首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The compounds [Pt(IV)(dach)(9-methylguanine)2X2]2+ (X = Cl, OH) have been prepared and structurally characterized. Their existence shows that it is possible to accommodate two purine bases (in a cis configuration) and four other ligands around a Pt(IV) atom. The geometries of these complexes have very different orientations of the guanine rings as compared to their corresponding Pt(II) counterparts.  相似文献   

2.
The absolute configurations of the anti-tumor complexes [Pt(oxalato)(trans-l-dach)] and [Pt(malonato) (trans-l-dach)] (trans-l-dach = 1R,2R-cyclohexanediamine) have been determined by X-ray anomalous scattering techniques. These complexes are particularly interesting because they show higher anti-tumor activity than the corresponding Pt complexes with other 1,2-cyclohexanediamine(dach) ligands, namely those with trans-d-dach (1S,2S-dach) or cis-dach (1R,2S-dach). The oxalato and malonato ligands are found to bind to the Pt atom in a chelating fashion, through one oxygen atom from each of the two carboxylate groups. Crystallographic details: Pt(oxalato)(trans-l-dach): space group P21 (monoclinic); a = 11.230(11) Å, b = 9.914(5) Å, c = 4.716(3) Å, β = 90.86(6)°; R = 4.0% for 1256 reflections. Pt(malonato)(trans-l-dach): space group P21 (monoclinic); a = 11.568(5) Å, b = 10.007(5) Å, c = 5.187(3) Å, β = 99.16(4)°; R = 4.8% for 1675 reflections.  相似文献   

3.
The paper reports the synthesis, the chemical characterization and the IR data of new Pt(II) and Pt(IV) complexes, as well as their cytostatic activities on KB cells and antitumour properties against three tumour systems (P388 and L1210 leukemias and advanced B16 melanoma). The following ligands were used: 2,5-dichloroaniline, 3,4-dichloroaniline, 2,4,6-trichloroaniline, 3,4,5-trichloroaniline, 2,3,4,5-tetrachloroaniline and 2,3,5,6-tetrachloroaniline. The tri- and tetrachloroaniline-Pt(II) complexes displayed a fairly good antileukemic activity but lower than cisplatin. The effect of these compounds against advanced B16 melanoma appears more interesting. They show an activity comparable or in some cases higher than cisplatin and other 1,2-diaminocyclohexane-Pt(II) complexes. The M.O. Huckel's calculations were performed on the ligand molecules in order to help us to draw a structure-activity relationship for new compounds.  相似文献   

4.
A series of platinum(II) and (IV) monoadducts of the type [Pt(II)(DACH)LCl]NO3 and [Pt(IV)(DACH)trans-(X)2LCl]NO3 (where DACH=trans-1R,2R-diaminocyclohexane, L=adenine, guanine, hypoxanthine, cytosine, adenosine, guanosine, inosine, cytidine, 9-ethylguanine (9-EtGua), or 1-methylcytosine and X=hydroxo or acetato ligand) have been synthesized and characterized by elemental analysis and by 1H and 195Pt nuclear magnetic resonance (NMR) spectroscopy. The crystal structure of the model nucleobase complex [Pt(IV)(trans-1R,2R-diaminocyclohexane)trans-(acetate)2(9-EtGua)Cl]NO3.H2O was determined using a single crystal X-ray diffraction method. The compound crystallized in the monoclinic space group P2(1), with a=10.446(2) A, b=22.906(5) A, c=10.978(2) A, Z=4, and R=0.0718, based upon the total of 11,724 collected reflections. In this complex, platinum had a slightly distorted octahedron geometry owing to the presence of a geometrically strained five-member ring. The two adjacent corners of the platinum plane were occupied by the two amino nitrogen of DACH, whereas, the other two equatorial positions occupied by chloride ion and 9-ethylguanine. The remaining two axial positions were occupied by the oxygen atoms of acetato ligands. The DACH ring was in a chair configuration. An intricate network of intermolecular hydrogen bonds held the crystal lattice together. Some of these synthesized models of DACH-Pt-DNA adducts have good in vitro cytotoxic activity against the cisplatin-sensitive human cancer ovarian A2780 cell line (IC50=1-8 microM). Interestingly, a substituted nucleobase (9-ethylguanine) adduct was over 6-fold more potent than regular adducts. The cross-resistance factor against the 44-fold cisplatin-resistant 2780CP/clone 16 cells was about 3-9; thus, the cytotoxicity of adducts was indicative of low potency, but the resistance factors were also substantially low. These results suggest that DNA adducts of DACH-Pt are cytotoxic with low cross-resistance.  相似文献   

