首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J Koide 《Human cell》1990,3(3):220-225
We recently generated a series of human alloantigen-specific, CD3+, gamma delta- TCR+ clones by stimulating CD3+, CD4-, CD8- T cells from normal individuals with allogeneic lymphoblastoid cell lines (LCL). These clones display cytotoxic activity against their specific stimulators but not against irrelevant LCL. Most but not all of these clones express the NK cell associated marker, CD57, and kill NK-sensitive targets such as the K562 and Molt 4 lines, but not NK-resistant line, Raji. Gamma delta clones which lacked expression of CD57 had no detectable NK activity. The allospecific cytotoxicity of CD57+ and CD57- clones was inhibited by mAb to CD3 or the TCR delta- chain. In contrast, the NK-like activity of the CD57+ clones was enhanced by these antibodies over a wide range of antibody concentration. An HLA class I framework-specific mAb had no effect on NK-like cytolysis but did inhibit allospecific killing, suggesting that the target structures on the surface of allospecific and NK-sensitive cells are distinct. The receptors utilized by the gamma delta- TCR+ clones to recognize NK-sensitive and allospecific targets are also distinct, since killing of NK-sensitive targets was blocked by the presence of cold (unlabeled) NK-sensitive cells but not by cold allospecific targets, whereas allospecific cytolysis was inhibited by cold allospecific targets but not by NK-sensitive cells. We conclude that some CD3+, TCR- gamma delta+ clones exhibit NK-like as well as allospecific killing and that these two activities are mediated by distinct receptor-ligand interactions.  相似文献   

2.
Human V gamma 9/V delta 2 T cells, the major subset of gamma/delta T cells in peripheral blood of adults, mediate proliferative and cytotoxic responses to Daudi Burkitt's lymphoma cells without previous in vitro exposure to Daudi. Our experiments show that some gamma/delta T cells coexpressing V gamma 9 and V delta 1 genes also react to Daudi cells in cytotoxic and proliferative assays. Expression of V gamma 9 is not sufficient for the recognition of Daudi cells because most gamma/delta T cells expressing V delta 1 paired with V gamma 9 or other V gamma genes neither kill Daudi cells nor proliferate to Daudi. V gamma 9/V delta 2 T cells do not proliferate to other cell lines such as K562 or Molt4 that are sensitive to MHC-unrestricted cytolysis by NK cells and by most IL-2-activated gamma/delta T cell clones. Cold target inhibition assays demonstrate that Daudi cells are stronger inhibitors than K562 and Molt4 of MHC-unrestricted lysis by V gamma 9/V delta 2 clones. However, cold Daudi cells are relatively weaker inhibitors of MHC-unrestricted lysis by NK cell clones, most gamma/delta T cell clones expressing V delta 1 and alpha/beta T cell clones. Thus, recognition by V gamma 9/V delta 2 T cells and certain V gamma 9/V delta 1 T cells of Daudi appears to involve a specific triggering pathway that is distinct from recognition by these gamma/delta T cells of Molt4, K562, and other target cells. NK cell clones and most other gamma/delta and alpha/beta T cell clones derived from the same normal volunteer blood donors do not show this specific interaction with Daudi cells. These data show that distinct subsets of human gamma/delta T cells recognize Daudi cells and support the idea that the gamma/delta TCR may be directly involved.  相似文献   

