首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clonal plants translocate resources through spacers between ramets. Translocation can be advantageous if a plant occurs in heterogeneous environments (division of labour); however, because plants interact locally, any spatial arrangement of ramets generates some heterogeneity in light and nutrients even if there is no external heterogeneity. Thus the capacity of a clonal plant to exploit heterogeneous environment must operate in an environment where heterogeneity is partly shaped by the plant growth itself. Since most experiments use only simple systems of two connected ramets, plant-level effects of translocation are unknown. A spatially explicit simulation model of clonal plant growth, competition and translocation is used to identify whether different patterns of translocation have the potential to affect the growth form of the plant and its competitive ability. The results show that different arrangements of translocation sinks over the spacer system can completely alter clonal morphology. Both runners and clumpers can be generated using the same architectural rules by changing translocation only. The effect of translocation strongly interacts with the architectural rules of the plant growth: plants with ramets staying alive when a spacer is formed are much less sensitive to change in translocation than plants with ramets only at the tip. If translocation cost is low, translocating plants are in most cases better competitors than plants that do not translocate; the difference becomes stronger in more productive environments. Key traits that confer competitive ability are total number of ramet, and their fine-scale aggregation.Co-ordinating editor: J. Tuomi  相似文献   

2.
Abstract.— The plant genera in which natural hybridization is most prevalent tend to be outcrossing perennials with some mechanism for clonal (i.e., asexual) reproduction. Although clonal reproduction in fertile, sexually reproducing hybrid populations could have important evolutionary consequences, little attention has been paid to quantifying this parameter in such populations. In the present study, we examined the frequency and spatial patterning of clonal reproduction in two Louisiana iris hybrid populations. Allozyme analysis of both populations revealed relatively high levels of genotypic diversity. However, a considerable amount of clonality was apparent. Nearly half of all genets (47%) in one population and more than half (61%) in the other had multiple ramets. Furthermore, both populations exhibited relatively high levels of genetic structuring, a pattern that resulted from the aggregation of clonal ramets. The occurrence of clonal reproduction in hybrid populations could not only facilitate introgression through an increase in the number of flowering ramets per genet and/or the survivorship of early generation hybrids, but might also influence the mating system of such populations. Any potential increase in the selfing rate due to cross-pollination among ramets of the same genet may, in turn, increase the likelihood of homoploid hybrid speciation.  相似文献   

3.
Plant ecologists have spent considerable effort investigating the physiological mechanisms and ecological consequences of clonal growth in plants. One line of research is concerned with the response of clonal plants to environmental heterogeneity. Several concepts and hypotheses have been formulated so far, suggesting that intra-clonal resource translocation, morphological plasticity on different organizational levels (e.g. leaves, ramets, fragments), and other features of clonal plants may represent potentially adaptive traits enabling stoloniferous and rhizomatous species to cope better with habitat patchiness. Although each of these concepts contributes substantially to our understanding of the ecology of clonal species, it is difficult to combine them into a consistent theoretical framework. This apparent lack of conceptual coherence seems partly be caused by an uncritical use of the term habitat heterogeneity. Researchers have not always acknowledged the fact that heterogeneity may refer to a number of fundamentally different aspects of environmental variability (i.e. scale, contrast, predictability, temporal vs. spatial heterogeneity), and that each of these aspects may, on one hand, allow for the evolution of specific plant responses to heterogeneity and, on the other, severely constrain the viability of potentially adaptive traits. Since adaptive responses are operational only in a narrow range of conditions (delimited by external environmental conditions and constraints internal to plants) it seems imperative to clearly define the context and the limits within which concepts regarding clonal plants' responses to heterogeneity are valid. In this paper an attempt is made to review a number of these concepts and to try and identify the necessary conditions for them to be operational. Special attention is paid (1) to different aspects of environmental heterogeneity and how they may affect clonal plants, and (2) to possible constraints (e.g. sectoriality, perception of environmental signals, morphological plasticity) on plant responses to patchiness.  相似文献   

