首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NAD+ levels in resting human lymphocytes obtained from 20 donors were found to be 69.9 ± 21.7 pmols/106 cells. After 3 days of phytohemagglutinin (PHA) stimulation the NAD+ levels rose to 452 ± 198 pmols/106 cells. NADH, NADP+ and NADPH also increased in mitogen-stimulated lymphocytes, but the major portion of the increase in total pyridine nucleotide pools was accounted for by the increase in NAD+. When PHA-stimulated lymphocytes were incubated in nicotinamide-deficient growth medium, there was no significant increase in their total pyridine nucleotide pools; however, the ratios of oxidized to reduced pyridine nucleotides changed in a similar fashion to cells grown in medium containing nicotinamide. When lymphocytes in nicotinamide-deficient medium were stimulated with PHA they increased their levels of DNA synthesis and cell replication in a similar fashion to cells growing in nicotinamide-supplemented media. Human lymphocytes were able to synthesize pyridine nucleotides from nicotinamide or nicotinic acid; however, in the absence of a preformed pyridine ring they did not efficiently use tryptophan for the synthesis of NAD. Uptake of [carbonyl-14C]nicotinamide and conversion to NAD was markedly increased in PHA-stimulated lymphocytes; these cells also showed a marked increase in activity of the enzyme adenosine-triphosphate-nicotinamide mononucleotide (ATP-NMN) adenylyl transferase.  相似文献   

2.
The uptake of free cortisol by canine RBC was studied by incubating the cells in various Ringer-Locke solutions, saline, plasma, and plasma to which EDTA was added. The uptake of cortisol by RBC was similar in all electrolyte solutions; however, uptake was significantly less when RBC were incubated in plasma. The removal of both exogenous and endogenous cortisol from RBC was studied by washing the cells in various electrolyte solutions. Although the percentages of steroid removed per wash were not significantly different when cells were washed with Ringer-Locke solutions, saline washed RBC to which no cortisol was previously added gave significantly less steroid per wash. These data indicate that Na+, K+ and Ca++ do not affect the permeability of these cells to cortisol and that the cortisol associated with canine RBC is loosely bound.  相似文献   

3.
Novikoff rat hepatoma cells (subline NlSl-67) in suspension culture incorporate 3H-5-uridine into the acid-soluble nucleotide pool more rapidly than into RNA, resulting in the accumulation of labeled UTP in the cells. When labeled uridine is removed from the medium after 20 minutes or 4.75 hours of labeling, the rate of incorporation of label from the nucleotide pool into RNA decreases to less than 10% of the original rate within five to ten minutes, in spite of the presence of a large pool of labeled UTP in the cells, and incorporation ceases completely if an excess of unlabeled uridine is present during the chase. Upon addition of 14C-uridine to 3H-uridine pulse-labeled, chased cells, the 14C begins to be incorporated into RNA without delay and at a rate predetermined by the concentration of 14C-uridine in the medium and without affecting the fate of the free 3H-nucleotides labeled during the pulse-period. The results are interpreted to indicate that uridine is incorporated into at least two different pools, only one of which serves as primary source of nucleotides for RNA synthesis. During active synthesis of RNA, the latter pool of free nucleotides is very small and rapidly exhausted when uridine is removed from the medium. However, UTP accumulates in this pool when cells are labeled at 4–6°, since at this temperature RNA synthesis is blocked while uridine is still phosphorylated by the cells, and the UTP is rapidly incorporated into RNA during a subsequent ten-minute chase at 37°. From these types of experiments it is estimated that only 20–25% of the total uridine nucleotides formed in the cells from uridine in the medium is directly available for RNA synthesis and that the remainder becomes available only at a slow rate. Evidence is presented which suggests that one uridine nucleotide pool is located in the cytoplasm and another in the nucleus and that mainly the nuclear pool supplies nucleotides for RNA synthesis. The size of the latter pool is under strict regulatory control, since preincubation of the cells with 0.5 mM unlabeled uridine has little or no effect on the subsequent incorporation of 3H-uridine, although it results in an increase of the overall cellular uridine nucleotide content to at least 5 mM. Other results indicate that adenosine is also incorporated into two independent nucleotide pools, whereas the cells normally appear to possess a single thymidine nucleotide pool.  相似文献   