5.
The reaction of H2[PtCl6] · 6H2O and (H3O)[PtCl5(H2O)] · 2(18C6) · 6H2O (18C6 = 18-crown-6) with 9-methylguanine (MeGua) proceeded with the protonation of MeGua forming 9-methylguaninium hexachloroplatinate(IV) dihydrate (MeGuaH)2[PtCl6] · 2H2O (1).The same compound was obtained from the reaction of Na2[PtCl6] with (MeGuaH)Cl.On the other hand, the reaction of guanosine (Guo) with (H3O)[PtCl5(H2O)] · 2(18C6) · 6H2O in methanol at 60 °C proceeded with the cleavage of the glycosidic linkage and with ligand substitution to give a guaninium complex of platinum(IV), [PtCl5(GuaH)] · 1.5(18C6) · H2O (2).Within several weeks in aqueous solution a slow reduction took place yielding the analogous guaninium platinum(II) complex, [PtCl3(GuaH)] · (18C6) · 2Me2CO (3).H2[PtCl6] · 6H2O and guanosine was found to react in water, yielding (GuoH)2[PtCl6] (4) and in ethanol at 50 °C, yielding [PtCl5(GuoH)] · 3H2O (5).Dissolution of complexes 2 and 5 in DMSO resulted in the substitution of the guaninium and guanosinium ligands, respectively, by DMSO forming [PtCl5(DMSO)].Reactions of 1-methylcytosine (MeCyt) and cytidine (Cyd) with H2[PtCl6] · 6H2O and(H3O)[PtCl5(H2O)] · 2(18C6) · 6H2O resulted in the formation of hexachloroplatinates with N3 protonated pyrimidine bases as cation (MeCytH)2[PtCl6] · 2H2O (6) and (CydH)2[PtCl6] (7), respectively. Identities of all complexes were confirmed by 1H, 13C and 195Pt NMR spectroscopic investigations, revealing coordination of GuoH+ in complex 5 through N7 whereas GuaH+ in complex 3 may be coordinated through N7 or through N9. Solid state structure of hexachloroplatinate 1 exhibited base pairing of the cations yielding (MeGuaH+)2, whereas in complex 6 non-base-paired MeCytH+ cations were found. In both complexes, a network of hydrogen bonds including the water molecules was found. X-ray diffraction analysis of complex 3 exhibited a guaninium ligand that is coordinated through N9 to platinum and protonated at N1, N3 and N7. In the crystal, these NH groups form hydrogen bonds N–HO to oxygen atoms of crown ether molecules.  相似文献   

6.
The molecular tumor inhibiting titanium compound budotitane [Ti(IV)(bzac)(2)(OEt)(2)] (1) and its dichloro-derivative [Ti(IV)(bzac)(2)Cl(2)] (2) (bzac=1-phenylbutane-1,3-dionate) have been crystallized and characterized by X-ray crystallography and further physical methods. Budotitane (1) crystallizes in the tetragonal, non-centrosymmetric space group P4(1) with two molecules in the asymmetric unit. Both molecules adopt the cis-cis-trans configuration with the acetyl ends of the benzoylacetonate ligands in the trans position. The dichloro-derivative of budotitane, [Ti(IV)(bzac)(2)Cl(2)] (2) crystallizes in the monoclinic, centrosymmetric space group P2(1)/n with one molecule only in the asymmetric unit. In contrast to budotitane (1), (2) shows a cis-trans-cis arrangement with the benzoyl groups in the trans position. In both complexes there are equal numbers of Delta and Lambda enantiomers within the unit cell. The phenyl groups in (1) as well as in (2) are in approximately coplanar conjugation to the metal enolate rings. The thermal degradation of budotitane (1) was investigated in the temperature range from 25 degrees C up to 800 degrees C and reveals the formation of Ti(IV)O(bzac(2-)) as an intermediate and of the rutile phase of TiO(2) as a final product. It may be worthwhile to introduce budotitane in the form of isomerically pure crystals in the preparation of the drug used for future tests.  相似文献   

