首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The biogenesis of the plant thylakoid network is an enormously complex process in terms of protein targeting. The membrane system contains a large number of proteins, some of which are synthesized within the organelle, while many others are imported from the cytosol. Studies in recent years have shown that the targeting of imported proteins into and across the thylakoid membrane is particularly complex, with four different targeting pathways identified to date. Two of these are used to target membrane proteins: a signal recognition particle (SRP)-dependent pathway and a highly unusual pathway that appears to require none of the known targeting apparatus. Two further pathways are used to translocate lumenal proteins across the thylakoid membrane from the stroma and, again, the two pathways differ dramatically from each other. One is a Sec-type pathway, in which ATP hydrolysis by SecA drives the transport of the substrate protein through the membrane in an unfolded conformation. The other is the twin-arginine translocation (Tat) pathway, where substrate proteins are transported in a folded state using a unique mechanism that harnesses the proton motive force across the thylakoid membrane. This article reviews progress in studies on the targeting of lumenal proteins, with reference to the mechanisms involved, their evolution from endosymbiotic progenitors of the chloroplast, and possible elements of regulation.  相似文献   

2.
The twin-arginine translocation (Tat) pathway, one of four protein transport pathways operating at the thylakoid membrane of chloroplasts, shows remarkable substrate flexibility. Here, we have analyzed the thylakoid transport of chimeric tandem substrates that are composed of two different passenger proteins fused to a single Tat transport signal. The chimera 23/23-EGFP in which the reporter protein EGFP is connected to the C-terminus of the OEC23 precursor shows that a single Tat transport signal is sufficient to mediate transport of two distinct passenger proteins in a row. Replacing the transit peptide of OEC23 in 23/23-EGFP by its homolog from OEC16 yields the chimera 16/23-EGFP, which can likewise be fully translocated by the Tat pathway across the thylakoid membrane. However, transport of 16/23-EGFP is retarded at specific steps in the transport process leading to the temporary and consecutive accumulation of three translocation intermediates with distinct membrane topology. They are associated with two oligomeric membrane complexes presumably representing TatBC-receptor complexes. The composition of the translocation intermediates as determined by immunoprecipitation experiments suggests that the two passenger proteins are translocated in a stepwise manner across the membrane.  相似文献   

3.
Cytosolically synthesized thylakoid proteins must be translocated across the chloroplast envelope membranes, traverse the stroma, and then be translocated into or across the thylakoid membrane. Protein transport across the envelope requires ATP hydrolysis but not electrical or proton gradients. The energy requirements for the thylakoid translocation step were studied here for the light-harvesting chlorophyll a/b protein (LHCP), an integral membrane protein, and for several thylakoid lumen-resident proteins: plastocyanin and OE33, OE23, and OE17 (the 33-, 23-, and 17-kDa subunits of the oxygen-evolving complex, respectively). Dissipation of the thylakoid protonmotive force during an in organello protein import assay partially inhibited the thylakoid localization of LHCP and OE33, totally inhibited localization of OE23 and OE17, and had no effect on localization of plastocyanin. We used reconstitution assays for LHCP insertion and for OE23 and OE17 transport into isolated thylakoids to investigate the energy requirements in detail. The results indicated that LHCP insertion absolutely requires ATP hydrolysis and is enhanced by a transthylakoid delta pH and that transport of OE23 and OE17 is absolutely dependent upon a delta pH. Surprisingly, OE23 and OE17 transport occurred maximally in the complete absence of ATP. These results establish the thylakoid membrane as the only membrane system in which a delta pH can provide all of the energy required to translocate proteins across the bilayer. They also demonstrate that the energy requirements for integration into or translocation across the thylakoid membranes are protein-specific.  相似文献   