4.
The two-phase life history of most marine fishes and invertebrates has enormous implications for dispersal, population connectivity, and resource management. Pelagic dispersal larvae of marine animals traditionally thought to ensure that populations are widespread, that chances of local extinction are low, and that marine protected areas (MPA) can easily function to replenish both their own populations and those of unprotected areas. Traditionally, dispersal is considered to depend primarily on two variables: pelagic larva duration and far-field currents. These conclusions arise from the open population paradigm and are usually accompanied by a simplifying assumption: larvae are distributed passively by far-field currents. Unfortunately, they ignore the complex reality of circulation and hydrological connectivity of reefs, and do not consider newly-demonstrated behavioural capabilities of coral-reef fish larvae. Far-field circulation varies with depth and often excludes water bodies where propagules are released, and this has important implications for predicting trajectories of even passive larvae. However, larvae are not passive: late-stage larvae of coral-reef fishes can swim faster than currents for long periods, can probably detect reefs at some distance, and can actively find them. This behaviour is flexible, which greatly complicates modelling of larval fish trajectories. Populations at ecological (as opposed to evolutionary) scales are probably less open and more subdivided than previously assumed. All this means that dispersal predictions based solely on far-field water circulation are probably wrong. An emerging view of larval-fish dispersal is articulated that takes these new data and perspectives into account. This emerging view shows that re-evaluation of traditional views in several areas is required, including the contribution of larval-fish biology and dispersal to biodiversity patterns, the way reef fishes are managed, and the way in which MPA are thought to operate. At evolutionary and zoogeographic scales, reef-fish populations are best considered to be open.  相似文献   

5.
Clonal growth is characterised by the ability of plants to produce shoot and root units (ramets) which are genetically identical to the parent, and which are potentially independent. Ramets of clonal plants are likely to experience environmental heterogeneity in the form of resource distribution patterns or exposure to other environmental factors. For certain species the key attributes of clonality that appear to confer ecological success under heterogeneous growing conditions can be fairly readily identified, but for the majority of clonal species the mechanisms that may be of particular importance are less certain. Future lines of research should continue to investigate the ecological and evolutionary implications of plant clonality in the context of realistic scales of environmental heterogeneity, as such information may be of considerable practical value.  相似文献   

6.
Environmentally induced transgenerational effects can increase success of offspring and thereby be adaptive if offspring experience conditions similar to the parental environment. The ecological and evolutionary significance of these effects in plants have been considered overwhelmingly in the context of sexual generations. We investigated whether drought stress and jasmonic acid, a key hormone involved in induction of plant defenses against herbivores, applied in the parental generation, trigger transgenerational effects in clonal offspring of Trifolium repens and whether these effects are adaptive. We found that drought stress experienced by parents significantly affected phenotypes of offspring ramets. Offspring ramets were bigger if they were produced in the parental water regime (control/drought). Repeated application of jasmonic acid to parents increased the subsequent growth of offspring ramets produced by stolons after they were disconnected from the parental clone. However, these offspring ramets experienced similar herbivory by the generalist Spodoptera littoralis caterpillar as did control offspring ramets, indicating that this jasmonic acid application in the parental generation did not result in a transgenerational effect comprising increased herbivory resistance. We conclude that, overall, environmental interaction in the parental generation can trigger transgenerational effects in clonal plants and some of these effects can be adaptive. Moreover, transgenerational effects in clonal plants that significantly influence their growth and behavior can ultimately affect the evolutionary trajectories of clonal populations.  相似文献   

