首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyamine uptake by bovine adrenocortical cells   总被引:1,自引:0,他引:1  
Bovine adrenocortical cells of fasciculo-reticulata origin in primary culture actively accumulate polyamines from the extracellular medium in an energy-dependent process. At low extracellular concentration (e.g., 1 microM putrescine), the transport system resulted in a several-hundred-fold concentration of polyamine in the cellular compartment within 1-2 h of incubation. Putrescine uptake appeared to be the sum of a sodium-dependent, saturable process, with an apparent Km of about 10 microM and of a non-saturable, sodium-independent component. By contrast, spermine was taken up by the cells mostly in a sodium-independent manner. Cross-competition experiments suggested that both polyamines were at least partly transported by the same system. Using specific corresponding probes, it was shown that the polyamine uptake was independent of the amino acid transport systems of the A, L and N types known in a number of cell systems. Adrenocortical cell polyamine content is known to be modulated by adrenocorticotropin through induction of ornithine decarboxylase activity. The existence of a specific uptake system in these cells opens the possibility of a more rapid pathway for the regulation of cellular polyamine levels. It remains to be examined whether this polyamine transport system is under hormonal control, and whether this can support the suggestion that polyamines may represent a form of intracellular messengers in the mechanism of hormone action.  相似文献   

2.
The possible role of polyamines in the covalent modification of cellular protein(s) was investigated by studying the metabolic labeling of NB-15 mouse neuroblastoma cells by [14C]putrescine in fresh Dulbecco's medium followed by separation of cellular proteins through sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Under such incubation conditions, a single protein band with an apparent molecular weight of 18000 was radioactively labeled. [14C]Spermidine also specifically labeled this protein. The majority of the radioactivity covalently linked to the 18-kDa protein was recovered as hypusine. The radioactive labeling of this protein was stimulated 1.3-fold by 1 mM dibutyryl cAMP and 2.8-fold by 4% fetal calf serum. Fetal calf serum also stimulated the labeling of many other cellular proteins. This may be due to the conversion of putrescine to amino acids via the formation of gamma-aminobutyric acid. Aminoguanidine, a potent inhibitor of diamine oxidase, completely inhibited the fetal calf serum-stimulated labeling of these cellular proteins but had no effect on the labeling of the 18-kDa protein. The specific labeling of the 18-kDa protein by [14C]putrescine occurred in various mammalian cells examined including the N-18 mouse neuroblastoma cells, 3T3-L1 murine preadipocytes, and H-35 rat hepatoma cells. The specificity of labeling of the apparently ubiquitous 18-kDa protein and the stimulation of this labeling by fetal calf serum suggest that this protein may be important in mediating some of the actions of polyamines in cell growth regulation.  相似文献   

3.
The possible role of polyamines in the covalent modification of cellular protein(s) was investigated by studying the metabolic labeling of NB-15 mouse neuroblastoma cells by [14C]putrescine in fresh Dulbecco's medium followed by separation of cellular proteins through sodium dodecyl sulfate-polyacrylamide gel electrophoreses. Under such incubation conditions, a single protein band with an apparent molecular weight of 18 000 was radioactively labeled. [14C]Spermidine also specifically labeled this protein. The majority of the radioactivity covalently linked to the 18-kDa protein was recovered as hypusine. The radioactive labeling of this protein was stimulated 1.3-fold by 1 mM dibutyryl cAMP and 2.8-fold by 4% fetal calf serum. Fetal calf serum also stimulated the labeling of many other cellular proteins. This may be due to the conversion of putrescine to amino acids via the formation of γ-aminobutyric acid. Aminoguanidine, a potent inhibitor of diamine oxidase, completely inhibited the fetal calf serum-stimulated labeling of these cellular proteins but had no effect on the labeling of the 18-kDa protein. The specific labeling of the 18-kDa protein by [14C]putrescine occurred in various mammalian cells examined including the N-18 mouse neuroblastoma cells, 3T3-L1 murine preadipocytes, and H-35 rat hepatoma cells. The specificity of labeling of the apparently ubiquitous 18-kDa protein and the stimulation of this labeling by fetal calf serum suggest that this protein may be important in mediating some of the actions of polyamines in cell growth regulation.  相似文献   