4.
The effect of adenosine was tested on the energetic metabolism of fed rat liver cells after isolation. The cells were incubated in a buffered saline medium with glucose (5 mM) and adenosine (1 mM) for 30 minutes at 37°C. This increased the concentration of the adenylic nucleotides ATP (+ 57 per cent), ADP (+ 39 per cent). Cyclic AMP was increased (+ 50 per cent) and the intracellular inorganic phosphate decreased (− 22 per cent). These changes were accompanied by a decrease of glycogenolysis, glucose consumption and lactate production. Measurement of glycolytic intermediates showed decreased concentrations of fructose 1,6-bisphosphate and 3-phosphoglycerate proportional to the increase in ATP concentration. The near-equilibrium of the glyceraldehyde 3-phosphate dehydrogenase-phosphoglycerate kinase system was not modified by adenosine. The decrease of the NAD+/NADH ratio along with the increase of the ATP/ADP × PO4 ratio explains the decrease of 3-phosphoglycerate. The decrease in glucose consumption can be explained by the cross over at the phosphofructokinase stage with the decrease of fructose 1,6-bisphosphate. The major part of adenosine was deaminated as indicated by an increase in the production of ammonia and urea. The effects of inosine, or adenosine along with an inhibitor of adenosine deaminase (pentostatin) suggest that adenosine acts on the glucose consumption through adenylic nucleotides. However the increase of the adenylic nucleotide level cannot totally explain the other metabolic changes: decrease of the NAD+/NADH cytoplasmic ratio, constancy of this ratio in mitochondria, decrease of gluconeogenesis from lactate. A direct action of adenosine can therefore be expected.  相似文献   

5.
Summary The whole-cell voltage clamp technique was used to study the slow inward currents and K+ outward currents in single heart cells of embryonic chick and in rabbit aortic cells. In single heart cells of 3-day-old chick embryo three types of slow inward Na+ currents were found. The kinetics and the pharmacology of the slow INa, were different from those of the slow Ica in older embryos. Two types of slow inward currents were found in aortic single cells of rabbit; angiotensin 11 increased the sustained type and d-cAMP and d-cGMP decreased the slow transient component. Two types of outward K+ currents were found in both aortic and heart cells. Single channel analysis demonstrated the presence of a high single K+ channel conductance in aortic cells. In cardiac and vascular smooth muscles, slow inward currents do share some pharmacological properties, although the regulation of these channels by cyclic nucleotides and several drugs seems to be different.  相似文献   

6.
Mammalian cells were able to repair sublethal damage sustained during exposure to freeze-thaw conditions if they were incubated at 37 °C during the repair period. Repair was also observed when the cells were incubated at 37 °C in medium containing 10?4m ouabain but this was not the case with 10?3m ouabain. Cells exposed to either 10?3 or 10?4m ouabain before freezing and thawing showed reduced survival indicating the requirement for the prior operation of the (Na+ ? K+) — ATPase system to avoid additional lethal damage.  相似文献   