3.
We recently generated a series of human alloantigen-specific, CD3+,TCR-gamma,delta+ clones by stimulating CD3+,CD4-,CD8- T cells from normal individuals with allogeneic lymphoblastoid cell lines (LCL). As reported previously, these clones display cytotoxic activity against their specific stimulators but not against irrelevant LCL. Further studies of these and other TCR-gamma,delta+ clones, described in this report, indicate that most but not all of these clones express the NK cell associated marker, NKH-1 or Leu-19, and kill NK-sensitive targets such as the K562 and Molt 4 lines, but not an irrelevant LCL or NK-resistant line, Raji. TCR-gamma,delta+ clones which lacked expression of Leu-19 lysed their allospecific targets but had no detectable NK activity. The allospecific cytotoxicity of Leu-19+ and Leu-19- clones was inhibited by mAb to CD3 or the TCR delta-chain. In contrast, the NK-like activity of the Leu-19+ clones was enhanced by these antibodies over a wide range of antibody concentration. Although mAb to LFA-1 markedly inhibited both the allospecific and NK-like activity of these clones, an HLA class I framework specific mAb (W6/32) had no effect on NK-like cytolysis but did inhibit allospecific killing, suggesting that the target structures on the surface of allospecific and NK-sensitive cells are distinct. The receptors utilized by the TCR-gamma,delta+ clones to recognize NK-sensitive and allospecific targets are also distinct, since killing of NK-sensitive targets was blocked by the presence of cold (unlabeled) NK-sensitive cells but not by cold allospecific targets, whereas allospecific cytolysis was inhibited by cold allospecific targets but not by NK-sensitive cells. We conclude that some CD3+,TCR-gamma,delta+ clones exhibit NK-like as well as allospecific killing and that these two activities are mediated by distinct receptor-ligand interactions.  相似文献   

4.
Peripheral blood T lymphocytes from healthy donors were stimulated with Mycobacterium tuberculosis in vitro and afterward analyzed phenotypically. Marked expansion of the gamma/delta T cell population (3- to 21-fold) was observed in 15/21 donors 7 to 10 days after stimulation. In addition to M. tuberculosis, Mycobacterium leprae (six of eight) as well as the gram-positive bacteria, Staphylococcus aureus (two of six), group A streptococci (seven of nine), and Listeria monocytogenes (four of eight) augmented gamma/delta TCR expression in peripheral blood T cells of many donors. gamma/delta T lymphocytes expressed IL-2R and secreted IL-2 upon restimulation with M. tuberculosis. Stimulation with M. tuberculosis evoked specific cytolytic activities in gamma/delta T lymphocytes because: gamma/delta T cells lysed M. tuberculosis pulsed but not unpulsed targets; high concentrations of TCR delta 1 mAb facilitated killing of unpulsed target cells; and low doses of anti-TCR delta 1 mAb blocked killing of pulsed targets. Furthermore, gamma/delta T cells from four donors, after activation with M. tuberculosis or with group A streptococci, respectively, only lysed targets pulsed with the homologous agents, whereas in other donors some cross-reactivity was observed. We conclude that, upon contact with mycobacteria and perhaps other microorganisms, gamma/delta T cells are activated which contribute to immunity against infection via IL-2 secretion and specific target cell lysis.  相似文献   

5.
The murine CD4- CD8- (double negative, DN) thymocyte cell line and clones expressing T cell receptor gamma delta chains in association with CD3 complex have been established and characterized. This line and a representative clone (DN7.12.11) which appear to derive from the minor population of CD3+ DN thymocytes can be stimulated to proliferate and to produce lymphokines by anti-CD3 or anti-Thy-1 antibodies or calcium ionophore plus phorbol ester. Autocrine proliferation is dependent on binding of interleukin (IL)2 to functional IL2 receptor. Upon stimulation, these cells produce IL2 and IFN-gamma but not IL4, resembling conventional CD4+ TH1 cells in this regard. The cloned line also mediates spontaneous cytolysis against a variety of tumor targets without regard for the presence of conventional major histocompatibility complex molecules on the target cell surface. Blocking and modulation experiments suggest that target recognition by the gamma delta/CD3 complex is not involved in the spontaneous lysis, resembling natural killer (NK) cells. The results suggest that gamma delta +DN T cells are able to have mature functions such as NK-like cytotoxicity and lymphokine secretion as peripheral gamma delta +T cells. They also provide a possible role of gamma delta + DN thymocytes in establishing a intrathymic environment for differentiation and selection of alpha beta-expressing T cells.  相似文献   

