首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oncogenic derivatives of Madin-Darby canine kidney (MDCK) cells were isolated in the nude mouse, and nononcogenic anchorage-independent transformants were isolated in vitro following chemical mutagenesis in vitro. These transformed cell lines as well as a Moloney sarcoma virus (MSV) transformed line were characterized with respect to their serum and anchorage requirements, growth rates, final saturation densities, and sensitivities to contact inhibition. None of these in vitro growth characteristics were found to correlate with tumorigenicity in nude mice. One tumorigenic clone, MDCK-T1, was characterized with respect to serum-free growth requirements, cAMP production, and ornithine decarboxylase (ODC) activity. These cells exhibited a significant reduction in the PGE1 requirement for growth, they produced higher levels of cAMP, and they expressed a reduced level of ODC activity relative to the parental MDCK cells. These findings may reflect changes in growth control mechanisms which accompany kidney epithelial cell tumorigenesis and suggest that the study of transformed lines derived in this manner could lead to the identification of in vitro properties which are associated with malignancy.  相似文献   

2.
Abstract A chemiluminescence immunoassay (CLIA) was developed to detect Cryptosporidium parvum growth in Madin-Darby canine kidney (MDCK) cell cultures. Optimal results were obtained when MDCK cells were plated at a density of 1 × 104 cells/well (96-well plate) and maintained as a monolayer for 4 days prior to infection with 2 × 104 parasites/well. Two compounds (paromomycin and maduramicin) were evaluated and shown to have selective activity against C. parvum in a dose-dependent manner. There was excellent correlation between CLIA and immunofluorescence assay when assessing anti- C. parvum agents in MDCK cells. CLIA offers advantages over conventional enzyme-linked immunosorbent assay and immunofluorescence assay methods in that it is more sensitive and efficient. The combination of CLIA and MDCK culture provides an efficient tool for evaluating potential anti-cryptosporidial compounds prior to testing in animal models.  相似文献   

3.
Several mammalian cell lines, including Madin–Darby canine kidney (MDCK) cells have been approved by regulators for manufacturing of human vaccines. A new MDCK 9B9-1E4 cloned cell line has been created which is capable of producing live attenuated influenza vaccine (LAIV) with high yield. This cell line was shown to be non tumorigenic in eight week old adult athymic nude mouse model. This property is desirable for vaccine production and is unique to this cell line and is not known to be shared by other MDCK cell lines that are currently used for vaccine production. This significant difference in tumorigenic phenotype required further characterization of this cell line to ensure its safety for use in vaccine production. This is particularly important for LAIV production where it is not possible to incorporate a virus inactivation and/or removal step during manufacturing. Characterization of this cell line included extensive adventitious agent testing, tumorigenicity and oncogenicity assessment studies. Here, we describe the development of tumorigenic MDCK cell lines for use as positive controls and in vitro methods to aid in the evaluation of the tumorigenicity of MDCK 9B9-1E4 cloned cells. Tumorigenic MDCK cells were successfully generated following Hras and cMyc oncogene transfection of MDCK 9B9-1E4 cloned cells. In this study we demonstrate the lack of tumorigenic potential of the MDCK 9B9-1E4 cloned cell line in adult athymic nude mice model.  相似文献   

4.
The mechanisms by which cells spontaneously immortalized in tissue culture develop the capacity to form tumors in vivo likely embody fundamental processes in neoplastic development. The evolution of Madin-Darby canine kidney (MDCK) cells from presumptively normal kidney cells to immortalized cells that become tumorigenic represents an example of neoplastic development in vitro. Studies of the mechanisms by which spontaneously immortalized cells develop the capacity to form tumors would benefit from quantitative in vivo assays. Most mechanistic correlations are evaluated by using single-dose tumor-induction experiments, which indicate only whether cells are or are not tumorigenic. Here we used quantitative tumorigenicity assays to measure dose-and time-dependent tumor development in nude mice of 3 lots of unmodified MDCK cells. The results revealed lot-to-lot variations in the tumorigenicity of MDCK cells, which were reflected by their tumor-inducing efficiency (threshold cell dose represented by mean tumor-producing dose; log(10) 50% endpoints of 5.2 for vial 1 and 4.4 for vial 2, and a tumor-producing dose of 5.8 for vial 3) and mean tumor latency (vial 1,6.6 wk; vial 2,2.9 wk; and vial 3,3.8 wk). These studies provide a reference for further characterization of the MDCK cell neoplastic phenotype and may be useful in delineating aspects of neoplastic development in vitro that determine tumor-forming capacity. Such data also are useful when considering MDCK cells as a reagent for vaccine manufacture.  相似文献   