4.
K Cline  R Henry  C Li    J Yuan 《The EMBO journal》1993,12(11):4105-4114
Many thylakoid proteins are cytosolically synthesized and have to cross the two chloroplast envelope membranes as well as the thylakoid membrane en route to their functional locations. In order to investigate the localization pathways of these proteins, we over-expressed precursor proteins in Escherichia coli and used them in competition studies. Competition was conducted for import into the chloroplast and for transport into or across isolated thylakoids. We also developed a novel in organello method whereby competition for thylakoid transport occurred within intact chloroplasts. Import of all precursors into chloroplasts was similarly inhibited by saturating concentrations of the precursor to the OE23 protein. In contrast, competition for thylakoid transport revealed three distinct precursor specificity groups. Lumen-resident proteins OE23 and OE17 constitute one group, lumenal proteins plastocyanin and OE33 a second, and the membrane protein LHCP a third. The specificity determined by competition correlates with previously determined protein-specific energy requirements for thylakoid transport. Taken together, these results suggest that thylakoid precursor proteins are imported into chloroplasts on a common import apparatus, whereupon they enter one of several precursor-specific thylakoid transport pathways.  相似文献   

5.
The 33- and 23-kDa proteins of the photosynthetic oxygen-evolving complex are synthesized in the cytosol and targeted into the thylakoid lumen by bipartite presequences. In this report, we describe conditions for the efficient import of each of these proteins by isolated pea thylakoids. Import of the 33-kDa protein requires both light and stromal extract. The probable function of the stromal extract is to provide stromal processing peptidase to remove the first "envelope transit" signal of the presequence. Import of the 23-kDa protein is also driven by light, but stromal extract is not required for import; furthermore, efficient import is still observed if the precursor is modified to completely block cleavage by residual stromal processing peptidase activity. The intermediate form of the 23-kDa protein, which is generated by incubation of the precursor protein with stromal processing peptidase, is also efficiently imported. The results indicate that the thylakoidal protein transport system can import both the precursor and intermediate forms of the 23-kDa protein, but probably only the intermediate form of the 33-kDa protein.  相似文献   

6.
7.
Recently, two members of the P4 family of P-type ATPases, Dnf1p and Dnf2p, were shown to be necessary for the internalization (flip) of fluorescent, 7-nitrobenz-2-oxa-1,3-diazol-4-yl(NBD)-labeled phospholipids across the plasma membrane of Saccharomyces cerevisiae. In the current study, we have demonstrated that ATP hydrolysis is not sufficient for phospholipid flip in the absence of the proton electrochemical gradient across the plasma membrane. This requirement was demonstrated by two independent means. First, collapse of the plasma membrane proton electrochemical gradient by the protonophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP) almost completely blocked NBD-phospholipid flip while only moderately reducing the cytosolic ATP concentration. Second, strains with point mutations in PMA1, which encodes the plasma membrane proton pump that generates the proton electrochemical gradient, are defective in NBD-PC flip, whereas their cytosolic ATP content is actually increased. These results establish that the proton electrochemical gradient is required for NBD-phospholipid flip across the plasma membrane of yeast and raise the question whether it contributes an additional required driving force or whether it functions as a regulatory signal.  相似文献   

8.
The yield of chlorophyll a fluorescence in dark-adapted intactchloroplasts isolated from the green alga, Bryopsis maxima,showed, after the first wave of the fluorescence induction wasover, a peak labelled M1 at about 10th sec of illumination.The time to reach M1 during continuous illumination inverselydepended upon exciting light intensity. The appearance of thepeak M1 was accelerated by the addition of methyl viologen aselectron acceptor and delayed in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea.KCN had no effect on the peak M1 at a concentration where photosyntheticoxygen evolution was completely suppressed. Thus, the peak M1appears to be related to electron transport but not to the carbonreducing cycle. Carbonylcyanide m-chlorophenylhydrazone, NH4Cl and methylaminediminished or eliminated M1. On the other hand, an enhancementof the fluorescence yield at M1 was observed in the presenceof energy transfer inhibitors. Valinomycin plus KCl also increasedheight of the peak M1. However, the combined addition of valinomycinand dinitrophenol resulted in the complete elimination of thepeak M1. These results indicate that the fluorescence peak M1occurring at about 10 sec of illumination is linked to a protongradient across the thylakoid membrane. (Received July 7, 1977; )  相似文献   