6.
IL-4 has been shown to act as a growth factor for human T cells. In addition, IL-4 can enhance CTL activity in MLC, but blocks IL-2 induced lymphokine activated killer cell activity in PBL. In our study, the cloning efficiencies, Ag-specific CTL activity and non-MHC-restricted cytotoxicity of CTL clones generated in IL-2 were compared to those generated in IL-4. In a first experiment, T cells were stimulated with the EBV-transformed B cell line JY and cloned 7 days later with feeder cells and either IL-2 or IL-4. In a second experiment, stimulation of the T cells was carried out in the presence of IL-2 plus anti-IL-4 antibodies or IL-4 plus anti-IL-2 antibodies in order to block the effects of IL-4 and IL-2, respectively, produced by the feeder cells. Although the cloning efficiencies in the second experiment were lower than those obtained in the first experiment, the cloning efficiencies obtained with IL-2 or IL-4 were similar in both experiments. The overall proportion of TCR alpha beta+ T cell clones cytotoxic for the stimulator cell JY established in IL-2 or IL-4 were comparable. A striking difference between the clones obtained in IL-2 or IL-4 was that a large proportion of the clones obtained in IL-4 expressed CD4 and CD8 simultaneously, whereas none of the clones isolated in IL-2 were double positive. Also gamma delta+ T cell clones could be established with IL-4 as a growth factor. TCR gamma delta+ T cell clones isolated in either IL-2 or IL-4 were CD4-CD8- or CD4-CD8+, but the proportion of CD4-CD8+ clones isolated in IL-4 was higher. Interestingly, one TCR gamma delta+ clone isolated in IL-2 was CD4+CD8-. Most of the TCR alpha beta+ and TCR gamma delta+ CTL-clones isolated in IL-2 lysed the NK cell sensitive target cell K562. In contrast, only a small proportion of the TCR alpha beta+ or TCR gamma delta+ CTL clones isolated in IL-4, lysed K562. One TCR gamma delta+ T cell clone (CD-124) isolated in IL-4 and subsequently incubated in IL-2 acquired lytic activity against K562.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
We investigated the ability of anti-CD3 antibodies to activate resting human peripheral blood lymphocytes (PBL) to a cytolytic function. We found that two anti-CD3 antibodies, but not an anti-CD4, anti-CD8, or anti-CD2 antibody, could activate resting unseparated PBL to become killer cells in the absence of exogenous interleukin-2 (IL-2), although exogenous recombinant IL-2 (rIL-2) synergized with anti-CD3. We also found that these anti-CD3 antibodies were active in the absence of rIL-2 only when linked to a solid surface such as a Sepharose bead or a plastic tissue culture plate. Cytolytic activity was measured in several ways: (i) by the ability of activated PBL to lyse the NK-sensitive line K562, and (ii) by the ability of these cells to lyse a CD10+ (CALLA+), NK-resistant target in the presence of either concanavalin A (lectin-dependent lysis) or an anti-CD10-anti-CD3 heterodimer. At least two different types of cytolytic cells were activated by anti-CD3 antibodies, an NK-like cell, which was CD2+CD3-CD4-CD8-CD16+-NKH1a+, and a CTL-like cell, which was CD2+CD3+CD4-CD8+CD16-NKH1a-. The former cell lysed the K562 line and the latter cell lysed Namalwa in the presence of the anti-CD10-anti-CD3 heterodimer or concanavalin A. The NK-like cell was probably activated by endogenous IL-2 produced by the anti-CD3-activated CD3+ cells and both the NK and CTL-like cells required the presence of adherent cells for maximal activity. The dose response and the kinetics of anti-CD3 activation of PBL to cytolytic activity were also studied. The use of the anti-CD3-activated cytolytic cells as effectors in anti-CD3 heterodimer-mediated lysis of tumor cells may be a novel approach to the therapy of cancer, and a comparison with the well-studied rIL-2/lymphokine-activated killer (LAK) system is discussed.  相似文献   