5.
Clostridium perfringens epsilon-toxin, which is responsible for enterotoxaemia in ungulates, forms a heptamer in rat synaptosomal and Madin-Darby canine kidney (MDCK) cell membranes, leading to membrane permealization. Thus, the toxin may target the detergent-resistant membrane domains (DRMs) of these membranes, in analogy to aerolysin, a heptameric pore-forming toxin that associates with DRMs. To test this idea, we examined the distribution of radiolabeled epsilon-toxin in DRM and detergent-soluble membrane fractions of MDCK cells and rat synaptosomal membranes. When MDCK cells and synaptosomal membranes were incubated with the toxin and then fractionated by cold Triton X-100 extraction and flotation on sucrose gradients, the heptameric toxin was detected almost exclusively in DRMs. The results of a toxin overlay assay revealed that the toxin preferentially bound to and heptamerized in the isolated DRMs. Furthermore, cholesterol depletion by methyl-beta-cyclodextrin abrogated their association and lowered the cytotoxicity of the toxin toward MDCK cells. When epsilon-protoxin, an inactive precursor able to bind to but unable to heptamerize in the membrane, was incubated with MDCK cell membranes, it was detected mainly in their DRMs. These results suggest that the toxin is concentrated and induced to heptamerize on binding to a putative receptor located preferentially in DRMs, with all steps from initial binding through pore formation completed within the same DRMs.  相似文献   

6.
Apoptosis: a mechanism of cell killing by influenza A and B viruses.   总被引:19,自引:4,他引:15       下载免费PDF全文
In previous studies, we observed that the virulent avian influenza A virus A/Turkey/Ontario/7732/66 (Ty/Ont) induced severe lymphoid depletion in vivo and rapidly killed an avian lymphocyte cell line (RP9) in vitro. In examining the mechanism of cell killing by this virus, we found that Ty/Ont induced fragmentation of the RP9 cellular DNA into a 200-bp ladder and caused ultrastructural changes characteristic of apoptotic cell death by 5 h after infection. We next determined that the ability to induce apoptosis was not unique to Ty/Ont. In fact, a variety of influenza A viruses (avian, equine, swine, and human), as well as human influenza B viruses, induced DNA fragmentation in a permissive mammalian cell line, Madin-Darby canine kidney (MDCK), and this correlated with the development of a cytopathic effect during viral infection. Since the proto-oncogene bcl-2 is a known inhibitor of apoptosis, we transfected MDCK cells with the human bcl-2 gene; these stably transfected cells (MDCKbcl-2) did not undergo DNA fragmentation after virus infection. In addition, cytotoxicity assays at 48 to 72 h after virus infection showed a high level of cell viability for MDCKbcl-2 compared with a markedly lower level of viability for MDCK cells. These studies indicate that influenza A and B viruses induce apoptosis in cell cultures; thus, apoptosis may represent a general mechanism of cell death in hosts infected with influenza viruses.  相似文献   