7.
Corn plants (Zea mays L. cv Pioneer 3906) were grown in a glass house on control and saline nutrient solutions, in winter and summer. There were two saline treatments, both with osmotic potential = −0.4 megapascal but with different Ca2+/Na+ ratios: 0.03 and 0.73. Root tips and shoot meristems (culm tissue) of 26 day-old plants were analyzed for nucleotides to ascertain if there were correlations between nucleotide pool size and the reduced growth on saline cultures. Several other cell components also were determined. Plants grown in winter were only half as large as those grown in summer mainly because of the lower light intensity and lower temperature. But the relative yield reduction on salt treatment compared to the control was similar in winter and summer. The two different salt treatments caused similar yield reductions. Neither salt treatment affected nucleotide pools in culm tissue, with the possible exception of UDPG in winter. In the case of root tips, salt treatment had little or no effect on nucleotide pool sizes in winter when many already seemed near a critical minimum, but in summer it reduced several pools including ATP, total adenine nucleotide, UTP, total uridine nucleotide, and UDP-glucose. The reductions were greatest on the salt treatment with low Ca2+/Na+. There was no simple correlation between the effects of salt stress on growth and on nucleotide pool size. The nucleotide pools of culm tissue indicated that in some respects this tissue was effectively insulated from the salt stress. Roots that were in direct contact with the saline solution indicated significant reductions in nucleotide pools only in the summer whereas growth was reduced both summer and winter. It is possible that the nucleotide concentrations of root cells in winter were already near a critical minimum so that nucleotide synthesis and growth were tightly linked. Significant reductions in nucleotide pools that would be expected to affect growth were more evident in summer when pools were larger and growth was more rapid. But even where ATP and total adenine nucleotides were reduced, the ratio of ATP:ADP and the adenylate energy charge remained unchanged indicating an active adenylate kinase that had access to most of the adenine nucleotide pools, and possible catabolism of excess AMP.  相似文献   

8.
Mitochondria from the parasitic helminth, Hymenolepis diminuta, catalyzed both NADPH:NAD+ and NADH:NADP+ transhydrogenase reactions which were demonstrable employing the appropriate acetylpyridine nucleotide derivative as the hydride ion acceptor. Thionicotinamide NAD+ would not serve as the oxidant in the former reaction. Under the assay conditions employed, neither reaction was energy linked, and the NADPH:NAD+ system was approximately five times more active than the NADH:NADP+ system. The NADH:NADP+ reaction was inhibited by phosphate and imidazole buffers, EDTA, and adenyl nucleotides, while the NADPH:NAD+ reaction was inhibited only slightly by imidazole and unaffected by EDTA and adenyl nucleotides. Enzyme coupling techniques revealed that both transhydrogenase systems functioned when the appropriate physiological pyridine nucleotide was the hydride ion acceptor. An NADH:NAD+ transhydrogenase system, which was unaffected by EDTA, or adenyl nucleotides, also was demonstrable in the mitochondria of H. diminuta. Saturation kinetics indicated that the NADH:NAD+ reaction was the product of an independent enzyme system. Mitochondria derived from another parasitic helminth, Ascaris lumbricoides, catalyzed only a single transhydrogenase reaction, i.e., the NADH:NAD+ activity. Transhydrogenase systems from both parasites were essentially membrane bound and localized on the inner mitochondrial membrane. Physiologically, the NADPH:NAD+ transhydrogenase of H. diminuta may serve to couple the intramitochondrial metabolism of malate (via an NADP linked “malic” enzyme) to the anaerobic NADH-dependent ATP-generating fumarate reductase system. In A. lumbricoides, where the intramitochondrial metabolism of malate depends on an NAD-linked “malic” enzyme which is localized primarily in the intermembrane space, the NADH:NAD+ transhydrogenase activity may serve physiologically in the translocation of hydride ions across the inner membrane to the anaerobic energy-generating fumarate reductase system.  相似文献   