7.
A series of new platinum(IV) complexes of the type [PtIV(DACH)trans(L)2Cl2] (where DACH = trans-1R,2R-diaminocyclohexane, and L = acetate, propionate, butyrate, valerate, hexanoate, or heptanoate) bearing the carboxylate groups in the axial positions have been synthesized and characterized by elemental analysis, IR, and 195Pt NMR spectroscopy. The crystal structure of the analogue [PtIV(DACH)trans(acetate)2Cl2] was determined by single crystal X-ray diffraction method. There were two crystallographically independent molecules, both of which lie on crystallographic two-fold axes. The bond lengths and bond angles of both the molecules were the same within the experimental error. The compound crystallizes in the monoclinic space group C2, with a = 11.180(2) A, b = 14.736(3) A, c = 10.644(2) A, beta = 112.38(3) degrees, Z = 4 and R = 0.0336, based upon a total of 1648 collected reflections. In this complex, the platinum had a slightly distorted octahedron geometry owing to the presence of a geometrically strained five-member ring. The two adjacent corners of the platinum plane were occupied by the two amino nitrogens of DACH, whereas the other two equatorial positions were occupied by two chloride ions. The remaining two axial positions were occupied by the oxygens of acetate ligands. The DACH ring was in a chair configuration. An intricate network of intermolecular hydrogen bonds held the crystal lattice together. These analogues were evaluated in vitro and demonstrated cytotoxic activity against the human ovarian 2008 tumor cell line (IC50 = 0.001-0.06 microM). Structure-activity study revealed that activity was highest for the analogue where L = butyrate.  相似文献   

8.
The Pt(II) and Pt(IV) complexes with histamine were calculated by using more than 20 DFT functionals and various basis sets. Based on the comparison between the X-ray and theoretical geometrical parameters of the Pt(II)(Hist)Cl2 complex the MPW1PW91, OPW91 and SVWN5 functionals combined with the 6-311G∗∗ basis set for non-metallic and SDD (ECP) basis set for platinum were found to yield the most satisfactory agreement. The structure of the Pt(II) complex with iodohistamine important for pharmacy, so far isolated only in minute amounts, was predicted by using the MPW1PW91 functional. Comparison of the theoretical NMR chemical shifts of the Pt(II)(Hist)Cl2 complex with those found experimentally have shown that the theoretical 1H and 13C NMR chemical shifts are in plausible agreement with the experimental ones, whereas the theoretical 195Pt chemical shifts fit the experimental values only when the relativistic approach is applied within the ZORA formalism. We confirmed suitability of the three selected functionals for reproduction of the experimental structure of Pt complexes at fourth oxidation state by using the cis- and ions as models. Finally, with the selected theoretical methods, the structures and stabilities of four Pt(IV)(Hist)2Cl2 complex isomers were predicted.  相似文献   

9.
Complexes of the types cis-Pt(amine)2I2 were transformed into the iodo-bridged dimers, which were characterized mainly by multinuclear (195Pt, 1H and 13C) magnetic resonance spectroscopy. For bulby amines, the dinuclear species were synthesized directly from K2[PtI4]. Compounds with several primary aliphatic and cyclic amines and two secondary amines were studied. In 195Pt NMR, two signals were observed between −3899 and −4080 ppm in acetone. These species were assigned to the cis and trans dinuclear compounds I(amine)Pt(μ-I)2PtI(amine). We suggest that the most shielded compound is the trans isomer. The difference between the two isomers is 12-13 ppm for the primary amine system and 26-27 ppm for the two secondary amines. There seems to be a slight dependence of the proton affinity in the gas phase of the amine (linear amines) with the δ(Pt) chemical shifts of the dinuclear Pt(II) compounds. The 2J(195Pt-1HN) coupling constants are slightly larger for the trans isomers (average 67 Hz, vs. 56 Hz). The 3J(195Pt-1H) coupling constants were detected only for the dimethylamine compounds, 46 Hz (trans) and 44 Hz (cis). In 13C NMR, the values of 2J(195Pt-13C) and 3J(195Pt-13C) were also found to be very slightly larger for the trans complexes (average 19 and 25 Hz vs. 15 and 18 Hz). The structures were confirmed by X-ray diffraction studies of the n-butylamine and diethylamine compounds. The two crystals were those of the trans dinuclear complexes.  相似文献   