7.
Approximately 40% of the world’s currently known plant species exhibit some form of clonality. Yet, little is known about the extent of clonal integration (e.g. the sharing and translocation of resources among ramets), especially in woody species. Aspen (Populus tremuloides Michx.), a widespread clonal tree species of high ecological value and conservation concern, is an excellent model species to study clonal integration. We used sap flow sensors on the root system of aspen located in the Fraser Experimental Forest (Colorado) to quantify water fluxes, assess directionality of flow and assess responses to a root severing experiment. Our results indicate simultaneous, bi-directional flow in roots with 3–4 times more flow in one direction. Flow towards ramets that were subjected to severing of roots (except the measured root) decreased considerably, and an increase in root flow ‘down the line’ towards connected, untreated ramets suggests complex interactions within the root system. Our results are intriguing and provide a first account of directionality of flow and distribution of water in an interconnected root system of a clonal tree species. Based on these findings, we formulate a set of further research questions and discuss methodology and experiments to test them.  相似文献   

8.
The loss of sex in clonal plants   总被引:6,自引:0,他引:6  
Most plants combine sexual and clonal reproduction, and the balance between the two may vary widely between and within species. There are many anecdotal reports of plants that appear to have abandoned sex for clonal reproduction, yet few studies have quantified the degree of sexual variation in clonal plants and fewer still have determined the underlying ecological and/or genetic factors. Recent empirical work has shown that some clonal plants exhibit very wide variation in sexual reproduction that translates into striking variation in genotypic diversity and differentiation of natural populations. Reduced sexual reproduction may be particularly common at the geographical margins of species' ranges. Although seed production and sexual recruitment may often be limited by biotic and abiotic aspects of the environment in marginal populations, genetic factors, including changes in ploidy and sterility mutations, may also play a significant role in causing reduced sexual fertility. Moreover, environmental suppression of sexual recruitment may facilitate the evolution of genetic sterility because natural selection no longer strongly maintains the many traits involved in sex. In addition to the accumulation of neutral sterility mutations in highly clonal populations, the evolution of genetic infertility may be facilitated if sterility is associated with enhanced vegetative growth, clonal propagation or survival through either resource reallocation or pleiotropy. However, there are almost no experimental data with which to distinguish among these possibilities. Ultimately, wide variation in genotypic diversity and gene flow associated with the loss of sex may constrain local adaptation and the evolution of the geographical range limit in clonal plants.  相似文献   

9.

Background and Aims

The combination of clonality and a mating system promoting outcrossing is considered advantageous because outcrossing avoids the fitness costs of selfing within clones (geitonogamy) while clonality assures local persistence and increases floral display. The spatial spread of genetically identical plants (ramets) may, however, also decrease paternal diversity (the number of sires fertilizing a given dam) and fertility, particularly towards the centre of large clumped clones. This study aimed to quantify the impact of extensive clonal growth on fine-scale paternity patterns in a population of the allogamous Convallaria majalis.

Methods

A full analysis of paternity was performed by genotyping all flowering individuals and all viable seeds produced during a single season using AFLP. Mating patterns were examined and the spatial position of ramets was related to the extent of multiple paternity, fruiting success and seed production.

Key Results

The overall outcrossing rate was high (91 %) and pollen flow into the population was considerable (27 %). Despite extensive clonal growth, multiple paternity was relatively common (the fraction of siblings sharing the same father was 0·53 within ramets). The diversity of offspring collected from reproductive ramets surrounded by genetically identical inflorescences was as high as among offspring collected from ramets surrounded by distinct genets. There was no significant relationship between the similarity of the pollen load received by two ramets and the distance between them. Neither the distance of ramets with respect to distinct genets nor the distance to the genet centre significantly affected fruiting success or seed production.