7.
The correlation between the lethal effect of 7β-hydroxycholesterol (7β-OH-CH) on spontaneously transformed cell lines derived from rat astrocyte primary cultures (normal cells) and de novo cholesterogenesis was investigated. Both 7β-OH-CH and 7-keto-CH were not cytotoxic on normal cells but 7β-OH-CH affected markedly the viability of the transformed cells. The use of [14C]acetate or [14C] mevalonate indicated that 7-keto-CH inhibits de novo cholesterogenesis upstream of 3-hydroxy-3-methylglutaryl CoA reductase (HMGR) in both cell types whereas 7β-OH-CH also inhibits downstream of HMGR. The accumulation of two radiolabelled products X1 and X2 between mevalonate and CH was found in unsaponifiable neutral lipids extracted from 7β-OH-CH treated transformed cells. HPLC and GC-MS revealed that X1 and X2 are not lanosterol anti 24.25-epoxylanosterol, respectively. Incubation of the transformed cells with X1 and X2 did not affect their viability. Our data demonstrate that, under our experimental conditions, 7β-OH-CH cytotoxicity is not linked to the inhibition of de novo cholesterogenesis in cultured glial transformed cells.  相似文献   

8.
No comparative study of the effects of sphingolipid metabolites on proliferation and differentiation in normal human breast epithelial cells versus stem cells and tumorigenic cells has been reported. The purpose of this study was to evaluate the chemotherapeutic and chemopreventive potential of sphingoid bases (sphingosine and sphinganine) using a novel cell culture system of normal human breast epithelial cells (HBEC) developed from breast tissues of healthy women obtained during reduction mammoplasty (Type I HBEC with stem cell characteristics and Type II HBEC with basal epithelial cell phenotypes) and transformed tumorigenic Type I HBEC. The results show that sphinganine inhibited the growth and induced apoptosis of transformed tumorigenic Type I HBEC more potently than sphingosine (IC(50) for sphinganine 4 microM; sphingosine 6.4 microM). Both sphinganine and sphingosine at high concentrations (8-10 lM) arrested the cell cycle at G(2)/M. Sphinganine inhibited the growth and caused death of Type I HBEC more strongly than sphingosine. In comparison, Type II HBEC (normal differentiated cells) were less sensitive to the growth-inhibitory effects of sphingoid bases than Type I HBEC (stem cells) or transformed tumorigenic Type I HBEC, suggesting that sphingoid bases may serve as chemotherapeutic agents. At concentrations (0.05, 0.1, and 0.5 microM) that are below the growth-inhibitory range, sphingoid bases induced differentiation of Type I HBEC to Type II HBEC, as detected morphologically and via expression of a tumor suppressor protein, maspin, which is a marker of Type II HBEC. Thus, sphingoid bases may function as chemotherapeutic as well as chemopreventive agents by preferentially inhibiting cancer cells and eliminating stem cells from which most breast cancer cells arise.  相似文献   

9.
Cell cultures are increasingly used in the evaluation of chemically-induced nephrotoxicity. The utili of renal cell culture systems in toxicology would be improved, however, if better characterized and more specific markers of toxicity were available. High resolution proton nuclear magnetic resonance (1H NMR) spectroscopy is well suited to the study of toxicological events and has identified many novel markers of nephrotoxicity in vivo. In this study, 1H NMR spectroscopy has been used to characterize the biochemical composition of two renal cell lines of different nephronal origin, LLC-PK1 (pig proximal tubule) and Madin-Darby canine kidney (MDCK, distal tubule). The early biochemical responses of these cell lines to the model proximal tubular toxin S-(1,2dichlorovinyl)i-L-cysteine (DCVC) and the renal medullary toxin 2-chloroethanamine (CEA) have also been investigated. For each line, 500 MHz 1H NMR spectra of protein-free acetone extracts of cells and culture medium gave characteristic and reproducible profiles of low MW constituents, including amino and organic acids, glucose and soluble membrane precursors, such as choline and myo-inositol. Treatment-related changes in several low MW compounds not routinely measured in toxicological studies were revealed by NMR specboscopy before marked cytotoxicity was observed by phase contrast microscopy. For example, LLC-PK1 cells treated with 60 μM DCVC showed a marked decrease in intracellular choline levels within 3 h which suggests an effect on the balance of choline synthesis and utilization. Wrthin 9 h of treatment with DCVC there were decreases in intracellular acetate and alanine concentrations which may be indicative of a decrease in fatty acid oxidation and biglyceride metabolism accompanied by an increase in gluconeogenesis. In MDCK cells, 1 h post treatment with 5 mM CEA, intracellular glycine was decreased. This study indicates the potential power and applicability of 1H NMR spectroscopy for evaluating the biochemical and metabolic effects of toxins in cell culture systems and provides a novel approach to identifying new markers of tissue damage.  相似文献   