4.
Pulmonary alveolar macrophages express a polyamine transport system   总被引:1,自引:0,他引:1  
Polyamine transport is an important mechanism by which cells regulate their intracellular polyamine content. It is well established that the lung has a high capacity for polyamine transport, and recently the polyamine putrescine has been shown to be selectively accumulated into the type II pneumocyte of rabbit lung slices (Saunders et al.: Lab. Invest., 95:380-386, 1988). In addition, it has been suggested that there may be more than one polyamine transport system in lung tissue (Byers et al.: Am. J. Physiol., 252:C663-C669, 1987). In the present study, we have examined whether there are differences in the distribution of putrescine and spermidine uptake activities in isolated rabbit lung cells. We report that pulmonary alveolar macrophages have a greater rate of uptake of both putrescine and spermidine than the total lung cell population. Kinetic analysis of the polyamine uptake system present in macrophages showed putrescine uptake consisted of a saturable (Km = 2.1 microM) and nonsaturable component whilst spermidine uptake consisted of both a high- and a low-capacity saturable component (Km = 0.16 microM and 1.97 microM, respectively). The rate of polyamine transport was similar to those reported for many proliferative or tumor cell-lines and appears to be greater than any other major lung cell type. Inhibition studies of the transport of polyamines into pulmonary alveolar macrophages suggested that the uptake of both putrescine and spermidine was mediated by the same system, which could not be described by simple Michaelis-Menten kinetics. The transport appears to be reversible due to significant efflux. This is the first study to describe the presence of multiple polyamine transport systems in pulmonary alveolar macrophages.  相似文献   

5.
Plasma membranes prepared from clonal NB-15 mouse neuroblastoma cells were sequentially incubated with 125I-labeled insulin (10 nM) and the bifunctional cross-linking agent disuccinimidyl suberate. This treatment resulted in the cross-linking of 125I-labeled insulin to a polypeptide that gave an apparent Mr of 135 000 on a sodium dodecyl sulfate-polyacrylamide gel electrophoresed in the presence of 10% beta-mercaptoethanol. Affinity labeling of this polypeptide was inhibited by the presence of 5 microM unlabeled insulin, but not by 1 microM unlabeled nerve growth factor. Using the same affinity labeling technique, 125I-labeled nerve growth factor (1 nM) did not label any polypeptide appreciably in the plasma membranes of NB-15 cells but labeled an Mr 145 000 and an Mr 115 000 species in PC-12 rat pheochromocytoma cells. The number of insulin binding sites per cell in the intact differentiated NB-15 mouse neuroblastoma cells was approx. 6-fold greater than that in the undifferentiated NB-15 mouse neuroblastoma cells as measured by specific binding assay, suggesting an increase of the number of insulin receptors in NB-15 mouse neuroblastoma cells during differentiation.  相似文献   

6.
Polyamines (putrescine, spermidine, and spermine) are normal cellular constituents able to modulate cellular proliferation and differentiation in a number of tissues and cell types. This investigation explores the response of murine embryonic palate mesenchymal (MEPM) cells to epidermal growth factor (EGF) in terms of biosynthesis of putrescine and its transport across the plasma membrane and tests the hypothesis that polyamine transport can serve as an alternative mechanism (other than biosynthesis) for elevating intracellular polyamines during stimulation of MEPM cellular proliferation. MEPM cells treated with EGF were stimulated to proliferate and showed a dose- and time-dependent stimulation of ornithine decarboxylase (ODC) which was maximal at 4-6 hours. EGF also stimulated the initial rate of putrescine transport in a dose- and time-dependent manner. This stimulation was found to be maximal 3 hours after treatment and specific for the putrescine transport system. The kinetic parameters of putrescine transport shifted from 2.52 microM (Km) and 23.6 nmol/mg protein/15 minutes (Vmax) in nonstimulated cells to 4.48 microM (Km) and 39.8 nmol/mg protein/15 minutes (Vmax) in EGF-treated cells. This kinetic shift did not require de novo protein or RNA synthesis, as cycloheximide (10 micrograms/ml) and actinomycin D (50 micrograms/ml) had little effect on the ability of EGF to stimulate the initial rate of putrescine uptake. The rate of transport, however, was found to be inversely related to cell density. The addition of exogenous putrescine concomitantly with EGF blocked the induction of ODC, while in the presence of difluoromethylornithine (DFMO) (irreversible inhibitor of ODC) the initial rate of putrescine transport remained elevated throughout the time course studied. This stimulation of putrescine uptake caused by polyamine deprivation was reversed by exogenous putrescine and Ca++ while alpha-aminoisobutyric acid (AIB) further stimulated the rate of uptake. EGF's ability to stimulate cellular DNA synthesis was inhibited by DFMO. If DFMO-treated cells were stimulated with EGF in the presence of exogenous putrescine, this stimulatory effect was preserved. These studies indicate that the rate of polyamine transportation is highly responsive to a signal which initiates biosynthesis of polyamines. Further, this transportation system provides a compensatory mechanism allowing the cell to increase intracellular levels of polyamines when environmental conditions inhibit biosynthesis or when polyamines are abundant.  相似文献   