Conclusions

Random mating and considerable pollen inflow most probably implied that pollen dispersal distances were sufficiently high to mitigate local mate scarcity despite extensive clonal spread. The data provide no evidence for the intrusion of clonal growth on fine-scale plant mating patterns.  相似文献   

10.
Clonal growth seems to be a common trait for many of the most aggressive invasive plant species. However, little research has been conducted to determine the role of clonality in the successful invasion of new areas by exotic species. Carpobrotus edulis (L.) N.E. Br. is a mat-forming succulent plant, native to South Africa that is invasive in coastal dunes of Australia, New Zealand, USA and Southern Europe. Although Carpobrotus edulis is a clonal plant, there is no information on the role of clonality for the invasion by this species, therefore the objective of this study was to test whether or not physiological integration improves the performance of C. edulis invading coastal sand dunes. To do that, a 6-month field experiment was designed in which the stolon connections between the apical ramets and the C. edulis mats were severed to prevent physiological integration. This treatment was applied to ramets growing under high and low competition with the native species. Apical ramets with intact stolon connections were used as control. Integration improved the survivorship and growth of apical ramets, both in high and low competition. Connected ramets showed a more pronounced increase of clonal growth (estimated as stolon length) during the experimental period and a higher total biomass and number of ramets at the completion of the experiment. In terms of survivorship, the benefit of integration was greater under high competition. Physiological integration can therefore be considered an important factor in the invasiveness of C. edulis, both in open space and in direct competition with the native plants.  相似文献   

11.

Background and Aims

It is important to consider the modular level when verifying sexual dimorphism in dioecious plants. Nevertheless, between-sex differences in resource translocation among modules (i.e. physiological integration) have not been tested at the whole-plant level. In this study, sexual differences in physiological integration were examined among ramets, within a genet in the dioecious sprouting shrub Lindera triloba, by a field experiment with girdling manipulation.

Methods

Female and male genets were randomly assigned to girdled or intact groups. Girdling of the main ramets was conducted in May 2009 by removing a ring of bark and cambium approx. 1 cm wide at a height of 80–100 cm. The effects of treatment and sex on ramet dynamics (mortality, recruitment and diameter growth) and inflorescence production during 1 year after girdling were examined.

Key Results

The diameter growth rate of main ramets of both sexes was lower at ground level (D0) but higher at breast height (dbh) in girdled than in intact groups. In sprouted ramets with a dbh of 0–2 cm, males in girdled groups had lower growth rates at D0 than those of intact groups, whereas no girdling effect was found for females. The main ramets in girdled groups produced more inflorescences than intact groups, irrespective of sex, but male ramets showed a greater response to the treatment than females.

Conclusions

In L. triloba, physiological integration exists at the whole-plant level, and sprouted ramets are dependent on assimilates translocated from main ramets, but this dependence weakens as sprouted ramets get larger. Female sprouted ramets can grow in a physiologically independent manner from the main ramet earlier than those of males. This study highlights the importance of considering modular structures and physiological integration when evaluating sexual differences in demographic patterns of clonal plants.  相似文献   

12.
Two photoactivatable analogues of -conotoxin GI with the benzoylphenylalanine residue (Bpa) substituted for His10 or Tyr11 were synthesized using the method of solid-phase peptide synthesis. In addition, -conotoxin MI was chemically modified by placing an azidobenzoyl or a benzoylbenzoyl photo label at N of Gly1 or N of Lys10. All the photoactivatable analogues were purified by HPLC, their structures were confirmed by MALDI MS, and the label positions in their molecules were localized by MS of their trypsinolysis fragments. All the analogues interacted with the nicotinic acetylcholine receptor (AChR) from Torpedo californica as efficiently as the native -conotoxins, with the differences in the inhibition constants being within one order of magnitude under the same conditions. [125I] Derivatives prepared from all the analogues retained the ability to be bound by AChR and were used in the photoinduced AChR crosslinking. All the AChR subunits were found to be crosslinked to the photoactivatable analogues, with the linking depending on both the chemical nature of label and its position in the -conotoxin molecule.  相似文献   