10.
Rac1 protects epithelial cells against anoikis   总被引:6,自引:0,他引:6  
Rho family members play a critical role in malignant transformation. Anchorage-independent growth and the ability to avoid apoptosis caused by loss of anchorage (anoikis) are important features of transformed cells. Here we show that constitutive activation of Rac1 inhibits anoikis in Madin-Darby canine kidney (MDCK) epithelial cells. Constitutively active Rac1-V12 decreases DNA fragmentation and caspase activity by 50% in MDCK cells kept in suspension. In addition, expression of Rac1-V12 in MDCK cells in suspension conditions causes an increase in the number of surviving cells. We also investigated the signaling pathways that are activated by Rac1 to stimulate cell survival. We show that expression of Rac1-V12 in MDCK cells in suspension stimulates a number of signaling cascades that have been implicated in the control of cell survival, including the p42/44 ERK, p38, protein kinase B, and nuclear factor kappaB pathways. Using specific chemical or protein inhibitors of these respective pathways, we show that Rac1-mediated cell survival strongly depends on phosphatidylinositol 3-kinase activity and that activation of ERK, p38, and NF-kappaB are largely dispensable for Rac1 survival signaling. In conclusion, these studies demonstrate that Rac1 can suppress apoptosis in epithelial cells in anchorage-independent conditions and suggest a potential role for Rac1-mediated survival signaling in cell transformation.  相似文献   

11.
The high concentration of glycosphingolipids on the apical surface of epithelial cells may be generated by selective transport from their site of synthesis to the cell surface. Previously, we showed that canine kidney MDCK and human intestinal Caco-2 cells converted a ceramide carrying the short fluorescent fatty acid C6-NBD to glucosylceramide (GlcCer) and sphingomyelin (SM), and that GlcCer was preferentially transported to the apical surface as compared to SM. Here, we address the point that not all glycosphingolipid classes are apically enriched in epithelia. We show that a ceramide containing the 2-hydroxy fatty acid C6OH was preferentially converted by MDCK and Caco- 2 cells to galactosylceramide (GalCer) and its derivatives galabiosylceramide (Ga2Cer) and sulfatide (SGalCer) as compared to SM and GlcCer--all endogenous lipid classes of these cells. Transport to the apical and basolateral cell surface was monitored by a BSA- depletion assay. In MDCK cells, GalCer reached the cell surface with two- to sixfold lower apical/basolateral polarity than GlcCer. Remarkably, in Caco-2 cells GalCer and GlcCer displayed the same apical/basolateral polarity, but it was sixfold lower for lipids with a C6OH chain than for C6-NBD lipids. Therefore, the sorting of a sphingolipid appears to depend on lipid structure and cell type. We propose that the different ratios of gluco- and galactosphingolipid synthesis in the various epithelial tissues govern lipid sorting in the membrane of the trans Golgi network by dictating the composition of the domains from where vesicles bud to the apical and basolateral cell surface.  相似文献   