10.
We prepared platinum(IV) complexes containing dipeptide and diimine or diamine, the [PtCl(dipeptide-N,N,O)(diimine or diamine)]Cl complex, where -N,N,O means dipeptide coordinated as a tridentate chelate, dipeptide=glycylglycine (NH(2)CH(2)CON(-)CH(2)COO(-), digly, where two protons of dipeptide are detached when the dipeptide coordinates to metal ion as a tridentate chelate), glycyl-L-alanine (NH(2)CH(2)CON(-)CHCH(3)COO(-), gly-L-ala), L-alanylglycine (NH(2)CH CH(3)CON(-)CH(2)COO(-), L-alagly), or L-alanyl-L-alanine (NH(2)CHCH(3)CON(-)CHCH(3)COO(-), dil-ala), and diimine or diamine=bipyridine (bpy), ethylenediamine (en), N-methylethylenediamine (N-Me-en), or N,N'-dimethylethylenediamine (N,N'-diMe-en). In the complexes containing gly-L-ala or dil-ala, two separate peaks of the (195)Pt NMR spectra of the [PtCl(dipeptide-N,N,O)(diimine or diamine)]Cl complexes appeared in, but in the complexes containing digly or L-alagly, one peak which contained two overlapped signals appeared. One of the two complexes containing gly-L-ala and bpy, [PtCl(gly-L-ala-N,N,O)(bpy)]NO(3), crystallized and was analyzed. This complex has the monoclinic space group P2(1)2(1)2(1) with unit cell dimensions of a=9.7906(3)A, b=11.1847(2)A, c=16.6796(2)A, Z=4. The crystal data revealed that this [PtCl(gly-L-ala-N,N,O)(bpy)]NO(3) complex has the near- (Cl, CH(3)) configuration of two possible isomers. Based on elemental analysis, the other complex must have the near- (Cl, CH(3))-[PtCl(gly-L-ala-N,N,O)(bpy)]NO(3) configuration. The (195)Pt NMR chemical shifts of the near- (Cl, CH(3))-[PtCl(gly-L-ala-N,N,O)(bpy)]NO(3) complex and the far- (Cl, CH(3))-[PtCl(gly-L-ala-N,N,O)(bpy)]NO(3) complex are 0 ppm and -19 ppm, respectively (0 ppm for the Na(2)[PtCl(6)] signal). The additive property of the (195)Pt NMR chemical shift is discussed. The (195)Pt NMR chemical shifts of [PtCl(dipeptide-N,N,O)(bpy)]Cl appeared at a higher field when the H attached to the dipeptide carbon atom was replaced with a methyl group. On the other hand, the (195)Pt NMR chemicals shifts of [PtCl(dipeptide-N,N,O)(diamine)] appeared at a lower field when the H attached to the diamine nitrogen atom was replaced with a methyl group, in the order of [PtCl(digly-N,N,O)(en)]Cl, [PtCl(digly-N,N,O)(N-Me-en)]Cl, and [PtCl(digly-N,N,O)(N,N'-diMe-en)]Cl.  相似文献   

11.
Two new pseudohalide-bridged copper(II) complexes [{Cu(PBH)(μ1,1-CNO)}2] (1) and {Cu(PBH)(μ1,5-NCNCN)}n (2) (where HPBH = 2-pyridinecarboxaldehyde benzoyl hydrazone) have been synthesised and characterised by elemental analysis, CV, IR and UV–Vis spectral studies. The tridentate hydrazone pro-ligand (HPBH) was obtained by the condensation of benzhydrazide and pyridine-2-carboxaldehyde. Structures of both complexes have been established by X-ray crystallography which shows that 1 is a μ1,1-CNO?-bridged dimer whereas 2 is a μ1,5-dca-bridged (dca = dicyanamide) linear polynuclear structure. Variable temperature magnetic susceptibility studies indicate weak antiferromagnetic interactions with J values ?0.50 cm?1 and ?0.10 cm?1 for 1 and 2, respectively.  相似文献   