8.
A minor subset of T lymphocytes express a TCR composed of gamma and delta chains. This subset differs from conventional T cells for a number of phenotypic and functional characteristics. TCR gamma/delta+ cells simultaneously lack both CD4 and CD8 antigens. Cloning of CD4-8- peripheral blood lymphocytes, under limiting dilution conditions, revealed that they are homogeneously composed of cytolytic cells which efficiently lyse tumor target cells. Formal proofs have been provided that TCR gamma/delta+ cells are able to recognize antigens. For example, they proliferated in response to allogeneic mixed lymphocyte culture (MLC); in addition, MLC-derived TCR gamma/delta+ cells specifically lysed PHA-induced blast cells bearing the stimulating alloantigens. The selection of monoclonal antibodies specific for TCR gamma/delta molecules allowed to identify two distinct subsets of TCR gamma/delta+ cells. Both of these mABs, termed BB3 and delta TCS-1 respectively, induced specific activation of cloned cells expressing the corresponding antigenic determinants (as assessed by measurements of intracellular Ca++ and/or lymphokine production or cytolytic activity). Analysis of the distribution of subsets expressing different forms of TCR gamma/delta, showed that the BB3-reactive form is prevalent in the peripheral blood. In contrast, delta-TCS-1-reactive cells are relatively unfrequent in peripheral blood but represent the majority of TCR gamma/delta+ cells in tissues.  相似文献   

9.
Three biochemically distinct isotypic forms of the human T cell receptor (TcR) gamma delta structure can be expressed at the cell membrane. This unique variation in structure of TcR, which is due to C gamma gene segments utilization, prompted us to look for isotype-association functional differences. In this regard, we have developed human T cell clones or lines from normal thymus or peripheral blood from several patients. In the present report, we have selected by phenotypic, biochemical, and TcR gene rearrangement analysis representative pairs of IL2-dependent clones or lines for each TcR gamma delta isotypic form. The results showed a lack of correlation between the TcR isotypes and the ability of the cells to proliferate in response to TcR stimulation mediated through the CD3 molecular complexes. By contrast, despite the fact that all of these representative cells exhibit an NK-like activity, as measured by their ability to kill K562, the strongest lytic activity was observed with the cells having the disulfide-bonded form of the receptor. Moreover only those latter cells were able to efficiently kill the LAK-sensitive Daudi cell line.  相似文献   

10.
Peripheral blood TCR-gamma delta cells with different functional V gamma or V delta gene rearrangements represent two nonoverlapping subsets. The major subset uses the V gamma 9 and the V delta 2 gene segments and the minor subset the V delta 1 gene segments in its functional TCR rearrangement. Upon in vitro activation, these TCR-gamma delta lymphocytes display MHC-unrestricted lytic activity, against a wide variety of tumor cells of distinct histologic origin. Here we show that fresh TCR-gamma delta lymphocytes that express a V gamma 9-V delta 2 encoded TCR display a specific proliferative response to Daudi, Burkitt's lymphoma cells. Moreover, cloned V gamma 9-V delta 2 lymphocytes show the capacity to lyse Daudi cells, whereas none of the cloned V gamma 1 TCR-gamma delta lymphocytes shows such specificity. Nucleotide diversity at the V-D-J junction of the TCR-V delta 2 gene did not contribute to this Daudi cell specificity. Comparison of the MHC-unrestricted cytolytic capacities of the V gamma 9-V delta 2 and the V delta 1 clones using a panel of distinct types of tumor target cells showed that on average, the level of MHC unrestricted lysis of V gamma 9-V delta 2 clones against these tumor cells exceeded that of V delta 1 clones. However, in contrast to all these tumor cell lines, only the Daudi cells showed such an absolute distinction in susceptibility to lysis by V gamma 9-V delta 2 and V delta 1 clones. V gamma 9-V delta 2 clones that were generated with a stimulator cell other than Daudi did not lyse their stimulator cells but nevertheless showed specific cytolysis of Daudi cells. The specific proliferation to and cytolysis of Daudi cells of the entire V gamma 9-V delta 2 subpopulation of TCR-gamma delta lymphocytes is reminiscent of a superantigen response.  相似文献   

