首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Häder  Donat-P.  Porst  Markus  Santas  Regas 《Plant Ecology》1998,139(2):167-175
Photoinhibition of photosynthesis, defined as reversible decrease in the effective photosynthetic quantum yield, was measured in the Mediterranean red alga, Peyssonnelia squamata, using pulse amplitude modulation (PAM) chlorophyll fluorescence and oxygen production on site. This alga is adapted to very low fluence rates of solar radiation and is easily inhibited by exposure to excessive radiation. At high solar angles its photosynthetic capacity is impaired even in its natural habitat, in the protective shade of overhanging rocks. Oxygen production was maximal at 5 m depth and decreased to almost zero at the surface. When exposed at the surface oxygen production ceased within 16 min. The optimal photosynthetic quantum yield, defined as Fv/Fm, was about 0.45 in dark-adapted specimens. After 30 min of exposure to unattenuated solar radiation the (effective, Fv/Fm) quantum yield decreased to below 0.1. Removing solar UV (especially UV-B) significantly reduced photoinhibition: the quantum yield of a sample exposed under a UV-B cut-off filter was double that of a sample exposed to full solar radiation after 30 min exposure. Recovery from photoinhibition took several hours and was not complete after prolonged exposure (1.5 h) to direct solar radiation. The degree of photoinhibition depended on the depth at which the thalli were exposed. Recovery from photoinhibition was complete within 2 h except when the algae were exposed at the surface. When measured over the whole day, the effective photosynthetic quantum yield significantly decreased by about 25% from initially high values toward early afternoon and rose again towards evening. The data indicate that this alga is adapted to very low irradiances and is easily inhibited by excessive solar radiation; solar UV contributes substantially to the observed photoinhibition.  相似文献   

2.
Within the sheltered creeks of Cádiz bay, Ulva thalli form extended mat-like canopies. The effect of solar ultraviolet radiation on photosynthetic activity, the composition of photosynthetic and xanthophyll cycle pigments, and the amount of RubisCO, chaperonin 60 (CPN 60), and the induction of DNA damage in Ulva aff. rotundata Bliding from southern Spain was assessed in the field. Samples collected from the natural community were covered by screening filters, generating different radiation conditions. During daily cycles, individual thalli showed photoinhibitory effects of the natural solar radiation. This inhibition was even more pronounced in samples only exposed to photosynthetically active radiation (PAR). Strongly increased heat dissipation in these samples indicated the activity of regulatory mechanisms involved in dynamic photoinhibition. Adverse effects of UV-B radiation on photosynthesis were only observed in combination with high levels of PAR, indicating the synergistic effects of the two wavelength ranges. In samples exposed either to PAR+UV-A or to UV-B+UV-A without PAR, no inhibition of photosynthetic quantum yield was found in the course of the day. At the natural site, the top layer of the mat-like canopies is generally completely bleached. Artificially designed Ulva canopies exhibited fast bleaching of the top layer under the natural solar radiation conditions, while this was not observed in canopies either shielded from UV or from PAR. The bleached first layer of the canopies acts as a selective UV-B filter, and thus prevents subcanopy thalli from exposure to harmful radiation. This was confirmed by the differences in photosynthetic activity, pigment composition, and the concentration of RubisCO in thalli with different positions within the canopy. In addition, the induction of the stress protein CPN 60 under UV exposure and the low accumulation of DNA damage indicate the presence of physiological protection mechanisms against harmful UV-B. A mechanism of UV-B-induced inhibition of photosynthesis under field conditions is proposed.  相似文献   