9.
Vipp1 (vesicle inducing protein in plastids 1) is found in cyanobacteria and chloroplasts where it is essential for thylakoid formation. Arabidopsis thaliana mutant plants with a reduction of Vipp1 to about 20% of wild type content become albinotic at an early stage. We propose that this drastic phenotype results from an inability of the remaining Vipp1 protein to assemble into a homo-oligomeric complex, indicating that oligomerization is a prerequisite for Vipp1 function. A Vipp1-ProteinA fusion protein, expressed in the Deltavipp1 mutant background, is able to reinstate oligomerization and restore photoautotrophic growth. Plants containing Vipp1-ProteinA in amounts comparable to Vipp1 in the wild type exhibit a wild type phenotype. However, plants with a reduced amount of Vipp1-ProteinA protein are growth-retarded and significantly paler than the wild type. This phenotype is caused by a decrease in thylakoid membrane content and a concomitant reduction in photosynthetic activity. To the extent that thylakoid membranes are made in these plants they are properly assembled with protein-pigment complexes and are photosynthetically active. This strongly supports a function of Vipp1 in basic thylakoid membrane formation and not in the functional assembly of thylakoid protein complexes. Intriguingly, electron microscopic analysis shows that chloroplasts in the mutant plants are not equally affected by the Vipp1 shortage. Indeed, a wide range of different stages of thylakoid development ranging from wild-type-like chloroplasts to plastids nearly devoid of thylakoids can be observed in organelles of one and the same cell.  相似文献   

10.
In chloroplasts and bacteria, the Tat (twin-arginine translocation) system is engaged in transporting folded passenger proteins across the thylakoid and cytoplasmic membranes, respectively. To date, three membrane proteins (TatA, TatB, and TatC) have been identified to be essential for Tat-dependent protein translocation in the plant system, whereas soluble factors seem not to be required. In contrast, in the bacterial system, several cytosolic chaperones were described to be involved in Tat transport processes. Therefore, we have examined whether stromal or peripherally associated membrane proteins also play a role in Tat transport across the thylakoid membrane. Analyzing both authentic precursors as well as the chimeric 16/23 protein, which allows us to study each step of the translocation process individually, we demonstrate that a soluble form of TatA is present in the chloroplast stroma, which significantly improves the efficiency of Tat-dependent protein transport. Furthermore, this soluble TatA is able to reconstitute the Tat transport properties of thylakoid membranes that are transport-incompetent due to extraction with solutions of chaotropic salts.  相似文献   

11.
Although cholesterol is synthesized in the endoplasmic reticulum (ER), compared with other cellular membranes, ER membrane has low cholesterol (3-6%). Most of the molecular machinery that regulates cellular cholesterol homeostasis also resides in the ER. Little is known about how cholesterol itself affects the ER membrane. Here, we demonstrate that acute cholesterol depletion in ER membranes impairs ER-to-Golgi transport of secretory membrane proteins. Cholesterol depletion is achieved by a brief inhibition of cholesterol synthesis with statins in cells grown in cholesterol-depleted medium. We provide evidence that secretory membrane proteins vesicular stomatitis virus glycoprotein and scavenger receptor A failed to be efficiently transported from the ER upon cholesterol depletion. Fluorescence photobleaching recovery experiments indicated that cholesterol depletion by statins leads to a severe loss of lateral mobility on the ER membrane of these transmembrane proteins, but not loss of mobility of proteins in the ER lumen. This impaired lateral mobility is correlated with impaired ER-to-Golgi transport. These results provide evidence for the first time that cholesterol is required in the ER membrane to maintain mobility of membrane proteins and thus protein secretion.  相似文献   