7.
The polyamine uptake system in bovine lymphocytes was activated by concanavalin A. The system was common to putrescine, spermidine and spermine. The Kt values for uptake activities of putrescine, spermidine and spermine were 3.7 microM, 0.38 microM and 0.23 microM in that order. The uptake activity was inhibited by carbonyl cyanide m-chlorophenylhydrazone, gramicidin D or valinomycin in the presence of 20 mM K+ suggesting that polyamine uptake depends on the membrane potential. The uptake activity appeared 10 h after addition of concanavalin A, and the maximum was reached at 28 h indicating that induction of the polyamine transporter precedes the initiation of DNA synthesis. Addition of polyamine antimetabolites, such as alpha-difluoromethylornithine and ethylglyoxal bis(guanylhydrazone), to the medium enhanced at least eightfold the induction of the polyamine transporter. The induction was repressed by addition of 50 microM spermidine or spermine, but not putrescine. We propose here that the induction of the membrane-potential-dependent polyamine transporter is regulated by the intracellular level of spermidine and spermine.  相似文献   

8.
It has been reported that Gap1p on the plasma membrane of Saccharomyces cerevisiae can catalyze the uptake of many kinds of amino acids. In the present study, we found that Gap1p also catalyzed the uptake of putrescine and spermidine, but not spermine. The Km and Vmax values for putrescine and spermidine were 390 and 21 microM, and 4.6 and 0.59 nmol/min/mg protein, respectively. The uptake of putrescine was strongly inhibited by basic amino acids, lysine, arginine, and histidine, whose Ki values were 25-35 microM. Thus, it is deduced that spermidine and basic amino acids have almost the same affinity for Gap1p. When the concentrations of amino acids in the medium were reduced to one-third and 0.5 mM putrescine or 0.1 mM spermidine was added to the medium, accumulation of putrescine or spermidine by Gap1p was observed. Furthermore, when yeast was transformed with the GAP1 gene and cultured in the presence of 60 mM putrescine, cell growth was inhibited through overaccumulation of putrescine. GAP1 mRNA was found to be induced by polyamines. This is the first report of the identification, at a molecular level, of a polyamine uptake protein on the plasma membrane in eukaryotes.  相似文献   