3.
During October to December 2003 we carried out experiments to assess the impact of high solar radiation levels (as normally occurring in a tropical region of Southern China) on the cyanobacteria Nostoc sphaeroides and Arthrospira (Spirulina) platensis. Two types of experiments were done: a) Short-term (i.e., 20 min) oxygen production of samples exposed to two radiation treatments (i.e., PAR+UVR—280–700 nm, and PAR only—400–700 nm, PAB and P treatments, respectively), and b) Long-term (i.e., 12 days) evaluation of photosynthetic quantum yield (Y) of samples exposed to three radiation treatments (i.e., PAB; PA (PAR+UV-A, 320–700 nm) and P treatments, respectively). N. sphaeroides was resistant to UVR, with no significant differences (P>0.05) in oxygen production within 20 min of exposure, but with a slight inhibition of Y within hours. A fast recovery of Y was observed after one day even in samples exposed to full solar radiation. A. platensis, on the other hand, was very sensitive to solar radiation (mainly to UV-B), as determined by oxygen production and Y measurements. A. platensis had a circadian rhythm of photosynthetic inhibition, and during the first six days of exposure to solar radiation, it varied between 80 and 100% at local noon, but cells recovered significantly during afternoon hours. There was a significant decrease in photosynthetic inhibition after the first week of exposure with values less than 50% at local noon in samples receiving full solar radiation. Samples exposed to PA and P treatments recovered much faster (within 2–3 days), and there were no significant differences in Y between the three radiation treatments when irradiance was low (late afternoon to early morning). Long-term acclimation seems to be important in A. platensis to cope with high UVR levels however, it is not attained through the synthesis of UV-absorbing compounds but it seems to be mostly related to adaptive morphological changes.  相似文献   

4.
刘树霞  邹定辉  徐军田 《生态学报》2010,30(20):5562-5568
探讨了太阳紫外辐射对两种N水平生长条件下羊栖菜幼孢子体光化学特性的影响及其恢复。结果显示,在高的光辐射下羊栖菜藻体的有效光化学效率和相对电子传递速率急剧下降,在全波长太阳辐射条件下它们的下降幅度要比仅在可见光处理下的藻体更大,2种N水平条件下藻体的光化学活性下降趋势相似,但是N加富的生长条件使得藻体具有更高抵御紫外辐射的能力,这可能是与N加富生长条件下的藻体中含有较高含量的紫外吸收物质和类胡萝卜素有关。结果表明羊栖菜的幼孢子体具有比成体更强抵御紫外线的能力,这主要体现在藻体受到紫外辐射损伤后的修复上。  相似文献   

5.
The induction of cyclobutane pyrimidine dimers (CPDs) by ultraviolet‐B radiation (UV‐B, 280–315 nm) and repair mechanisms were studied in the lichen Cladonia arbuscula ssp. mitis exposed to different temperatures and water status conditions. In addition, the development and repair of CPDs were studied in relation to the different developmental stages of the lichen thallus podetial branches. Air‐dried lichen thalli exposed to UV‐B radiation combined with relatively high visible light (HL, 800 μmol m?2 s?1; 400–700 nm) for 7 days showed a progressive increase of CPDs with no substantial repair, although HL was present during and after irradiation with UV‐B. Fully hydrated lichen thalli, that had not been previously exposed to UV‐B radiation for 7 days, were given short‐term UV‐B radiation treatment at 25°C, and accumulated DNA lesions in the form of CPDs, with repair occurring when they were exposed to photoreactivating conditions (2 h of 300 μmol m?2 s?1, 400–700 nm). A different pattern was observed when fully hydrated thalli were exposed to short‐term UV‐B radiation at 2°C, in comparison with exposure at 25°C. High levels of CPDs were induced at 2°C under UV‐B irradiation, without significant repair under subsequent photoreactivating light. Likewise, when PAR (300 μmol m?2 s?1) and UV‐B radiation were given simultaneously, the CPD levels were not lowered. Throughout all experiments the youngest, less differentiated parts of the lichen thallus – namely ‘tips’, according to our arbitrary subdivision – were the parts showing the highest levels of CPD accumulation and the lowest levels of repair in comparison with the older thallus tissue (‘stems’). Thus the experiments showed that Cladonia arbuscula ssp. mitis is sensitive to UV‐B irradiation in the air‐dried state and is not able to completely repair the damage caused by the radiation. Furthermore, temperature plays a role in the DNA damage repairing capacity of this lichen, since even when fully hydrated, C. arbuscula ssp. mitis did not repair DNA damage at the low temperatures.  相似文献   