9.
10.
Diversity of T cell receptor (TCR) genes is primarily generated by nucleotide insertions upon rearrangement from their germ line-encoded V, D and J segments. Nucleotide insertions at V-D and D-J junctions are random, but some small subsets of these insertions are exceptional, in that one to three base pairs inversely repeat the sequence of the germline DNA. These short complementary palindromic sequences are called P nucleotides. We apply the ImmunoSeq deep-sequencing assay to the third complementarity determining region (CDR3) of the β chain of T cell receptors, and use the resulting data to study P nucleotides in the repertoire of naïve and memory CD8+ and CD4+ T cells. We estimate P nucleotide distributions in a cross section of healthy adults and different T cell subtypes. We show that P nucleotide frequency in all T cell subtypes ranges from 1% to 2%, and that the distribution is highly biased with respect to the coding end of the gene segment. Classification of observed palindromic sequences into P nucleotides using a maximum conditional probability model shows that single base P nucleotides are very rare in VDJ recombination; P nucleotides are primarily two bases long. To explore the role of P nucleotides in thymic selection, we compare P nucleotides in productive and non-productive sequences of CD8+ naïve T cells. The naïve CD8+ T cell clones with P nucleotides are more highly expanded.  相似文献   

11.
The studies reported here show that NAD+ levels are low in chick limbs which have not yet attained the stage of cellular commitment, that these low levels persist during a time period when major chondrogenic commitment and expression occur, that beyond this stage the NAD+ levels in chick limbs rise dramatically and continuously, corresponding to the period of major myogenic development, and that developing cultures of stage 24 mesodermal cells seem to mimic these in vivo events in that myogenic cells are observed when NAD+ levels are high and chondrogenic cells are observed when NAD+ levels are low. These observations are consistent with the hypothesis that pyridine nucleotides may play some role in the control of muscle and cartilage development in embryonic chick limbs.  相似文献   

12.
A suspension‐cultured cell strain of the mangrove plant (Bruguiera sexangula) was established from a callus culture and maintained in an amino acid medium in the absence of NaCl. NaCl non‐adapted cells were transferred to media containing 0–200 mm NaCl. The initial growth rate decreased gradually with increasing salt concentrations. However, at up to 150 mm NaCl, cell number growth at the highest point was almost the same as that at lower salt concentrations. Cells even continued to grow in the presence of 200 mm NaCl. Cells incubated in a medium containing 50 mm NaCl for 3 weeks accumulated Na+, while those incubated in 150 mm NaCl for 2 d showed only a transient increase in Na+ and Cl concentrations. In the latter treatment, the intracellular concentration of Na+ returned to the original low level within 2 weeks. It took a longer time for Cl to return to its original level. As a result, the Na+ and Cl concentrations in cells cultured with 50 mm NaCl were much larger than those in cells cultured with 150 mm NaCl. The intracellular distribution of ions after transfer to the medium containing 150 mm NaCl was analysed by isolating the vacuoles. Treatment with amiloride, an inhibitor of the Na+/H+ antiporter, suppressed the recovery of Na+ to the original level in the cells. Treatment with 150 mm NaCl for 3 d stimulated the activities of both the vanadate‐dependent H+‐ATPase and the Na+/H+ antiporter in the plasma membrane fraction.  相似文献   

13.
The adenine nucleotide content of the 2-centimeter segments excised from tray-grown corn (Zea mays L., WF9 × Mo17) roots declines for the first hour after excision. Concomitant with the loss of adenine nucleotides is a decline in respiration and a leakage of K+. With continued washing, these parameters partially or completely recover and increased phosphate influx develops. Increasing the wound effect by cutting 0.5-centimeter segments gives a more rapid and pronounced degradation of adenine nucleotides and slower recovery. Conversely, the mild injury caused by submerging intact roots induces less degradation and produces greater net adenine nucleotide synthesis during recovery; adding auxin to the washing medium produces a similar result. With all treatments, there is stabilization of energy charge at about 0.85.  相似文献   