11.
As part of an effort to define the cytotoxic trigger molecules on human myeloid cells, the ability of the different Fc receptors for IgG (Fc gamma R) to mediate killing of tumor cell lines by monocytes and granulocytes was examined. This was accomplished by studying cytolysis of hybridoma cell (HC) targets bearing surface antibody directed toward the different Fc gamma R. The HC line, HC IV.3A, which bears Ig directed to the low affinity Fc gamma R (Fc gamma RII) on monocytes and neutrophils was lysed by human monocytes. The extent of lysis of HC IV.3A was approximately equal to that of anti-Fc gamma RI (the high affinity Fc gamma R on human monocytes) bearing HC lines (HC 32.2A and HC 62A) and was not augmented by treatment of the monocytes with interferon-gamma (IFN-gamma). In contrast, neutrophils lysed HC IV.3A and HC 32.2A only after activation with IFN-gamma. Since Fc gamma RI is not detectable on untreated neutrophils and is induced by IFN-gamma on these cells, lysis of HC 32.2A by IFN-gamma-activated neutrophils correlated with receptor induction. On the other hand, Fc gamma RII was present at equal levels on untreated and IFN-gamma-treated neutrophils, but only IFN-gamma-treated neutrophils mediated cytotoxicity via Fc gamma RII. In this case, enhanced killing appeared to be due to events other than an increase in Fc gamma RII number. Neither untreated nor IFN-gamma-treated neutrophils mediated the lysis of the anti-Fc gamma RIII bearing HC 3G8A. Thus, binding to the tumor target via this Fc receptor does not lead to lysis and may initiate signals distinct from those triggered through Fc gamma RI or Fc gamma RII. Surprisingly, HC bearing high amounts of mouse IgG1 antibody of irrelevant specificity were also lysed by monocytes. This lysis was blocked by soluble IV.3 antibody and thus appeared to be due to binding of the Fc portion of the surface Ig to Fc gamma RII on monocytes. Furthermore, monocytes from donors with a form of Fc gamma RII incapable of binding aggregated mouse IgG1 did not lyse these HC, but displayed normal lysis of HC IV.3, demonstrating that this structurally different Fc gamma RII remained a functional trigger molecule. Overall, these studies have demonstrated the specificity of Fc receptors in triggering monocyte- and granulocyte-mediated antibody-dependent tumor cell killing and have begun to dissect functional similarities and differences among the three defined Fc gamma R on human myeloid cells.  相似文献   

12.
The activation of human peripheral blood mononuclear cells (PBM) in culture leads to the generation of nonspecific killer cells. These cells, termed activated lymphocyte killer (ALK) cells, can kill fresh tumor cells and tumor cell lines, in addition to the natural killer (NK) cell sensitive target K562. ALK cells have features in common with both T and NK cells, but their nature and origin are unknown. In the present study, it is shown that ALK cells are in fact heterogeneous and can be generated from both large granular lymphocytes with the same phenotype as NK cells and from T cells. Cell populations enriched for NK cells, when cultured with lymphokines, rapidly acquired a T cell phenotype, enhanced cytolytic activity against K562, and the ability to lyse NK-insensitive target cells such as a melanoma cell line LiBr; these ALK cells were described as NK-like cells. On the other hand, of the cloned cells derived from PBM stimulated with irradiated B lymphoblasts and grown in lymphokines, the major proportion of cytolytic T cells (CTC) able to kill the specific stimulator lymphoblasts were also found to kill LiBr but not K562 cells. These ALK cells, which were derived from the same precursors as CTC, were designated anomalous killer (AK) cells. Consistent with this, the presence of the pan T monoclonal antibody UCHT1 from the beginning of mixed cell cultures inhibited the generation of CTC and of the AK-type of ALK cell, which killed melanoma cells, but not the NK type, which killed K562 targets. By contrast, at the effector cell level, the antibodies UCHT1 and OKT8 only blocked specific killing by CTC but did not block the killing of LiBr or of K562 targets by ALK cells. However, at the effector cell level there was additional evidence for the heterogeneity of ALK cells. Thus, monoclonal antibody 9.1C3, which blocks killing by freshly isolated NK cells, also blocked the killing of K562 targets by NK-like cells, but did not block B lymphoblast killing by CTC or melanoma cell killing by AK cells. It is concluded that after mixed lymphocyte culture, the majority of ALK cells measured by the killing of melanoma target cells arise from the same precursors and are under the same influences as classical CTC (AK cells), whereas cells killing K562 targets are derived from NK cells (NK-like cells). Once generated, the AK cells have a different mechanism of killing from both classical CTC and from NK and NK-like cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The role of negatively signaling NK cell receptors of the Ly49 family on the specificity of the acute CD8(+) cytotoxic T-lymphocyte (CTL) response was investigated in lymphocytic choriomeningitis virus (LCMV)-infected C57BL/6 mice. Activated CD8(+) T cells coexpressing Ly49G2 expanded during LCMV infection, and T-cell receptor analyses by flow cytometry and CDR3 spectratyping revealed a unique polyclonal T-cell population in the Ly49G2(+) fraction. These cells lysed syngeneic targets infected with LCMV or coated with two of three LCMV immunodominant peptides examined. Transfection of these sensitive targets with H2D(d), a ligand for Ly49G2, inhibited lysis. This was reversed by antibody to Ly49G2, indicating effective negative signaling. LCMV characteristically induces an anti-H2(d) allospecific T-cell response that includes T-cell clones cross-reactive between allogeneic and LCMV-infected syngeneic targets. The CD8(+) Ly49G2(+) population mediated no allospecific killing, nor was any NK-like killing observed against YAC-1 cells. This study shows that CD8(+) Ly49G2(+) cells participate in the virus-induced CTL response but lyse a more restricted range of targets than the rest of the virus-induced CTL population.  相似文献   