6.
Experiments were conducted in Patagonian waters (Argentina) to assess the impact of solar radiation (PAR, 400-700 nm, and UVR, 280-400 nm) upon two strains of the red alga Corallina officinalis Linnaeus, characteristic of the mid and lower intertidal zone, during March 2000. Fluorescence parameters were determined using a pulse amplitude modulated (PAM) fluorometer. The two strains had different initial optimal quantum yields but similar strong decreases in the quantum yield when the algae were exposed to short-term solar radiation and similar recovery characteristics in dim light. The quantum yield had the lowest values at noon, but it increased in the afternoon / evening hours, when irradiances were lower. PAR (irradiance at noon about 500 W m(-2)) was responsible for most of the decrease in the yield ( approximately 50%) on clear days, with UVR accounting for a significant increment. However, on cloudy days the UVR component caused an even more pronounced decrease. In their natural environment, specimens in the shade had a higher effective quantum yield than in sun-lit areas. Fluence rate response curves indicated that thalli from the mid intertidal had a pronounced nonphotochemical quenching at intermediate and higher irradiances; however, this was not observed in the thalli from the lower intertidal. Fast induction and relaxation kinetics showed obvious differences between the two strains, but also demonstrated a rapid adaptation of the species to the changing light conditions as well as a fast decrease of PS II fluorescence upon exposure to solar radiation. All photosynthetic pigments were bleached during exposure to solar radiation over a full day. Strong absorption in the UV-A range, most likely due to mycosporine like amino acids, was determined in both strains. The study of the differential sensitivity to solar radiation and recovery capacity of these Corallina strains, as well as the presence of protective compounds, suggests that a combination of mechanisms allow these algae to adapt to the relatively high radiation levels and fast changes in irradiance found in the Patagonian area at this time of the year.  相似文献   

7.
The photosynthetic quantum yield was analysed in four common atlantic macroalgae, the Rhodophytes Gelidium arbuscula and Halopithys incurvus and the Phaeophytes Halopteris scoparia and Lobophora variegata in Gran Canaria, Canary Islands at their growth site. The fluorescence parameters were measured using a portable pulse amplitude modulated (PAM) fluorometer (PAM 2000) instrument and a diving PAM under water without removing the thalli from their growth sites. Solar radiation was monitored continuously above and under water during the whole experimental period using two three-channel dosimeters (European light dosimeter network; ELDONET) (Real Time Computer, M?hrendorf, Germany). These instruments measure solar radiation in three wavelength ranges, ultraviolet (UV)-A, UV-B and photosynthetic active radiation (PAR). In all four algae the effective photosynthetic quantum yield decreased significantly from the optimal values measured after dark adaptation due to exposure to 15 min solar radiation, but at least partially recovered subsequently in the shade within several hours. Increasing the exposure period to 30 min intensified the photoinhibition. In some algae no recovery was observed after this treatment and in others no significant recovery could be detected. Exposure to unfiltered solar radiation caused a significantly higher photoinhibition than PAR-only radiation or PAR plus UV-A. A substantial inhibition was found in all algae at their growth sites in the water column when the sun was at high angles, as measured with the diving PAM. Received in revised form: 15 May 2000 Electronic Publication  相似文献   

8.
The economic red alga, Gracilaria lemaneiformis Bory, was grown at different depths in the coastal waters of the South China Sea, and its growth, pigments, ultra-violet (UV)-absorbing compounds and agar yield were investigated in order to see the impacts of depth change. Gracilaria lemaneiformis grew slower at greater depths in March, while the highest relative growth rate (RGR) was found at about 1.0 m depth in April, about 9% higher than that at surface water (0.5 m below the surface). The RGR increased with the increasing daily photosynthetically active radiation (PAR) dose received by the thalli at different depths. The contents of phycoerythrin and chlorophyll a increased, while that of UV-absorbing compounds (UVAC, absorption peak at 325 nm) decreased with increased depth. The highest levels of the UVAC in the thalli grown in surface seawater played a protective role against solar UV radiation (280–400 nm). The content of UVAC declined at deeper depths and under indoor low PAR. The agar yield of the thalli increased with the increasing depths, with the highest content found at 3.5 m depth.  相似文献   