12.
Pt(II) and Pd(II) compounds containing the free radical 4-aminoTEMPO (4amTEMPO) were synthesized and characterised by X-ray diffraction methods. The disubstituted complexes cis- and trans-Pt(4amTEMPO)2I2 were studied. The trans isomer was prepared from the isomerisation of the cis analogue. The two Pd(II) compounds trans-Pd(4amTEMPO)2X2 (X = Cl and I) were also characterised by crystallographic methods. A mixed-ligand complex cis-Pt(DMSO)(4amTEMPO)Cl2 was synthesized from the isomerisation of the trans isomer in hot water. Its crystal structure was also determined. In all the complexes, the 4amTEMPO ligand is bonded to the metal through the -NH2 group, since the nitroxide O atom is not a good donor atom for the soft Pt(II) and Pd(II) metals. The conformation of the 4-aminoTEMPO ligand was compared to those of the few reported structures in the literature.  相似文献   

13.
Six new triorganotin(IV) complexes, [R3Sn(O2SeC6H4Cl)]n (R = Me 1; Ph 2), [R3Sn(O2SeC6H4Me)]n (R = Me 3; Ph 4), [R3Sn(O2SeC6H4Bu)]n (R = Me 5; Ph 6) have been synthesized by the reaction of 4-chlorobenzeneseleninic acid, p-Tolueneseleninic acid, and 4-tert-butylbenzeneseleninic acid with triorganotin(IV) chloride in the presence of sodium ethoxide. All of the complexes were characterized by elemental analysis, FT-IR, NMR (1H, 13C, and 119Sn) spectroscopy, and X-ray crystallography. Crystal structures show that all of the complexes exhibit 1D infinite chain structures which are generated by the bidentate oxygen atoms and the five-coordinated tin centers.  相似文献   

14.
A number of complexes of the types [PtBr2Me2(N?N)] (N?N = 4,4′-di-Me-2,2′-bpy (1); 4,4′-di-t-Bu-2,2′-bpy (2); 2,2′-bpz (3); bpym (4)) and [PtBr2Me2(L)2] (L = H-pz (5); 4-Me-H-pz (6); H-idz (7); H-im (8); H-bim (9); quaz (10)) are reported. Characterization by NMR (1H, 13C and 195Pt), IR and EI-MS is given. In addition, crystal structures of several of these complexes are described. Furthermore, interactions within these structures including intramolecular hydrogen bonding and π-π stacking interactions are reported. The reactivity of selected mononuclear complexes was investigated and yielded two dinuclear complexes [PPh4][(PtBrMe2)2(μ-Br)(μ-pz)2] (11) and [(PtBr2Me2)2(μ-bpym)] (12), respectively. The latter complex is accompanied by a solid-state structure. Finally, the thermal stability of all complexes is reported.  相似文献   

15.
The influence of cimetidine on patients under cisplatin treatment for cancer is controversial. It has moderate or no effects on several types of cancer and its effects on the nephrotoxicity induced by cisplatin are uncertain. To examine the binding properties and antiproliferative effects of the known anticancer noble metals, cimetidine (cim) was complexed to platinum(II) and palladium(II). The crystal structure of the Pt-cim compound shows two molecules of cimetidine coordinated to the metal through thioether sulfur and imidazolic nitrogen whereas spectroscopic studies in solution for Pd-cim reveal that the ratio of the metal to cimetidine is 1:1 with identical coordination environments. To determine the antitumor activity of the drugs, the interaction of the metallic complexes and free cimetidine with DNA was assessed. Their cytotoxic activity was compared with that of cisplatin.  相似文献   

16.
The crystal structures of several Pt(II) complexes containing sulfoxide ligands are described. The two iodo bridged dimers of the type I(R2SO)Pt(μ-I)2Pt(R2SO)I (where R is ethyl or n-butyl) are twinned structures. The dinuclear species are the trans isomers. Two compounds of the type trans-Pt(DMSO)(amine)X2 were studied by X-ray diffraction methods. The diiodo MeNH2 compound forms H-bonded chains, formed by maximizing the H-bonds between the amine group with the O atom of DMSO and one iodo ligand. The H-bonding pattern is quite different in the dichloro t-BuNH2 complex. In the latter crystal, there are two independent molecules which are H-bonded in pairs. The methyl groups of DMSO and the t-butyl group of the amine are oriented towards the outside of the pairs of molecules, while the H-bonds link the two independent molecules. Again, the amino group forms the maximum H-bonds with the O atom of DMSO and one chloro ligand. The crystal structures of trans-Pt(DMSO)(pyridine)I2 and of trans-Pt(MeBzSO)(pyrimidine)I2 (Bz = benzyl) were also studied. In the pyridine complex, the O atom of DMSO is in the Pt(II) plane by symmetry, while in the pyrimidine compound, the C atom of the –CH3 group is in the Pt(II) plane. The pyridine and the pyrimidine ligands are perpendicular to the Pt(II) square plane. The trans influence of the different ligands is discussed.  相似文献   