9.
Polyamines (putrescine, spermidine, and spermine) are normal cellular constituents able to modulate cellular proliferation and differentiation in a number of developing systems. Ornithine decarboxylase (ODC), the rate-limiting enzyme in the polyamine biosynthetic pathway, has been shown to be causally related to an increase in glycosaminoglycan synthesis in murine embryonic palatal mesenchyme cells (MEPM). In order to understand other mechanisms that exist to regulate polyamine levels in cells derived from the developing craniofacial area, the present study investigated the capacity of MEPM cells to accumulate exogenous putrescine and tests the hypothesis that polyamine transport can serve as an adaptational response of MEPM cells to a change in their ability to synthesize polyamines. Transport was initiated in confluent cultures of MEPM cells by the addition of 0.1 microCi/ml of 14C-putrescine. The rate of transport, monitored for 20-120 minutes, was found to be a time-dependent saturable process. The rate of initial transport, determined by incubating MEPM cells for 15 minutes in the presence of different concentrations (1.0-20.0 microM) of 14C-putrescine, was also found to be saturable, suggesting a carrier-mediated event. Lineweaver-Burk analysis of these data revealed an apparent Km of 5.78 microM and a Vmax of 2.63 nmol/mg protein/15 minutes. Transport measured either at 4 degrees C or in the presence of 2-4 DNP was dramatically inhibited. Thus, putrescine transport is an active process, dependent upon metabolic energy. Conditions in which 1) NaCl was iso-osmotically replaced with choline chloride or 2) the Na+-electrochemical gradient was dissipated with Na+, K+-specific ionophores resulted in a decreased rate of transport indicating that putrescine transport in these cells is Na+ dependent. Noncompetitive inhibition assays utilizing sulfhydryl reagents that blocked sulfhydryl groups inhibited putrescine transport, suggesting that sulfhydryl groups are important for putrescine uptake. Competitive inhibition assays demonstrated that while spermidine and spermine inhibited putrescine uptake, ornithine did not inhibit transport. Spermidine, spermine, and putrescine thus appear to share a common transport system that is separate from that for ornithine. Putrescine transport is subject to adaptive regulation in both exponentially growing and confluent cultures of MEPM cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The possible functions of ornithine decarboxylase (ODC) and polyamines in the differetiation of mouse NB-15 neuroblastoma cells were investigated by examining the changes of these parameters in the differentiaton and nondifferentiating NB-15 cells over a 5-day culture period. Differentiation of NB-15 cells was induced by the addition of dibutyryl cyclic AMP and 3-isobutyl-1-methylxanthin (IBMX) to the growth medium and was monitored by neurite outgrowth, increase of acetylcholinesterase (AChE), and RI cAMP-binding protein. Plating of NB-15 cells in fresh serum-containing growth medium was accompanied by rapid growth and a marked increase of ODC activity, this early increase of ODC activity was attenuated, both in duration and in magnitude, in the differentiating cells. The spermidine content of the differentiating neuroblastoma cell was significantly lower than that of the nondifferentiating cells. In the fully differentiated neuroblastoma cells, the ODC activity and spermidine content were lower than that of the undifferentiated cells by approximately 15-fold and five-fold, respectively. Based on these results it is proposed that changes of polyamine metabolism may be of significance in the differentiation of mouse neuroblastoma cells.  相似文献   

11.
LLC-PK1 cells were brought to a quiescent state by treatment with DL-2-difluoromethylornithine (DFMO), a specific inhibitor of L-ornithine decarboxylase (ODC). The inhibition of ODC, which is the key enzyme for polyamine synthesis, strongly reduced the cellular content of putrescine and spermidine. The cells resumed DNA-synthesis followed by mitosis when exogenous putrescine was added. DFMO treatment strongly stimulated the putrescine uptake capability. A kinetic analysis of the initial uptake rates revealed a saturable Na+-dependent and a saturable Na+-independent pathway on top of non-saturable diffusion. The stimulation by DFMO was exclusively due to an effect on the Vmax values of the saturable pathways. The Na+-dependent transporter had a higher affinity for putrescine (apparent Km = 4.7 +/- 0.7 microM) than the Na+-independent transporter (apparent Km = 29.8 +/- 3.5 microM). As a consequence, although the latter transporter had a higher Vmax, the Na+-dependent transport was more important at a physiological putrescine concentration. Putrescine uptake by both transporters was inhibited with similar relative affinities by spermidine, spermine as well as by the antileukemic agent, methylglyoxal bis(guanylhydrazone), but not by amino acids. The activity of the Na+-dependent transporter was very much dependent on SH-group reagents, whereas the Na+-independent transporter was not affected. Both transporters were inhibited by metabolic inhibitors and by ionophores but the Na+-dependent transporter was affected to a greater extent. For both transporters there was a down-regulation in response to exogenous putrescine. This suggests that the polyamine transporters in LLC-PK1 are adaptively regulated and may contribute to the regulation of the cellular polyamine level and cellular proliferation.  相似文献   