9.
In field studies conducted at the Kongsfjord (Spitsbergen), the effect of filtered natural radiation conditions (solar without ulraviolet [UV]-A+UV-B, solar without UV-B, solar) on photosynthesis and the metabolism of UV-absorbing mycosporine-like amino acids (MAAs) in the marine red alga Devaleraea ramentacea have been studied. While solar treatment without UV-A+UV-B did not affect photosynthesis during the course of a day, solar without UV-B and the full solar spectrum led to a strong inhibition. However, after offset of the various radiation conditions, all algae fully recovered. Isolates collected from different depths were exposed in the laboratory to artificial fluence rates of photosynthetic active radiation (PAR), PAR+UV-A, and PAR+UV-A+UV-B. The photosynthetic capacity was affected in accordance with the original sampling depth, i.e. shallow-water isolates were more resistant than algae from deeper waters, indicating that D. ramentacea is able to acclimate to changes in irradiance. Seven different UV-absorbing MAAs were detected in this alga, namely mycosporine-glycine, shinorine, porphyra-334, palythine, asterina-330, palythinol, and palythene. The total amount of MAAs continuously decreased with increasing collecting depth when sampled in mid June, and algae taken in late August from the same depths contained on average 30–45% higher MAA concentrations, indicating a seasonal effect as well. The presence of increasing MAA contents with decreasing depth correlated with a more insensitive photosynthetic capacity under both UV-A and UV-B treatments. Populations of D. ramentacea collected from 1 m depth, with one fully exposed to solar radiation and the other growing protected as understorey vegetation underneath the kelp Laminaria saccharina, exhibited quantitatively different MAA compositions in the apices. The exposed seaweeds contained 2.5-fold higher MAA values compared with the more shaded algae. Moreover, the exposed isolates showed a strong tissue gradient in MAAs, pigments, and proteins. The green apices contained 5-fold higher MAA contents than the red bases. Transplantation of D. ramentacea from 2 m depth to the surface induced the formation and accumulation of MAAs after 1 week exposure to the full solar spectrum. Control samples which were treated with the solar spectrum without UV-A+B or with solar without UV-B showed unchanged MAA contents, indicating a strong UV-B effect on MAA metabolism. All data well supported the suggested physiological function of MAAs as natural UV sunscreens in macroalgae.  相似文献   

10.
Solar ultraviolet radiation (UVR, 280–400 nm) is known to affect macroalgal physiology negatively, while nutrient availability may affect UV‐absorbing compounds (UVACs) and sensitivity to UVR. However, little is known about the interactive effects of UVR and nitrate availability on macroalgal growth and photosynthesis. We investigated the growth and photosynthesis of the red alga Gracilaria lemaneiformis (Bory) Grev. at different levels of nitrate (natural or enriched nitrate levels of 41 or 300 and 600 μM) under different solar radiation treatments with or without UVR. Nitrate‐enrichment enhanced the growth, resulted in higher concentrations of UVACs, and led to negligible photoinhibition of photosynthesis even at noon in the presence of UVR. Net photosynthesis during the noon period was severely inhibited by both ultraviolet‐A radiation (UVA) and ultraviolet‐B radiation (UVB) in the thalli grown in seawater without enriched nitrate. The absorptivity of UVACs changed in response to changes in the PAR dose when the thalli were shifted back and forth from solar radiation to indoor low light, and exposure to UVR significantly induced the synthesis of UVACs. The thalli exposed to PAR alone exhibited higher growth rates than those that received PAR + UVA or PAR + UVA + UVB at the ambient or enriched nitrate concentrations. UVR inhibited growth approximately five times as much as it inhibited photosynthesis within a range of 60–120 μg UVACs · g?1 (fwt) when the thalli were grown under nitrate‐enriched conditions. Such differential inhibition implies that other metabolic processes are more sensitive to solar UVR than photosynthesis.  相似文献   

11.
The effects of solar radiation and artificial UV irradiation on motility and pigmentation were studied in the flagellate system Cyanophora paradoxa. Both percentage of motile cells and average velocity decreased drastically after a solar exposure of a few hours. This effect was not due to an overheating since the cells were exposed under temperaturecontrolled conditions. Partial reduction of the UV-B radiation by cut-off filters or by insertion of an artificial ozone layer increased the tolerated exposure times. Artificial UV radiation also induced the same effects. Under both solar and artificial UV irradiation the photosynthetic pigments within the cyanelles were bleached also within short exposure times. Kinetics of pigment destruction showed that the accessory phycobilins are lost with a half life of 1.3 h while the chlorophylls had a half life of 33 h and a carotenoid with an absorption maximum at 480 nm of 17.3 h.  相似文献   

