for establishing ecological reference conditions, including for monitoring programs and environmental impact studies.  相似文献   

18.
The utility of elevational gradients as tools to test either ecological hypotheses and delineate elevation‐associated environmental factors that explain the species diversity patterns is critical for moss species conservation. We examined the elevational patterns of species richness and evaluated the effects of spatial and environmental factors on moss species predicted a priori by alternative hypotheses, including mid‐domain effect (MDE), habitat complexity, energy, and environment proposed to explain the variation of diversity. Last, we assessed the contribution of elevation toward explaining the heterogeneity among sampling sites. We observed the hump‐shaped distribution pattern of species richness along elevational gradient. The MDE and the habitat complexity hypothesis were supported with MDE being the primary driver for richness patterns, whereas little support was found for the energy and the environmental factors.  相似文献   

19.
不同尺度下低山茶园土壤有机质含量的空间变异   总被引:30,自引:3,他引:27  
南方低山丘陵区是我国茶园集中分布的区域,研究其土壤特性的空间变异性,尤其是有机质的空间分布特性,可以为实施低山丘陵茶园土壤养分精准管理提供依据。以四川蒙顶山茶园为研究对象,利用地统计学方法,在两个尺度下对其土壤有机质含量的空间变异性进行了研究。结果表明:(1)小尺度下,蒙顶山茶园土壤有机质含量具有中等空间相关性(C0与C0 C的比值为49.9%),空间相关距离达到了894m,随机性和结构性因子对有机质含量空间变异的影响各占一半;茶园土壤有机质含量在坡体垂直方向的变异性较强,在坡体水平方向上的变异较弱;普通Kriging插值分析说明有机质含量从东北至西南呈明显的带状分布,垂直方向上随海拔升高而增加。(2)微尺度下,代表性茶园土壤有机质含量具有强烈的空间相关性(C0与C0 C的比值为4.1%),空间相关距离达到了311m,结构性因子是影响其空间变异的主要因素;各向异性分析,茶园土壤有机质含量也在坡面垂直方向变异较强,且在坡面倾斜45°方向也存在一定变异;普通Kriging分析,坡面由上到下有机质含量逐渐增加。  相似文献   

20.
Within a metacommunity, both environmental and spatial processes regulate variation in local community structure. The strength of these processes may vary depending on species traits (e.g., dispersal mode) or the characteristics of the regions studied (e.g., spatial extent, environmental heterogeneity). We studied the metacommunity structuring of three groups of stream macroinvertebrates differing in their overland dispersal mode (passive dispersers with aquatic adults; passive dispersers with terrestrial adults; active dispersers with terrestrial adults). We predicted that environmental structuring should be more important for active dispersers, because of their better ability to track environmental variability, and that spatial structuring should be more important for species with aquatic adults, because of stronger dispersal limitation. We sampled a total of 70 stream riffle sites in three drainage basins. Environmental heterogeneity was unrelated to spatial extent among our study regions, allowing us to examine the effects of these two factors on metacommunity structuring. We used partial redundancy analysis and Moran's eigenvector maps based on overland and watercourse distances to study the relative importance of environmental control and spatial structuring. We found that, compared with environmental control, spatial structuring was generally negligible, and it did not vary according to our predictions. In general, active dispersers with terrestrial adults showed stronger environmental control than the two passively dispersing groups, suggesting that the species dispersing actively are better able to track environmental variability. There were no clear differences in the results based on watercourse and overland distances. The variability in metacommunity structuring among basins was not related to the differences in the environmental heterogeneity and spatial extent. Our study emphasized that (1) environmental control is prevailing in stream metacommunities, (2) dispersal mode may have an important effect on metacommunity structuring, and (3) some factors other than spatial extent or environmental heterogeneity contributed to the differences among the basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号