12.
We have examined the effect of difluoromethylornithine on the ability of B16 melanoma cells to take up putrescine and the 4,4'-dipyridyl herbicide paraquat. Pretreatment with difluoromethylornithine for 24 hr enhanced putrescine uptake by inducing the maximum capacity of the transport system without affecting the Km for the substrate. Paraquat uptake was minor compared with that of putrescine and was not affected by difluoromethylornithine. Neither putrescine, spermidine or spermine at concentrations up to 100 microM inhibited the accumulation of paraquat. However, paraquat competitively inhibited putrescine transport (Ki = 54 +/- 10 microM). Exposure of the B16 melanoma cells for 24 hr to increasing concentrations of paraquat produced a dose-dependent inhibition of DNA synthesis. Difluoromethylornithine pretreatment did not affect paraquat toxicity. These data show that paraquat is not taken up into B16 melanoma cells by the uptake system responsible for transporting putrescine. Moreover, it is likely that the difluoromethylornithine inducible polyamine transport system in B16 melanoma cells is characteristically different to that previously described in normal mammalian lung since the latter is reportedly capable of transporting both putrescine and paraquat.  相似文献   

13.
We studied the uptake of leucine, phenylalanine, and the amino acid analog, 2-aminonorborane-2-carboxylic acid, by rat hepatoma cells in tissue culture. The uptake of these amino acids was partially mediated by a plasma membrane transport system similar to the L agency described in other cell types in that it does not require extracellular sodium and is subject to trans-stimulation. Initial rates of sodium-independent transport of these amino acids were calculated using mathematical transformations of the uptake time course curves. The glucocorticoid dexamethasone inhibits the activity of this transport system; the initial rates of sodium-independent uptake of leucine, phenylalanine, and 2-aminonorborane-2-carboxylic acid are decreased by approximately one-third (average = 30%, n = 19) after incubation of HTC cells with 0.1 microM dexamethasone. This inhibition requires at least 15 h, reaching a maximum at 24 h of exposure of the cells to the hormone. Dexamethasone has an asymmetrical effect on sodium-independent amino acid transport in that exposure of the cells to the hormone does not inhibit the rates of outflow of leucine or phenylalanine from preloaded cells into medium without sodium. Inhibition of uptake is blocked by 0.1 mM cycloheximide and 4 microM actinomycin D, indicating the need for continuous protein synthesis for dexamethasone action. Insulin, which is known to partially reverse the inhibitory effect of dexamethasone on the A amino acid transport system in HTC cells, does not alter the action of dexamethasone on the L system. Previous investigations have demonstrated inhibition by dexamethasone of at least two distinct sodium-dependent amino acid transport activities in HTC cells. The data presented here, showing inhibition by the glucocorticoid of a sodium-independent transport activity, indicate that the effect of the hormone is independent of the energy source of the amino acid transport systems affected.  相似文献   

14.
The uptake of intracellular putrescine and spermidine was examined in B16 melanoma cells. It was found that difluoromethylornithine preferentially induced putrescine transport (28-fold) compared to that for spermidine (3.5-fold). Putrescine uptake was partially Na+ dependent, whereas spermidine uptake was not. Inhibition studies with the two polyamines showed that putrescine was a poor competitive inhibitor of spermidine uptake, exhibiting a Ki of 69-75 microM, whereas the estimated Km for putrescine uptake was only 5.36 microM. By contrast, spermidine inhibition of putrescine transport produced a non-linear Eadie-Scatchard plot suggesting that putrescine was taken up by a spermidine-sensitive and a spermidine-insensitive process. The estimated spermidine Ki for inhibition of the spermidine-sensitive process was 0.125 microM. Using a series of polypyridinium quaternary salts to inhibit transport, no correlation between inhibition of putrescine uptake and inhibition of spermidine uptake was seen. Finally, the photoaffinity label, 1,12-di(N5-azido-2-nitrobenzoyl)spermine selectively inactivated the putrescine transporter(s) without affecting spermidine uptake. From these observations, it was concluded that multiple polyamine transporters are present on B16 melanoma cells and that separate, distinct transporter(s) account for the uptake of putrescine and spermidine in this cell-line following induction with difluoromethylornithine. The present of different transporters for the two polyamines indicates that expression of uptake activity for putrescine and spermidine may be under separate cellular control.  相似文献   