14.
The chrysophycean alga, Ochromonas malhamensis Pringsheim, was shown to synthesize cyclic adenosine 3′:5′-monophosphate (cAMP) and to release it into the culture medium. Cells contained 3 to 3,000 picomoles per gram fresh weight; medium contained up to 20 times the amount in the cells. Putative [32P]cAMP was purified from cultures supplied [32P]phosphate. The compound was identified as [32P]cAMP by co-chromatography with authentic cAMP through 10 serial steps; by chemical deamination at the same rate as authentic cAMP, to a 32P compound with the chromatographic behavior of cIMP; and by its conversion through the action of cyclic nucleotide phosphodiesterase to a 32P compound with the chromatographic behavior of 5′-AMP. A two-step procedure involving chromatography on alumina and on Dowex 50 purified the unlabeled compound from cells or medium sufficiently for it to be assayable by competitive inhibition of binding of [3H]cAMP to cAMP-binding protein (Gilman assay) or by stimulation of cAMP-dependent protein kinase. The activity was destroyed by cyclic nucleotide phosphodiesterase with the same kinetics as authentic cAMP, provided that an endogenous inhibitor of the phosphodiesterase was first removed by an additional purification step.  相似文献   

15.
Osmotic Effects on Membrane Permeability in a Marine Bacterium   总被引:1,自引:0,他引:1       下载免费PDF全文
When cells of Alteromonas haloplanktis 214 (ATCC 19855) were preloaded with α-[14C]aminoisobutyric acid or the K+ in the cells was labeled with 42K by incubation in a buffered salt solution containing 0.05 M MgSO4, 0.01 M KCl, and 0.3 M NaCl, the cells retained their radioactivity when resuspended in the same salt solution. When NaCl was omitted from the solution, 80 to 90% of the radioactivity was lost from the cells. Cells suspended at intermediate concentrations of NaCl also lost radioactivity. New steady-state levels of the intracellular solutes were established within 15 s of suspending the cells; the percentage of radioactivity retained at each level decreased proportionately as the osmolality of the NaCl in the suspending solution decreased. With minor variations in effectiveness, MgCl2, LiCl, and sucrose could substitute for NaCl on an equiosmolal basis for the retention of radioactivity by the cells. KCl, RbCl, and CsCl were appreciably less effective as replacements for NaCl, particularly when their osmolalities in the suspending solutions were low. The amount of α-[14C]aminoisobutyric acid taken up by the cells at the steady-state level increased to a maximum as the NaCl concentration in the suspending medium increased to 0.3 M. At suboptimal levels of NaCl, either LiCl or sucrose could substitute for NaCl in increasing the steady-state levels. The results obtained indicate that the porosity of the cytoplasmic membrane of this organism is determined by the difference between the osmotic pressure of the cytoplasm and the suspending medium. The lesser effectiveness of K+, Rb+, and Cs+ than Na+, Li, or Mg2+ in permitting the retention of solutes by the cells is attributed to the greater penetrability of the hydrated ions of the former group through the dilated pores of a stretched cytoplasmic membrane.  相似文献   

16.
Recently we have shown that Nerve Growth Factor (NGF) influences the movement of Na+ across the membrane of chick embryo dorsal root ganglion (DRG) cells. When cell dissociates from 8-day embryonic chick DRG, equilibrated with 86Rb+ (a K+ analog) in the presence of NGF, were transferred to NGF-free medium a marked loss of intracellular K+ occurred over several hours. The time course of K+ loss was similar to the time course of Na+ accumulation which occurs in the absence of NGF. NGF-deprived, K+-depleted DRG cells reaccumulated K+ within minutes of delayed NGF presentation, just as delayed NGF administration results in the rapid extrusion of Na+ from Na+-loaded cells. Restoration of K+ competence was dependent upon NGF concentration. The occurrence of this K+ response to exogenous NGF in other ganglionic preparations correlated with traditional responses to NGF in culture and previously observed Na+ responses. Neither the development nor the expression of the ionic defect (K+ depletion, Na+ filling) during NGF deprivation required the presence of both cations in the medium. NGF-dependent restoration of intracellular K+ in NGF-deprived chick DRG cells required the presence of intracellular Na+, and NGF-dependent extrusion of Na+ required extracellular K+. Thus NGF appears to influence the coupled (active) movements of Na+ and K+ across the membrane of its target cells, possibly by means of the classical Na+, K+-ATPase pump.  相似文献   