13.
The production of five chain variants (Hb G-Georgia, Hb St. Luke's, Hb Lloyd, Hb Montgomery, and Hb G-Philadelphia) in heterozygotes was evaluated through hematological observations, hemoglobin quantification, and biosynthetic studies. All heterozygotes for Hb St. Luke's and Hb Lloyd and most heterozygotes with Hb G-Georgia and Hb Montgomery had normal hematology and average / values of about 1.1. They were assigned a normal genotype (G/), although the proportions of Hb St. Luke's and Hb G-Georgia were low (10 to 13%) and those of Hb Lloyd and Hb Montgomery twice as high (20%). Data from short-term incubations confirmed this genotype for some of these heterozygotes. Isolated Hb St. Luke's and Hb G-Georgia gave low G/ values (0.2 and 0.3) indicating that these Hb variants were defective at the level of Hb assembly. Isolated Hb Montgomery and Hb G-Philadelphia, however, gave higher G/ values of 0.6 and 0.8, respectively. A second type of variability existed among Hb G-Georgia (20 vs. 13%), Hb Montgomery (28 vs. 20%), and Hb G-Philadelphia (47 vs. 34%) heterozygotes, in whom the levels of Hb G differed. The occurrence of higher levels of these three chain heterozygosities was associated with hematological or biosynthetic evidence of a mild or moderate chain deficiency due to an -thalassemia-2 heterozygosity (G/0 or 0G/) or a homozygosity (0G/0), respectively.This study was supported in part by USPHS Research Grants HLB-05168 and HLB-15158.  相似文献   

14.
The C chemical shift tensors of proteins contain information on the backbone conformation. We have determined the magnitude and orientation of the C chemical shift tensors of two peptides with -helical torsion angles: the Ala residue in G*AL (=–65.7°, =–40°), and the Val residue in GG*V (=–81.5°, =–50.7°). The magnitude of the tensors was determined from quasi-static powder patterns recoupled under magic-angle spinning, while the orientation of the tensors was extracted from C–H and C–N dipolar modulated powder patterns. The helical Ala C chemical shift tensor has a span of 36 ppm and an asymmetry parameter of 0.89. Its 11 axis is 116° ± 5° from the C–H bond while the 22 axis is 40° ± 5° from the C–N bond. The Val tensor has an anisotropic span of 25 ppm and an asymmetry parameter of 0.33, both much smaller than the values for -sheet Val found recently (Yao and Hong, 2002). The Val 33 axis is tilted by 115° ± 5° from the C–H bond and 98° ± 5° from the C–N bond. These represent the first completely experimentally determined C chemical shift tensors of helical peptides. Using an icosahedral representation, we compared the experimental chemical shift tensors with quantum chemical calculations and found overall good agreement. These solid-state chemical shift tensors confirm the observation from cross-correlated relaxation experiments that the projection of the C chemical shift tensor onto the C–H bond is much smaller in -helices than in -sheets.  相似文献   

15.
Summary Five subunits (-, -, -, - and -subunits) of the six -and -subunits) in the F1 portion (F1ATPase) of sweet potato (Ipomoea batatas) mitochondrial adenosine triphosphatase were isolated by an electrophoretic method. The - and -subunits were not distinguishable immunologically but showed completely different tryptic peptide maps, indicating that they were different molecular species. In vitro protein synthesis with isolated sweet potato root mitochondria produced only the -subunit when analyzed with anti-sweet potato F1ATPase antibody reacting with all the subunits except the -subunit. Sweet potato root poly(A)+RNA directed the synthesis of six polypeptides which were immunoprecipitated by the antibody: two of them immunologically related to the -subunit and the others to the - and -subunits. We conclude that the -subunit of the F1ATPase is synthesized only in the mitochondria and the -, - and -subunits are in the cytoplasm.  相似文献   