15.
The cardiac ganglion of the horseshoe crab, Limulus polyphemus, was incubated in Chao's solution containing 0.01 microM [3H]choline at room temperature (25 +/- 2 degrees C) and the ganglion readily accumulated the radiolabel. The ganglion uptake of [3H]choline was linear over 60 min. Kinetic analysis revealed dual choline uptake systems within the cardiac ganglion, a high affinity uptake system (Km = 2.2 microM, Vmax = 0.16 pmoles/mg/min) and a low affinity system (Km = 92.3 microM, Vmax = 3.08 pmoles/mg/min). The high affinity uptake system was sodium-dependent and inhibited by micromolar concentrations of hemicholinium-3. A 15 min pre-exposure of the ganglion to Chao's solution containing 90 mM potassium stimulated a significant increase in choline uptake. There was no detectable synthesis of [3H]acetylcholine from the [3H]choline taken up by the cardiac ganglion. The major portion of the extractable label appeared in a fraction which co-electrophoresed with phosphorylcholine. These results suggest that the sodium-dependent high affinity [3H]choline uptake system of the cardiac ganglion subserves a specific requirement for choline which is unrelated to a cholinergic function.  相似文献   

16.
Synthesis and uptake are two important regulated mechanisms by which eukaryotic cells maintain polyamine levels. The role that loss of synthesis and/or uptake regulation plays in mediating putrescine toxicity was investigated by comparing toxicity in an ornithine decarboxylase (ODC)-deficient Chinese hamster ovary cell line (C55.7) with a functional putrescine transport system and an ODC-overproducing rat hepatoma cell line (DH23b), which are transport regulation deficient. When C55.7 cells were transfected with either mouse ODC (M) or trypanosome ODC (Tb), intracellular putrescine content increased slightly in C55.7(Tb-ODC), compared to C55.7(M-ODC), due to the lack of response of Tb-ODC to polyamine regulation. The increase in putrescine content resulting from loss of ODC regulation had no impact on cell growth and viability. When the feedback repression of polyamine uptake was blocked with cycloheximide, C55.7 cells transfected with either ODC construct accumulated very high levels of putrescine from the medium, and underwent apoptosis in a putrescine dose-dependent manner. A similar correlation of deregulated putrescine uptake and increased apoptotic cells was observed in DH23b cells. These data demonstrate that loss of feedback regulation on the polyamine transport system, but not ODC activity, is sufficient to induce apoptosis. Thus, downregulation of the transport system is necessary to prevent accumulation of cytotoxic putrescine levels in rodent cells.  相似文献   

17.
Polyamines are polycationic molecules essential for cell growth and differentiation. Recent work has focused on cell polyamine-transport systems as a way to regulate intracellular polyamine levels. In this study, we demonstrate the presence of two different active transporters for putrescine and spermidine in a rat tumoral cell line (AR4-2J). The first has a Km of 3.1 microM and a Vmax of 3.7 pmol/15 min per micrograms of DNA for putrescine and the second a Km of 0.42 microM and a Vmax of 4.7 pmol/15 min per micrograms of DNA for spermidine. Competition studies performed between the polyamines confirm the difference between these two carriers; one has an equal affinity for the three main polyamines, and the other has a lower affinity for putrescine. Amino acids do not share this transport system, which is Na(+)-independent. Choline chloride inhibits selectively and in a dose-responsive manner the uptake of putrescine without affecting that of spermidine. These data demonstrate that AR4-2J cells possess two polyamine transporters; one is specific for aminopropyl groups (spermidine and spermine), and the other is choline-sensitive, but cannot discriminate between aminobutyl (putrescine) and aminopropyl groups.  相似文献   