12.
Transplasma membrane electron transport in both plant and animal cells activates proton release. The nature and components of the electron transport system and the mechanism by which proton release is activated remains to be discovered. Reduced pyridine nucleotides are substrates for the plasma membrane dehydrogenases. Both plant and animal membranes have unusual cyanide-insensitive oxidases so oxygen can be the natural electron acceptor. Natural ferric chelates or ferric transferrin can also act as electron acceptors. Artificial, impermeable oxidants such as ferricyanide are used to probe the activity. Since plasma membranes containb cytochromes, flavin, iron, and quinones, components for electron transport are present but their participation, except for quinone, has not been demonstrated. Stimulation of electron transport with impermeable oxidants and hormones activates proton release from cells. In plants the electron transport and proton release is stimulated by red or blue light. Inhibitors of electron transport, such as certain antitumor drugs, inhibit proton release. With animal cells the high ratio of protons released to electrons transferred, stimulation of proton release by sodium ions, and inhibition by amilorides indicates that electron transport activates the Na+/H+ antiport. In plants part of the proton release can be achieved by activation of the H+ ATPase. A contribution to proton transfer by protonated electron carriers in the membrane has not been eliminated. In some cells transmembrane electron transport has been shown to cause cytoplasmic pH changes or to stimulate protein kinases which may be the basis for activation of proton channels in the membrane. The redox-induced proton release causes internal and external pH changes which can be related to stimulation of animal and plant cell growth by external, impermeable oxidants or by oxygen.  相似文献   

13.
The characteristics of lactate transport in brush-border membrane vesicles isolated from normal human full-term placentas were investigated. Lactate transport in these vesicles was Na+-independent, but was greatly stimulated when the extravesicular pH was made acidic. In the presence of an inwardly directed H+ gradient ([H+]o greater than [H+]i), transient uphill transport of lactate could be demonstrated. This H+ gradient-dependent stimulation was not a result of a H+ diffusion potential. Transport of lactate in the presence of the H+ gradient was not inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid or by furosemide, ruling out the participation of an anion exchanger in placental lactate transport. Many monocarboxylates strongly interacted with the lactate transport system, whereas, with the single exception of succinate, dicarboxylates did not. The monocarboxylates pyruvate and lactate, but not the dicarboxylate succinate, when present inside the vesicles, were able to exert a trans-stimulatory effect on the uptake of radiolabeled lactate. Kinetic analyses provided evidence for a single transport system with a Kt of 4.1 +/- 0.4 mM for lactate and a Vmax of 54.2 +/- 9.9 nmol/mg of protein/30 s. Pyruvate inhibited lactate transport competitively, by reducing the affinity of the system for lactate without altering the maximal velocity. It is concluded that human placental brush-border membranes possess a transport system specific for lactate and other monocarboxylates and that this transport system is Na+-independent and is energized by an inwardly directed H+ gradient. Lactate-H+ symport rather than lactate-OH- antiport appears to be the mechanism of the H+ gradient-dependent lactate transport in these membranes.  相似文献   

14.
Cnidaria catch and kill their prey by means of nematocysts. A nematocyst consists of a capsule containing a coiled tubule. On triggering, the cyst extrudes this tubule in an extremely rapid manner. The mechanisms and driving forces of discharge are still unknown. We found nematocysts of various cnidarians to be acidic inside and propose that the pH difference between cyst matrix and cytoplasm drives the discharge of cysts. For large cysts of Aiptasia we calculated that the internal concentration of protons and protonated carboxyl groups is about 5 M. Cysts contain polyacids in a high concentration. At a low pH several of the carboxyl groups of the polymer are uncharged. The carboxyl groups dissociate when, on triggering, the proton concentration becomes balanced across the cyst membrane. The speed of protons in water is extremely rapid. Thus, the equilibration of the proton concentration initially results in a negative net charge within the cyst and therefore in a sudden electrostatic repulsion between the dissociated carboxyl groups of the polymer. This causes an increase in the pressure of the matrix against the cyst wall. We suggest that this nonosmotic pressure increase causes the first and extremely rapid step of discharge. We propose that in a second step cations and water are taken up, generating an increase in osmotic pressure. A change in the pH value may also facilitate the invagination and evagination, respectively, of the tubule.  相似文献   