12.
Caco-2 cells, derived from human colon, have the morphological, functional, and biochemical properties of small intestinal epithelial cells. After infection with enveloped viruses, influenza virions assembled at the apical plasma membrane while vesicular stomatitis virus (VSV) particles appeared exclusively at the basolateral membrane, similar to the pattern observed in virus-infected Madin-Darby canine kidney (MDCK). When grown in Millicell filter chamber devices and labeled with [35S]methionine, Caco-2 monolayers released all of their radiolabeled secretory products preferentially into the basal chamber. Among the proteins identified were apolipoproteins AI and E, transferrin, and alpha-fetoprotein. No proteins were observed to be secreted preferentially from the apical cell surface. The lysosomal enzyme beta-hexosaminidase was also secreted primarily from the basolateral surface of the cells in the presence or absence of lysosomotropic drugs or tunicamycin, which inhibit the targetting of lysosomal enzymes to lysosomes. Neither of these drug treatments significantly affected the polarized secretion of other nonlysosomal proteins. In addition, growth hormone (GH), which is released in a nonpolar fashion from MDCK cells, was secreted exclusively from the basolateral membrane after transfection of Caco-2 cells with GH cDNA in a pSV2-based expression vector. Similar results were obtained in transient expression experiments and after selection of permanently transformed Caco-2 cells expressing GH. Since both beta-hexosaminidase and GH would be expected to lack sorting signals for polarized exocytosis in epithelial cells, these results indicate that in intestinal cells, proteins transported via the basolateral secretory pathway need not have specific sorting signals.  相似文献   

13.
Prostaglandin E1 (PGE1), a component in the hormone-supplemented, serum-free medium for the Madin Darby canine kidney (MDCK) cell line, has been proposed to increase MDCK cell growth by increasing intracellular cyclic AMP levels. The association between increased intracellular cyclic AMP and the growth stimulatory effect of PGE1 has been examined in normal MDCK cells and in PGE1-independent variants of MDCK. These variant cells have lost the PGE1 requirement for long term growth in defined medium. Normal MDCK cells had almost twofold higher intracellular cyclic AMP levels during growth in Medium K-1 (9.0 pmol/mg protein) than in Medium K-1 minus PGE1. Furthermore, PGE1-independent clone 1 had higher intracellular cyclic AMP levels in Medium K-1 minus PGE1 than normal MDCK cells in Medium K-1. This latter observation suggests that the PGE1 requirement for MDCK cell growth is associated with the low intracellular cyclic AMP levels of this cell line. An involvement of cyclic AMP in the growth response to PGE1 is supported by these observations, as well as by the growth stimulatory effects of other agents that affect cyclic AMP metabolism in MDCK cells. These agents include glucagon, isobutyl methylxanthine (IBMX), and dibutyryl cyclic AMP. The growth of PGE1-independent clone 1 was inhibited rather than stimulated by PGE1. Similarly, PGE1-independent cell growth was inhibited by IBMX and dibutyryl cyclic AMP. However, the growth response to one agent which increases cyclic AMP (glucagon) was retained in PGE1-independent clone 1. This result suggests that the effect of glucagon is not associated with increases in intracellular cyclic AMP. The growth stimulatory effect of epidermal growth factor (EGF) on normal MDCK cells was also studied. Although EGF does not act via a cyclic AMP-mediated mechanism, EGF increased normal MDCK cell growth and substituted for PGE1 in Medium K-1. Thus, EGF and PGE1 could possibly affect similar growth-related functions in MDCK cells, although by different pathways. This possibility was examined further, using PGE1-independent clone 1. EGF, like glucagon, was still growth stimulatory to the PGE1-independent cells. Consequently, the biochemical pathways by which EGF and PGE1 increase MDCK cell growth probably do not converge.  相似文献   