18.
Putrescine transport in Neurospora is saturable and concentrative in dilute buffers, but in the growth medium putrescine simply equilibrates across the cell membrane. We describe a mutant, puu-1, that can concentrate putrescine from the growth medium because the polyamine transport system has lost its normal sensitivity to Ca2+. The wild type closely resembles the mutant if it is washed with citrate and ethylene glycol bis(beta-aminoethyl ether)N,N'-tetraacetic acid. The mutant phenotype also appears in the wild type after treatment with cycloheximide. The results suggest that putrescine uptake is normally regulated by an unstable Ca(2+)-binding protein that restricts polyamine uptake. This protein is evidently distinct from the polyamine-binding function for uptake, which is normal in mutant and in cycloheximide-treated wild type cells. The puu-1 mutation, stripping of Ca2+, and cycloheximide treatment all cause an impairment of amino acid transport, indicating that other membrane transport functions rely upon the product of the puu-1+ gene. Preliminary evidence suggests that the putrescine carrier is not the Ca(2+)-sensitive, low-affinity K(+)-transport system, but K+ efflux does accompany putrescine uptake.  相似文献   

19.
The transport of putrescine into a moderately salt tolerant cyanobacterium Synechocystis sp. PCC 6803 was characterized by measuring the uptake of radioactively-labeled putrescine. Putrescine transport showed saturation kinetics with an apparent K(m) of 92 +/- 10 microM and V(max) of 0.33 +/- 0.05 nmol/min/mg protein. The transport of putrescine was pH-dependent with highest activity at pH 7.0. Strong inhibition of putrescine transport was caused by spermine and spermidine whereas only slight inhibition was observed by the addition of various amino acids. These results suggest that the transport system in Synechocystis sp. PCC 6803 is highly specific for polyamines. Putrescine transport is energy-dependent as evidenced by the inhibition by various metabolic inhibitors and ionophores. Slow growth was observed in cells grown under salt stress. Addition of low concentration of putrescine could restore growth almost to the level observed in the absence of salt stress. Upshift of the external osmolality generated by either NaCl or sorbitol caused an increased putrescine transport with an optimum 2-fold increase at 20 mosmol/kg. The stimulation of putrescine transport mediated by osmotic upshift was abolished in chloramphenicol-treated cells, suggesting possible involvement of an inducible transport system.  相似文献   

20.
Superficial similarities led us to extend our designation for the transport of the plasma membrane for cationic amino acids, y+, to the lysosomal system also serving for such amino acids. Further study on the purified lysosomes of human skin fibroblasts leads us now to redesignate the lysosomal system as c (for cationic), rather than y+, to emphasize important contrasts. Lysosomal uptake of arginine at pH 7.0 was linear during the first 2 min, but attained a steady state in 6 min. This arginine uptake was Na+-independent and was tripled in rate when the lysosomes had first been loaded with the cationic amino acid analog, S-2-aminoethyl-L-cysteine. Uptake was slowed to one-third when 2 mM MgATP was added to the incubation mixture. The following differences in cationic amino acid influx between lysosomal System c and the plasma membrane System y+ became apparent: 1) arginine influx is increased 10-fold by raising the external pH from 5.0 to 7.0. This effect favors net entry of cationic amino acids under the H+ gradient prevailing in vivo. In contrast, arginine uptake across the plasma membrane is insensitive to pH changes in this range. 2) The Km of arginine uptake by lysosomal System c, 0.32 mM, is eight times that for System y+ arginine uptake by the fibroblast. 3) Certain neutral amino acids in the presence of Na+ are accepted as surrogate substrates by System y+, but not by lysosomal system c. 4) Cationic amino acids in which the alpha-amino group is monomethylated or the distal amino group is quaternary, also D-arginine, are recognized by lysosomal System c, whereas System y+ has little affinity for these analogs. This broader substrate specificity of lysosomal system c led us to discover that thiocholine serves to deplete accumulated cystine from cystinotic fibroblasts as effectively as does the therapeutic agent, cysteamine. The quaternary nitrogen of thiocholine renders the mixed disulfide formed when it reacts with cystine unsatisfactory as a substrate for System y+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号