14.
We previously described a monoclonal antibody, 9.1C3, which blocked natural killer (NK) cell-mediated cytolysis by acting on effector cells during a late step in the lethal hit stage. The present work describes the production in rabbits of anti-idiotypic (anti-id) antibodies to the 9.1C3 antibody. In addition to reacting specifically with the 9.1C3 antibody, the anti-id antibodies bound strongly to the K562 target cell. The anti-id antibodies blocked killing of K562 targets by NK, antibody-dependent cellular cytotoxicity, and NK-like cells but did not inhibit killing by cytotoxic T lymphocytes (CTL). Pretreatment of cells and washing before assay indicated that blocking occurred at the target cell level. Of particular interest, single cell assays with Percoll-enriched large granular lymphocytes demonstrated that the antibodies caused no reduction in binding. These data are consistent with a model for NK cell-mediated lysis that involves a secondary target cell receptor independent of the primary NK-target cell interaction. The anti-id antibodies immunoprecipitated cell surface proteins of relative m.w. 79K and 62K unreduced, and 94K and 79K reduced from K562 target cells. The development of anti-id antibodies may be a useful procedure to explore the structure and function of cellular receptors involved in NK cell-mediated cytolysis.  相似文献   

15.
Murine T cell lines and hybridomas derived from the epidermis that express the V gamma 1.1C gamma 4V delta 6C delta TCR and may, therefore, recognize an autoantigen, secrete cytokines spontaneously in culture. In addition, activation of these cells requires engagement of the vitronectin receptor (VNR) by extracellular matrix proteins. To further evaluate the role of the TCR, the VNR, and the putative autoantigen in the activation of this T cell subset, we cloned complete cDNA encoding the V gamma 1.1C gamma 4 and V delta 6C delta TCR and transfected the cDNA constructs into a TCR- murine hybridoma and into a TCR- variant of the human Jurkat line. The murine transfectant spontaneously produced IL-2 in culture and IL-2 production could be inhibited by anti-CD3, anticlonotypic mAb to the transfected TCR, and anti-VNR mAb, as well as by RGDS. These results demonstrate that transfection of the gamma delta TCR confers to recipient T cells the phenotype of constitutive activation, as well as dependence on engagement of the VNR as an accessory molecule. In contrast, the Jurkat gamma delta transfectant failed to produce cytokines spontaneously, although the transfected TCR was capable of signal transduction after stimulation by anti-TCR mAb. Surprisingly, neither the murine transfectant nor the human transfectant could be induced to respond to autoantigen bearing cells in coculture assays. One interpretation of these results is that coexpression on the surface of the same cell of the V gamma 1.1 V delta 6 TCR, the VNR, and a putative autoantigen are necessary for T cell activation in this system.  相似文献   