12.
The intertidal red alga Porphyra haitanensis Chang et Zheng is episodically desiccated and exposed to high levels of solar radiation at low tide during emersion. However, little has been documented on the relationship between the stresses during desiccation and related chemical compounds. We found that P. haitanensis thalli, when desiccated under indoor (artificial radiation) or outdoor (solar radiation) conditions, with or without UV radiation (UVR: 280–400 nm), contained significantly higher concentrations of UV-absorbing compounds (peak at 336 nm) than those maintained submerged (without desiccation). Solar UVR had no effect on the content of UV-absorbing compounds. Even though the concentration of these compounds decreased with time in all treatments, a slower decrease was observed in the desiccated samples. The samples with higher levels of UV-absorbing compounds showed higher photochemical efficiency of photosystem II (PS II) during the exposure or subsequent recovering process than samples with low concentration of UV-absorbing compounds, reflecting their protective role. The concentration of these compounds varied in different parts of the thallus, with the middle and marginal parts containing 60–80% more UV-absorbing compounds than the basal parts in both female and male plants. In addition, the marginal parts of male thalli contained more UV-absorbing compounds than the corresponding parts of female thalli. Our data suggest that desiccation plays a key role in this alga to maintain high concentration of UV-absorbing compounds, and that this might provide a beneficial advantage to compete in the intertidal zone where the organism is normally exposed to high levels of UVR.  相似文献   

13.
The effects of solar UV radiation on mycosporine‐like amino acids (MAAs), growth, photosynthetic pigments (Chl a, phycobiliproteins), soluble proteins (SP), and C and N content of Mazzaella laminarioides tetrasporophytes and gametophytes were investigated. Apical segments of tetrasporophytes and gametophytes were exposed to solar radiation under three treatments (PAR [P], PAR+UVA [PA], and PAR+UVA+UVB [PAB]) during 18 d in spring 2009, Punta Arenas, Chile. Samples were taken after 2, 6, 12, and 18 d of solar radiation exposure. Most of the parameters assessed on M. laminarioides were significantly influenced by the radiation treatment, and both gametophytes and tetrasporophytes seemed to respond differently when exposed to high UV radiation. The two main effects promoted by UV radiation were: (i) higher synthesis of MAAs in gametophytes than tetrasporophytes at 2 d, and (ii) a decrease in phycoerythrin, phycocyanin, and SPs, but an increase in MAA content in tetrasporophytes at 6 and 12 d of culture. Despite some changes that were observed in biochemical parameters in both tetrasporophytes and gametophytes of M. laminarioides when exposed to UVB radiation, these changes did not promote deleterious effects that might interfere with the growth in the long term (18 d). The tolerance and resistance of M. laminarioides to higher UV irradiance were expected, as this intertidal species is exposed to variation in solar radiation, especially during low tide.  相似文献   

14.
Photoinhibition of photosynthesis was measured in two Mediterranean Corallinaceae, Jania rubens and Corallina mediterranea, using pulse-amplitude modulation (PAM) fluorescence and oxygen production on site. Both algae were found to be adapted to low irradiances of solar radiation and easily inhibited by exposure to excessive radiation. Both algae were impaired even in their natural habitat under overhanging rocks which protected them from direct solar radiation, except for a few hours in the early morning. Recovery from photoinhibition of both the photosynthetic quantum yield, defined as Fv′/Fm′, and oxygen production took several hours and was not complete. Judging from both parameters indicated above, Jania seems to be even more sensitive than Corallina, even though the former alga was found in more exposed habitats.  相似文献   