17.
Chromatography of AMP, NAD+, or NADH on a reverse-phase C18 Porasil B column rapidly removes ammonium formate or potassium phosphate from 90% of the nucleotide. Earlier reports showed these salts could not be separated from nucleotides by conventional desalting using gel filtration.  相似文献   

18.
The two bacterial cell wall peptidoglycan precursors UDP-MurNAc-l-Ala-d-iso Glu-l-Lys-d-Ala-d-Ala and UDP-GlcNAc labeled in their amino sugars with either tritium or carbon-14 accumulated in cells ofMicrococcus luteus that were incubated for short periods of time in a minimal medium to which [14C]glucose or [3H]glucose together with Vancomycin were added. The radioactive nucleotides were extracted from the cells with cold trichloroacetic acid, and their purification was achieved by paper electrophoresis followed by paper chromatography.  相似文献   

19.
A major problem involved in the direct fermentation of nucleotides is their breakdown by phosphohydrolases. Thus, adenine auxotrophs of most microorganisms produce hypoxanthine and/or inosine rather than inosine 5′-monophosphate (IMP) while guanine auxotrophs excrete xanthosine rather than xanthosine 5′-monophosphate (XMP). Examination of a Bacillus subtilis mutant producing hypoxanthine plus inosine revealed at least four phosphohydrolases, three of which could attack nucleotides. Even when the extracellular nucleotide phosphohydrolase was inhibited by Cu+2 and its surface-bound alkaline phosphohydrolase was repressed and inhibited by inorganic phosphate, or removed by mutation, the breakdown products were still the only products of fermentation. Under these conditions, the third enzyme, a surface-bound non-repressible nucleotide phosphohydrolase was still active. It appears, at least in B. subtilis, that excretion is dependent upon breakdown by this enzyme and if hydrolysis does not occur, excretion of purine nucleotides is feedback inhibited by the resultant high intracellular IMP concentration. Corynebacterium glutamicum mutants, on the other hand, can excrete intact nucleotides, and direct fermentations for IMP, XMP, and GMP have been described. An examination of phosphohydrolases in a GMP-producing culture revealed no extracellular or surface enzymes. Disruption of the cells resulted in liberation of cellular phosphohydrolase activity with a substrate specificity remarkably similar to the flavorenhancing properties of the 5′-nucleotides. The order of decreasing susceptibility was GMP, IMP, XMP; AMP was not attacked.  相似文献   

20.
Physiological aspects of phosphate utilization by the blue-green alga Plectonema boryanum were studied. It was found that the external phosphate concentration influenced the distribution of phosphorus-containing compounds in the cell. Culturing the alga in concentrations of 10, 100, and 1000 mg PO4/l resulted in increases in the level of acid-soluble and acid-insoluble polyphosphates. The values reported for 100 and 1000 mg PO4/l were the same, indicating that the cells were able to assimilate and utilize only fixed amounts of phosphates. The total phosphorus value for these cells was calculated to be 6.5 μg P per 106 cells. Culturing the alga in 1 mg PO4/l led to a decrease in phosphate concentration of all cell fractions. Cells grown in the absence of phosphate for 5 days had total cell phosphorus levels of 0.76 μg P per 106 cells. Cells in culture for two months or longer were found to have total cell phosphorus levels of 0.73 μg P per 106 cells. This was determined to be the minimum cell phosphorus level limiting growth. Transfer of cells from either culture condition to a medium containing phosphate led to an “overplus” phenomenon. This overplus phenomenon was characterized by increases in all cellular phosphorus fractions. The most dramatic increase was found in both the acid-soluble and acid-insoluble polyphosphates. These fractions often increased by more than an order of magnitude. The greatest phosphate uptake occurred within 1 hr of transfer of phosphate-starved cells into a medium containing a known amount of phosphate and is essentially complete at 4 hr. The total cell phosphorus levels for uptake never increased beyond 18.9 μg per 106 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号