首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
The Src-homology 3 (SH3) domain is one of the most frequent protein recognition modules (PRMs), being represented in signal transduction pathways and in several pathologies such as cancer and AIDS. Grb2 (growth factor receptor-bound protein 2) is an adaptor protein that contains two SH3 domains and is involved in receptor tyrosine kinase (RTK) signal transduction pathways. The HIV-1 transactivator factor Tat is required for viral replication and it has been shown to bind directly or indirectly to several host proteins, deregulating their functions. In this study, we show interaction between the cellular factor Grb2 and the HIV-1 trans-activating protein Tat. The binding is mediated by the proline-rich sequence of Tat and the SH3 domain of Grb2. As the adaptor protein Grb2 participates in a wide variety of signaling pathways, we characterized at least one of the possible downstream effects of the Tat/Grb2 interaction on the well-known IGF-1R/Raf/MAPK cascade. We show that the binding of Tat to Grb2 impairs activation of the Raf/MAPK pathway, while potentiating the PKA/Raf inhibitory pathway. The Tat/Grb2 interaction affects also viral function by inhibiting the Tat-mediated transactivation of HIV-1 LTR and viral replication in infected primary microglia.  相似文献   

6.
7.
8.
HIV-1 Tat protein trans-activates transcription in vitro   总被引:55,自引:0,他引:55  
  相似文献   

9.
10.
11.
12.
Zhao LJ  Jian H  Zhu H 《FEBS letters》2004,563(1-3):170-178
The auxiliary regulatory protein Vpr of HIV-1 possesses several biological activities which are believed to facilitate HIV-1 replication and pathogenesis. In this report, experimental evidence suggests a novel biological activity of Vpr: facilitation of the turnover of Vpr mutants bearing the L64P mutation. This novel activity of Vpr was shared by Vpr molecules from different subtypes of HIV-1. Co-expression of the wild type Vpr with the VprW54A/L64P mutant resulted in normal synthesis of the mutant mRNA but enhanced ubiquitination and turnover of the mutant protein. These results suggest that Vpr may interact with the ubiquitin/proteasome pathway to regulate the stability of viral or cellular proteins.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号