15.
Intertidal macroalgae are submerged in seawater at high tide and exposed to air at low tide. When they are exposed to the air, CO2 is the main inorganic carbon source. In this study, the photosynthetic performances of PSI and PSII were measured in different generations of Pyropia yezoensis (leafy thalli and filamentous thalli) that had been exposed to air containing different CO2 concentrations. Changes in photosynthesis during dehydration and salt treatment under the different CO2 concentrations were also analyzed. The results showed that in leafy thalli, the effective photochemical quantum yield of PSII (YII) was enhanced as CO2 increased, which suggested that CO2 assimilation was enhanced and that they can utilize CO2 in the air directly, even when they are subjected to moderate stress. These findings could explain why, in P. yezoensis aquaculture, moderate exposure to air does not lead to a decrease in crop yield. However, in filamentous thalli, there were no significant differences in YII at the CO2 concentrations tested. The expression of genes involved in the Calvin cycle in leafy thalli was higher than that in filamentous thalli. CO2 uptake and biomass of P. yezoensis leafy thalli is larger than filamentous thalli, which may be due to its different carbon utilization mechanism and the adaptation of intertidal environment in the evolutionary process.  相似文献   

16.
It is well known that light and nutrients are essential to plants; however, there are few investigations in which these have been studied in combination on macroalgae, especially when solar ultraviolet radiation (UVR) is concerned. We cultured the red alga Gracilaria lemaneiformis (Bory) at different nitrate concentrations and light levels with or without UVR for 24 days. The results showed that nitrate supply markedly enhanced the growth and photosynthesis, increased the absorptivity of UV‐absorbing compounds (UVACs), and decreased photoinhibition in the presence of UVR. The thalli that received photosynthetically active radiation (PAR) treatment exhibited higher growth rates than those that received PAR + UVR at ambient or enhanced nitrate concentrations. However, under PAR + UVR treatment, the absorptivity of UVACs was higher than that of PAR and fluctuated with light levels. UVR was found to reduce the maximal net photosynthetic rate, apparent photosynthetic efficiency and light‐saturating irradiance while increasing the dark respiration rate, and inducing higher inhibition of growth and photosynthesis under high light versus under low light. Ultraviolet B significantly induced the synthesis of UVACs but led to higher inhibition on growth and photosynthesis than ultraviolet A.  相似文献   

17.
Photosynthetic performance of the terrestrial cyanobacterium Nostoc flagelliforme (M. J. Berkeley et M. A. Curtis) Bornet et Flahault during rehydration and desiccation has been previously characterized, but little is known about the effects of solar UV radiation (280–400 nm) on this species. We investigated the photochemical activity during rehydration and subsequent desiccation while exposing the filamentous colonies to different solar radiation treatments. Photochemical activity could be reactivated by rehydration under full‐spectrum solar radiation, the species being insensitive to both ultraviolet‐A radiation (UVAR; 315–400 nm) and ultraviolet‐B radiation (UVBR). When the rehydrated colonies were exposed for desiccation, the effective PSII photochemical yield was inhibited by visible radiation (PAR) at the initial stage of water loss, then increased with further decrease in water content, and reached its highest value at the water content of 10%–30%. However, no significant difference was observed among the radiation treatments except for the moment when they were desiccated to critical water content of about 2%–3%. At such a critical water content, significant reduction by UVBR of the effective quantum yield was observed in the colonies that were previously rehydrated under indoor light [without ultraviolet radiation (UVR)], but not in those reactivated under scattered or direct solar radiation (with UVR), indicating that preexposure to UVR during rehydration led to higher resistance to UVR during desiccation. The photosynthetic CO2 uptake by the desiccated colonies was enhanced by elevation of CO2 but was not affected by both UVAR and UVBR. It increased with enhanced desiccation to reach the maximal values at water content of 40%–50%. The UV‐absorbing compounds and the colony sheath were suggested to play an important role in screening harmful UVR.  相似文献   