16.
mAb directed against the TCR/CD3 complex activate resting T cells. However, TCR/CD3 signaling induces death by apoptosis in immature (CD4+CD8+) murine thymocytes and certain transformed leukemic T cell lines. Here we show that anti-TCR and anti-CD3 mAb induce growth arrest of cloned TCR-gamma delta + T cells in the presence of IL-2. In the absence of exogenous IL-2, however, the very same anti-TCR/CD3 mAb stimulated gamma delta (+)-clones to proliferation and IL-2 production. In the presence of exogenous IL-2, anti-TCR/CD3 mAb induced the degradation of DNA into oligosomal bands of approximately 200 bp length in cloned gamma delta + T cells. This pattern of DNA fragmentation is characteristic for the programmed cell death termed apoptosis. These results demonstrate that TCR/CD3 signaling can induce cell death in cloned gamma delta + T cells. In addition, this report is the first to show that apoptosis triggered by TCR/CD3 signaling is not restricted to CD4+CD8+ immature thymocytes and transformed leukemic T cell lines but can be also observed with IL-2-dependent normal (i.e., TCR-gamma delta +) T cells.  相似文献   

17.
The effects of anti-CD3 mAb on MHC-unrestricted cytotoxic activity of NK depleted PHA-activated human T cells were examined. Anti-CD3 mAb had variable effects on killing of K562 or Daudi targets. Whereas lower concentrations of OKT3 often inhibited lysis of either target, higher concentrations (greater than 1 micrograms/ml) frequently increased K562 killing and always augmented Daudi lysis. However, lysis of the renal cell carcinoma, Cur, was consistently inhibited by OKT3 over a broad concentration range. Such variable effects were not related to differential regulation of heterogeneous subsets of effector cells, as similar patterns of OKT3-mediated modulation of tumor cell lysis by T cell clones was also observed. Another IgG2a anti-CD3 mAb, 64.1, and either F(ab')2 fragments of OKT3 or intact OKT3 in the presence of aggregated human Ig were found to inhibit lysis of Cur, K562, and Daudi targets consistently. Additional experiments were carried out to determine whether modulation of CD3 accounted for the inhibitory effects of the anti-CD3 mAb. PMA was noted to cause modulation of CD3 from the surface of PHA or alloantigen-activated T cells, and the combination of anti-CD3 and PMA caused even more marked modulation of CD3. Whereas preincubation with PMA and/or anti-CD3 decreased alloantigen-specific cytotoxic T cell function in relative proportion to the loss of CD3 expression, no consistent relationship between CD3 expression and the capacity of PHA-activated T cells to kill Cur targets was noted. PMA alone caused no consistent alteration of Cur lysis. Moreover, in the presence of PMA, anti-CD3 mAb caused no significant inhibitory effect on Cur lysis, in spite of increased modulation and in some cases virtual total loss of surface CD3 expression. These findings indicate that when FcR interactions are prevented, anti-CD3 mAb consistently inhibit MHC-unrestricted cytotoxicity by PHA-activated T cells. Despite this, the data support the conclusion that CD3/TCR complex interactions with target cells are not required for either target cell recognition or triggering of lysis by MHC-unrestricted cytotoxic T cells.  相似文献   

18.
It has been demonstrated that gamma delta T cells accumulating in early tumor lesions and those purified from spleen cells of tumor-bearing mice attenuate the activity of CTLs and NK cells. We, therefore, investigated whether depletion of gamma delta T cells from early lesions of tumors results in restoration of CTL and NK cell activities and subsequent regression of tumors. A daunomycin-conjugated anti-gamma delta TCR mAb UC7-13D5 (Dau-UC7) was prepared to efficiently deplete gamma delta T cells. An in vitro study revealed that Dau-UC7 specifically lysed gamma delta TCR+ cells and effectively inhibited splenic gamma delta T cells from tumor-bearing mice to produce cytotoxic cell-suppressive factors. Furthermore, intralesional injections of Dau-UC7 at an early stage of tumor development led to augmentation of tumor-specific CTL as well as NK cell activities and to the resultant regression or growth inhibition of the tumors. On analysis of cytokine profile, gamma delta T cells transcribed mRNAs for IL-10 and TGF-beta, but not IL-4 or IFN-gamma, suggesting the T regulatory 1-like phenotype. Finally, a blocking study with mAbs showed that the inhibitory action of gamma delta T cells on CTLs and NK cells was at least partly mediated by IL-10 and TGF-beta. These results clearly demonstrated the novel mechanism by which T regulatory 1-like gamma delta T cells suppress anti-tumor CTL and NK activities by their regulatory cytokines in early tumor formation.  相似文献   