14.
We found that CEL-I was a potent cytotoxic lectin. MDCK, HeLa, and XC cells were highly sensitive to CEL-I cytotoxicity and killed in a dose-dependent manner, whereas CHO, L929, and RAW264.7 cells were relatively resistant to CEL-I, and no significant toxicity was observed up to 10 microg/ml. Among these cell lines, MDCK cells showed the highest susceptibility to CEL-I cytotoxicity. A binding study using FITC-labeled CEL-I (F-CEL-I) revealed that the amounts of bound F-CEL-I on the sensitive cell lines were evidently greater than those on the resistant cell lines, suggesting that the different susceptibility of the cell lines to CEL-I cytotoxicity is partly explained by different efficiencies of binding of CEL-I to these cell lines. Interestingly, the cytotoxicity of CEL-I toward MDCK cells was more potent than those of other lectins such as WGA, PHA-L, and Con A, even though these lectins were capable of binding to MDCK cells at comparable levels to CEL-I. Since the cytotoxicity of CEL-I was strongly inhibited by GalNAc, the binding to cell surface specific carbohydrates is essential for the CEL-I cytotoxicity. The trypan blue dye exclusion test indicated that CEL-I caused a disorder of plasma membrane integrity as a relatively early event. CEL-I failed to induce the release of carboxyfluorescein (CF) from CF-loaded MDCK cells as seen for pore-forming hemolytic isolectin CEL-III, suggesting that the primary cellular target of CEL-I may be the plasma membrane, but its action mechanism differs from that of CEL-III. Although CEL-I induced dramatic cellular morphological changes in MDCK cells, neither typical apoptotic nuclear morphological changes nor DNA fragmentation was observed in CEL-I-treated MDCK cells even after such cellular changes. Our results demonstrated that CEL-I showed a potent cytotoxic effect, especially on MDCK cells, by causing plasma membrane disorder without induction of apoptosis.  相似文献   

15.
We used Ha-ras-transformed Madin-Darby canine kidney (MDCK) cells as a model to study possible signal transduction mechanisms underlying the induction of glucagon responsiveness by the differentiation inducers prostaglandin E2 (PGE2) and 8-bromo-cyclic (8-Br-cAMP) AMP and the inhibition of induction by phorbol ester or a serum factor. The steady-state level of inositol 1,4,5-trisphosphate (IP3) was higher in Ha-ras-transformed MDCK cells than in parental MDCK cells. In contrast, the steady-state level of intracellular cAMP of transformed cells was similar to that of normal cells. PGE2 and 8-Br-cAMP increased cAMP content but decreased IP3 levels in a concentration-dependent fashion after 5 days of treatment. We examined the time course for effects of PGE2 and 8-Br-cAMP and found that there was a lag period of 8 to 16 h between elevation of cAMP after the addition of 8-Br-cAMP or PGE2 and the decrease of IP3 levels. Another lag period of 2 days existed before the induction of differentiation. Both the reduction of IP3 levels and the induction of glucagon responsiveness were blocked by phorbol-12-myristate-13-acetate or serum, suggesting that a decrease in the IP3 level might be causally involved in induction of differentiation in transformed MDCK cells. However, induction of differentiation was not due to changes in the expression or guanine nucleotide-binding properties of p21 protein. It is likely that cAMP has a direct regulatory effect on the phospholipid signaling pathway. We conclude that perturbation of the inositol phosphate signaling pathway may be responsible for the induction of differentiation by PGE2 and 8-Br-cAMP in transformed MDCK cells.  相似文献   

16.
Trypanosoma cruzi invade a mammalian epithelial cell in a polarized manner   总被引:10,自引:0,他引:10  
We have determined that parasite entry into host cells can be influenced by cell polarity using a DNA probe to quantitate the infection of cultured Madin-Darby canine kidney (MDCK) epithelial cells by Trypanosoma cruzi, the agent of Chagas' disease. Confluent MDCK cells are polarized, with their plasma membrane separated by tight junctions into two domains, apical and basolateral. We show that T. cruzi forms corresponding to the insect infective stages (metacyclics) and the vertebrate blood stages (trypomastigotes) enter confluent MDCK cells preferentially through their basolateral domains. Sparsely plated MDCK cells are less polarized and are better infected than confluent cells. Scanning electron microscopy showed that 92% +/- 4% of the parasites entered at the edges of cells.  相似文献   