17.
Three dipeptide complexes of the form K[Pt(IV) (dipep) Cl(OH)2] and four dipeptide complexes of the form K[Pt(IV)-(Hdipep)Cl2(OH)2] were newly prepared. The 195 Pt NMR peak of the K[Pt(IV) (dipep)Cl(OH)2] complexes appeared at about 1200 ppm and these chemical shifts were about 3150 ppm downfield compared with those of the K[Pt(II) (dipep) Cl] complexes. The chemical shifts of the K[Pt(IV) (Hdipep) Cl2 (OH)2] complexes were at about 900 ppm, i.e., about 3050 ppm downfield compared with those of the K[Pt(II) (Hdipep)Cl] complexes. The H[Pt(IV) (Hdigly) Cl2(OH)2] and K[Pt(IV) (Hdigly) Cl2(OH)2] complexes inhibited the growth of C. albicans at a more diluted concentration than cisplatin at 1 microgram/ml, but the platinum complexes only weakly inhibited the growth of these cells compared with the cisplatin-inhibited growth of Meth-A and Hep-2 cells at 10 micrograms/ml. These results suggested that the platinum complexes selectively inhibited the growth of fungal cells.  相似文献   

18.
A novel synthetic method for the synthesis of the complexes cis-Pt(amine)2R(COO)2 is compared to two other methods involving the use of either barium dicarboxylate or sodium carboxylate. Pt(II) compounds with monodentate and bidentate amines were studied. The reaction involves the use of a silver dicarboxylato complex, which is the intermediate in the new synthetic procedure. The crystal structure of the silver intermediate with the ligand 1,1-cyclobutanedicarboxylate (1,1-CBDCA) was determined by X-ray diffraction. The crystal Ag2(1,1-CBDCA) has a very interesting 3-D extended structure. The complexes cis-Pt(amine)2R(COO)2 were studied in solution by multinuclear (1H, 13C and 195Pt) magnetic resonance spectroscopy, but the solubilities are very low. D2O was found to be the best solvent. In 195Pt NMR, the complexes containing bidentate amines forming five-membered chelates were observed at higher fields than those containing monodentate amines. The resonances of the NH3 compounds were also found at lower fields than the primary amine complexes. All the dicarboxylato ligands form six-membered chelates except 1,2-CBDCA, whose Pt(II) compounds were observed at lower fields than the others. The crystal structures of Pt(en)(1,1-CBDCA), Pt(Meen)(1,1-CBDCA) and Pt(en)(benzylmalonato) were confirmed by X-ray diffraction methods. Several compounds are disordered. The crystals are stabilized by intermolecular hydrogen bonds between the -NH2 groups and the carboxylato O atoms.  相似文献   

19.
New tetrazolate complexes trans-[PtCl2(RCN4)2]2−, trans-[PtCl4(RCN4)2]2− with Ph3PCH2Ph+ and (CH3)2NH2+ counterions have been obtained by azidation of nitriles coordinated to Pt(II) and Pt(IV) {trans-[PtCl2(RCN)2] and trans-[PtCl4(RCN)2] (R = Et, Ph)} and characterized. The composition and the molecular structure of the complexes obtained were established by the СHN elemental analyses, 1Н and 13С NMR spectroscopy, IR spectroscopy, mass spectrometry, and X-ray diffraction. The coordination of nitriles to Pt(II) and Pt(IV) is shown significantly activate the azidation: the reaction proceeds with a higher rate and at relatively low temperature compared with the classical 1,3-dipolar addition of azides to nitriles.  相似文献   

20.
A sensitive fluorescent method is described for the detection of 4′-(9-acridinylamino)-methanesulfon-m-anisidide (AMSA) in serum. The assay is based on the alkaline hydrolysis of AMSA into 9(10H)-acridone. While AMSA has negligible fluorescence, 9(10H)-acridone fluoresces brilliantly (excitation 266 nm, emission 470 nm). The assay is shown to be linear from 0.01 to 1.0 μm. In addition, the assay is shown to be useful, in conjunction with an ethyl acetate extraction, in distinguishing serum levels of parent AMSA from metabolized or protein-bound AMSA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号