15.
An inward-directed H+ gradient markedly stimulated lactate uptake in rabbit intestinal brush-border membrane vesicles, and uphill transport against a concentration gradient could be demonstrated under these conditions. Uptake of lactate was many-fold greater in the presence of a H+ gradient than in the presence of a Na+ gradient. Moreover, there was no evidence for uphill transport of lactate in the presence of a Na+ gradient. The H+-gradient-dependent stimulation of lactate uptake was not due to the effect of a H+-diffusion potential. The uptake process in the presence of a H+ gradient was saturable [Kt (concn. giving half-maximal transport) for lactate 12.7 +/- 4.5 mM] and was inhibited by many monocarboxylates. It is concluded that a H+ gradient, not a Na+ gradient, is the driving force for active transport of lactate in rabbit intestinal brush-border membrane vesicles.  相似文献   

16.
Synechocystis sp. PCC 6803 contains a Ktr system and a putative ATP-dependent Kdp system for potassium uptake. We report here that the Kdp system plays only a minor role in potassium uptake under salt and non-stress conditions, unlike the role it plays in Escherichia coli. In Synechocystis, Ktr-mediated potassium transport is dependent on the proton gradient across the membrane.  相似文献   

17.
The photosynthetic electron transfer chain generates proton motive force (pmf), composed of both electric field (Deltapsi) and concentration (DeltapH) gradients. Both components can drive ATP synthesis, whereas the DeltapH component alone can trigger feedback regulation of the antenna. It has often been suggested that a relatively large pmf is needed to sustain the energetic contributions of the ATP synthase reaction (DeltaG(ATP)), and that the Deltapsi component is dissipated during illumination, leading to an acidic lumen in the light. We suggest that this is incompatible with the stabilities of lumenal components and the observed activation of downregulation. Recent work on the chloroplast ATP synthase suggests that a more moderate pmf can sustain DeltaG(ATP). In addition, in vivo probes suggest that a substantial fraction of pmf can be stored as Deltapsi. Together, these factors should allow sufficient DeltaG(ATP) to maintain lumen pH in a range where lumenal enzyme activities are nearly optimal, and where the level of NPQ is regulated.  相似文献   

18.
The role of nucleotides in providing energy for polypeptide transfer across the endoplasmic reticulum (ER) membrane is still unknown. To address this question, we treated ER-derived mammalian microsomal vesicles with a photoactivatable analogue of ATP, 8-N3ATP. This treatment resulted in a progressive inhibition of translocation activity. Approximately 20 microsomal membrane proteins were labeled by [alpha 32P]8-N3ATP. Two of these were identified as proteins with putative roles in translocation, alpha signal sequence receptor (SSR), the 35-kDa subunit of the signal sequence receptor complex, and ER-p180, a putative ribosome receptor. We found that there was a positive correlation between inactivation of translocation activity and photolabeling of alpha SSR. In contrast, our data demonstrate that the ATP-binding domain of ER-p180 is dispensable for translocation activity and does not contribute to the observed 8-N3ATP sensitivity of the microsomal vesicles.  相似文献   

19.
During photosynthesis, photosynthetic electron transport generates a proton motive force(pmf) across the thylakoid membrane, which is used for ATP biosynthesis via ATP synthase in the chloroplast. The pmf is composed of an electric potential(△Ψ) and an osmotic component(△pH).Partitioning between these components in chloroplasts is strictly regulated in response to fluctuating environments.However, our knowledge of the molecular mechanisms that regulate pmf partitioning is limited. Here, we report a bestrophin-like protein(At Best), which is critical for pmf partitioning. While the Dp H component was slightly reduced in atbest, the △Ψ component was much greater in this mutant than in the wild type, resulting in less efficient activation of nonphotochemical quenching(NPQ) upon both illumination and a shift from low light to high light. Although no visible phenotype was observed in the atbest mutant in the greenhouse, this mutant exhibited stronger photoinhibition than the wild type when grown in the field. At Best belongs to the bestrophin family proteins, which are believed to function as chloride(Cl~-) channels. Thus, our findings reveal an Researimportant Cl~- channel required for ion transport and homeostasis across the thylakoid membrane in higher plants. These processes are essential for fine-tuning photosynthesis under fluctuating environmental conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号