17.
Madin-Darby canine kidney (MDCK) cells grown in tissue culture have the morphological properties of distal tubular epithelial cells, form tight junctions, and lack several proximal tubular enzyme markers. Adenylate cyclase in these cells was stimulated by vasopressin, oxytocin, prostaglandins E1 and E2, glucagon, and cholera toxin. Hormone-stimulated adenylate cyclase activity in isolated membrane preparations was dependent on low concentrations of GTP and had the MgCl2 and pH optima expected for the kidney enzyme. The results, as well as the demonstration of enhanced hemicyst formation induced by cyclic AMP, suggest that the MDCK cell line has retained the differentiated properties of the kidney epithelial cell of origin. When MDCK cells were injected into baby nude mice, continuous nodule growth was observed until adulthood was attained. Histological studies revealed the presence of two cell types: normal mouse fibroblasts which comprise 80--90% of the solid nodule mass, and MDCK cells, which formed epithelial sheets lining internal fluid-filled glands. Electron microscope analysis showed that the mucosal surfaces of the cells were characterized by microvilli which faced the lumen of the glands, that adjacent MDCK cells were joined by tight junctions, and that the serosal surfaces of the epithelial sheets were characterized by smooth plasma membranes which were lined by a continuous basement membrane. These observations lead to the conclusion that the MDCK cells retain regional differentiation of their plasma membranes and the ability to regenerate kidney tubule-like structures in vivo.  相似文献   

18.
Glycosyl-phosphatidylinositol (GPI)- anchored proteins are preferentially transported to the apical cell surface of polarized Madin-Darby canine kidney (MDCK) cells. It has been assumed that the GPI anchor itself acts as an apical determinant by its interaction with sphingolipid-cholesterol rafts. We modified the rat growth hormone (rGH), an unglycosylated, unpolarized secreted protein, into a GPI-anchored protein and analyzed its surface delivery in polarized MDCK cells. The addition of a GPI anchor to rGH did not lead to an increase in apical delivery of the protein. However, addition of N-glycans to GPI-anchored rGH resulted in predominant apical delivery, suggesting that N-glycans act as apical sorting signals on GPI-anchored proteins as they do on transmembrane and secretory proteins. In contrast to the GPI-anchored rGH, a transmembrane form of rGH which was not raft-associated accumulated intracellularly. Addition of N-glycans to this chimeric protein prevented intracellular accumulation and led to apical delivery.  相似文献   

19.
Madin-Darby canine kidney (MDCK) cells form polarized, multicellular epithelial structures in vitro. Low-level expression of pp60v-src in MDCK cells elicits plasticity in these multicellular structures. Plasticity was revealed by the displacement of cells from mechanically stressed regions of the epithelial monolayers; however, the two-dimensional relationship between the cells in the remainder of the monolayer was maintained. Electron microscopy of multicellular structures revealed abnormal separation of the lateral membranes of adjacent cells and selective uncoupling of the junctional complex; the zonula adherens was disrupted, but the zonula occludens and desmosomes were retained. Significantly, this result was not accompanied by transformation of the cells, as judged by the absence of anchorage-independent growth potential. These results demonstrate a nonmitogenic biological activity of pp60v-src which is experimentally dissociable from transformation. This morphoregulatory action on higher-order epithelial structures may reflect a function of related cellular tyrosine kinases.  相似文献   

20.
In a search for an analogue of AAL-toxin with high phytotoxicity and low mammalian toxicity, aminopentols [(AP1), hexacetyl AP1 and N-acetyl AP1], and nine analogues (1–9), were tested for toxicity to duckweed (Lemna pausicostata), susceptible tomato (asc/asc) leaf discs, black nightshade leaf discs and mammalian cell lines, including dog kidney (MDCK), rat liver hepatoma (H4TG) and mouse fibroblasts (NIH3T3). These were compared with AAL-toxin and fumonisin B1 (FB1). Analogue 9 at 10 μM increased cellular leakage and chlorophyll loss from both tomato and black nightshade leaf discs. The diester 9 was the most active in the duckweed bioassay, but it was much less toxic to MDCK and H4TG cells with an IC50 of 200 μM compared to 10 μM for FB1. Analogue 9 and FB1 showed similar low toxicities (IC50 = 150 μM) to NIH3T3 cells. Among the substances tested, only analogue 9 had significant phytotoxicity and low mammalian toxicity, indicating some potential for development of safe and effective natural herbicides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号