18.
In order to ascertain whether the major species of continental antarctic macrolichens are photosynthetically active during summer conditions, the chlorophyll fluorescence of three lichen species [Umbilicarin decussata (Vill. Zahlbr., Pseudephebe minuscula (Ny-l. ex Arnold) Brodo and Hawksw. and Usnea sphacetala R. Br.] was monitored in the vicinity of Casey Station. Wilkes Land, continental Antarctica using a PAM-2000 modulated fluorescence system. Lichens were studied when in equilibrium with the atmosphere as well as when moistened by snow showers. Photochemical quantum yield was estimated as ΔF/F′m and related to thallus water content as well as microclimatic conditions. Lichens were photosynthetically active only when moistened by snow fall or by run-off from snow melt. The levels of photosynthetic activity in the field for all species were influenced by microenvironmental conditions and patterns in response were site and species specific. Highest levels of photosynthetic efficiency occurred when thalli were at intermediate water contents. Photosynthetic activity was reduced by cold as well as warm, bright conditions. Highest thallus water contents occurred during the middle of the day after substantial “falls of snow. P. minuscula maintained highest thallus water contents at all sites and appears to have a high water compensation point which is related to its observed distribution patterns. Umbilicaria decussata studied in the laboratory did not become photosynthetically active even when exposed to 95% relative humidity (RH) for 51 h and. when dehydrating after artificial wetting, showed an optimum thallus water content for photosynthesis of ca 90% dry weight and a thallus water compensation point of about 35% dry weighl. In the field U. decussata did not become pholosynthetically active except when moistened by snow. Usnea sphacelata exposed to the atmosphere had low thallus water contents (ca 30%) which was not related to RH. The results indicate that the lichens are photosynthetically inactive for most of the summer period and are totally reliant on snow as a water supply. This i.s important when modelling carbon gain and growth rates of continental antarctic lichens.  相似文献   

19.
D. S. Coxson 《Oecologia》1987,73(3):447-453
Summary The response of net photosynthesis (NP) and dark respiration to periods of high insolation exposure was examined in the tropical basidiomycete lichen Cora pavonia. Photoinhibition of NP proved quite dependant on temperature. Rates of light saturated NP were severely impaired immediately after pretreatment high light exposure at temperatures of 10, 20 and 40°C, while similar exposure at 30°C resulted in only minimal photoinhibition. Apparent quantum yield proved an even more sensitive indicator of photoinhibition, reduced in all temperature treatments, although inhibition was again greatest at low and high temperatures. Concurrent exposure to reduced O2 tensions during high light exposure mitigated some of the deleterious effects of high light exposure at 10 and 20°C, suggesting an interaction of O2 with the inactivation of photosynthetic function. This represents the first reported instance of light dependant chilling stress in lichens, and may be an important limitation on the distribution of this and other tropical lichen species. This narrow range of temperatures within which thalli of C. pavonia can withstand periods of high insolation exposure coincides with that faced by hydrated thalli during rare periods of high insolation exposure within the cloud/shroud zone on La Soufrière, and points to the necessity of considering periods of atypical or unusual climatic events when interpreting patterns of net photosynthetic response, both in tropical and in north temperate lichen species.  相似文献   

20.
Exclusion of UV (280–380 nm) radiation from the solar spectrum can be an important tool to assess the impact of ambient UV radiation on plant growth and performance of crop plants. The effect of exclusion of UV-B and UV-A from solar radiation on the growth and photosynthetic components in soybean (Glycine max) leaves were investigated. Exclusion of solar UV-B and UV-B/A radiation, enhanced the fresh weight, dry weight, leaf area as well as induced a dramatic increase in plant height, which reflected a net increase in biomass. Dry weight increase per unit leaf area was quite significant upon both UV-B and UV-B/A exclusion from the solar spectrum. However, no changes in chlorophyll a and b contents were observed by exclusion of solar UV radiation but the content of carotenoids was significantly (34–46%) lowered. Analysis of chlorophyll (Chl) fluorescence transient parameters of leaf segments suggested no change in the F v/F m value due to UV-B or UV-B/A exclusion. Only a small reduction in photo-oxidized signal I (P700+)/unit Chl was noted. Interestingly the total soluble protein content per unit leaf area increased by 18% in UV-B/A and 40% in UV-B excluded samples, suggesting a unique upregulation of biosynthesis and accumulation of biomass. Solar UV radiation thus seems to primarily affect the photomorphogenic regulatory system that leads to an enhanced growth of leaves and an enhanced rate of net photosynthesis in soybean, a crop plant of economic importance. The presence of ultra-violet components in sunlight seems to arrest carbon sequestration in plants. An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号