19.
We have analyzed the requirements for the induction of proliferative responses by thymic CD4-CD8- gamma delta T cells. Enriched populations of CD4-CD8- thymocytes from newborn mice, purified by negative selection with anti-CD4, anti-CD8, and anti-TCR alpha beta mAbs were found to contain approximately 20% gamma delta T cells that were p55IL-2R-. When these cells were cultured with a panel of lymphokines (IL-1, -2, -4, and -7), a small response was observed to some of the cytokines tested individually; however, combinations of certain lymphokines (IL-1 + 2, IL-1 + 7, and IL-2 + 7) were found to induce significant proliferation and the selective outgrowth (75-90%) of gamma delta T cells. These cells were IL-2R+, remained CD4-, yet expressed variable levels of CD8. A limited analysis with specific anti-V gamma and V delta mAb suggested that there had not been a selective expansion of preexisting V gamma 2, V gamma 3, or V delta 4 populations in response to the stimulatory lymphokine combinations. Thymic CD4-CD8- gamma delta T cells were unresponsive to stimulation with immobilized anti-pan gamma delta mAb alone. However, in the presence of immobilized anti-pan gamma delta mAb and IL-1, IL-2, or IL-7, but not IL-4, a vigorous proliferative response was observed. Phenotypic analysis showed that 80 to 95% of the proliferating cells were polyclonally expanded gamma delta T cells, expressed the p55IL-2R, and the majority remained CD4-CD8-. Blocking studies with anti-IL-2R mAb showed that stimulation with anti-pan gamma delta + IL-1, but not anti-pan gamma delta + IL-7 was dependent on endogenously produced IL-2. Collectively, these studies suggest that the activation requirements of newborn thymic gamma delta T cells differ markedly from alpha beta T cells in that gamma delta T cells 1) respond to combinations of cytokines in the absence of TCR cross-linking, 2) can respond to TCR cross-linking in the presence of exogenous cytokines, 3) but are unable to activate endogenous cytokine production solely in the presence of TCR cross-linking.  相似文献   

20.
MLC-generated cells were tested on 7 consecutive days in the single cell cytotoxicity assay to determine the kinetics of natural and allospecific killing. Maximum cytotoxicity to the NK-sensitive target, K562, was found on Day 3 of MLC with an increase at that time in both the number of cells binding and the number of cells killing K562. The maximum allospecific response was found on Days 6 and 7 with an increase in cells able to bind and kill the alloantigen-bearing target. To determine whether the anti-K562 and allospecific killing were mediated by the same effector cells or different cell populations, both targets were tested simultaneously in the single cell assay. At no time during the 7 days were cells detected capable of simultaneously binding both K562 and allospecific targets. These data indicate that there are two different cell populations responsible for allospecific cytotoxicity and MLC-induced NK-like cytotoxicity. The cytotoxic specificity of unstimulated and MLC-generated NK-like cells was also investigated. When two different NK-sensitive targets (e.g., K562 and MOLT-4) were tested together in the single cell assay, there was no concurrent binding of targets by either fresh PBL prior to MLC stimulation or Day 3 MLC-generated cells. When unstimulated effector cells were enriched for NK activity by Percoll density gradient centrifugation, only a small number of effector cells simultaneously binding two different NK-sensitive targets was detected in the single cell assay. These results imply that the NK cell population is heterogeneous and composed of subpopulations recognizing diverse target specificities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号