16.
Summary Different ramets of a clonal plant exploiting a patchily metal-contaminated habitat may be exposed to different levels of toxic metals. This study investigated whether the exposure of older (parent) ramets to Cd affected the levels of metal-binding peptides and essential elements in younger (daughter) ramets which were not exposed to ambient Cd. Pre-treatment of parent ramets of Salvinia minima with 50 g Cd·l–1 increased the levels of thiols and phytochelatins (PCs), decreased Mg and increased Cu, Zn and S in daughter ramets growing in a Cd-free medium. Acclimation of parents to lower Cd levels (10 and 25 g Cd·l–1) increased thiols and decreased cysteine and glutathione in daughters, but did not increase PCs. Parental acclimation to all Cd concentrations tested reduced PC production in daughter ramets during subsequent Cd exposure. Daughter ramets from parents pre-treated with 25 g Cd·l–1 were more Cd tolerant than controls. Although the tolerant daughters contained 35% more thiols than controls, fractionation of tissue Cd showed no difference between the control and tolerant ramets in the fraction of Cd bound by thiol compounds. Thus, while the acclimation of parent plants to Cd increased levels of metal-binding peptides and thiols in daughter ramets, the relationship between these compounds and the Cd tolerance of daughters is unclear.  相似文献   

17.
Summary We have investigated the theoretical consequences of character evolution for the population dynamics of a host—parasitoid interaction, assuming a monophagous parasitoid. In the purely ecological model it is assumed that hosts can escape parasitism by being in absolute refuges. A striking property of this model is a threshold effect in control of the host by the parasitoid, when host density dependence is weak. The approximate criteria for the parasitoid to regulate the host to low densities are (1) that the parasitoid's maximum population growth rate should exceed the host's and (2) that the maximum growth rate of the host in the refuge should be less than unity. We then use this ecological framework as a basis for a model which considers evolutionary changes in quantitative characters influencing the size of the absolute refuge. For each species, an increase in its refuge-determining character comes at a cost to maximum population growth rate. We show that refuge evolution can substantially alter the population dynamics of the purely ecological model, resulting in a number of emergent and sometimes counter-intuitive properties. In general, when the host has a high carrying capacity, systems are polarized either with low or minor refuge and top-down control of the host by the parasitoid or with a refuge and bottom-up control of the host by a combination of its own density dependence and the parasitoid. A particularly tantalizing result is that co-evolutionary dynamics can modify ecologically unstable systems into ones which are either stable or quasi-stable (with bouts of unstable dynamics, punctuating long-term periods of quasi-stable behaviour). We present five quantitative criteria which must all be met for the parasitoid to be the agent responsible for control of the host at a co-evolutionary equilibrium. The apparent stringency of this full set of requirements supports the empirically-based suggestion that monophagous parasitoid-driven systems should be less common in nature than those driven by multiple forms of density dependence. Further, we apply our theory to the question of whether exploiters may harvest their victims at maximum sustainable yields and to the evolutionary stability of biological control. Finally, we present a series of testable predictions of our theory and methods useful for testing them.  相似文献   

18.
Most work on clonal growth in plants has focused on the advantages of clonality in heterogeneous habitats. We hypothesized (1) that physiological integration of connected ramets within a clone can also increase plant performance in homogeneous environments, (2) that this effect depends on whether ramets differ in ability to take up resources, and (3) that only ramets with relatively low uptake ability benefit. We tested these hypotheses using the perennial amphibious herb Alternanthera philoxeroides. We grew clonal fragments and varied numbers of rooted versus unrooted ramets, connection between the apical and basal parts of fragments, and availability of nitrogen. Patterns of final size and mass of fragments did not support these hypotheses. By some measures, severance did reduce the growth of more apical ramets and increase the growth of less apical ones, consistent with net apical transfer of resources. Rooting of individual ramets strongly influenced their growth: second and third most apical ramets each grew most when they were the most apical rooted ramet, and this pattern was more pronounced under higher nitrogen levels. This adds to the evidence that signalling between ramets is an important aspect of clonal integration. Overall, the results indicate that physiological integration between ramets within clones in homogeneous environments can alter the allocation of resources between connected ramets even when it does not affect the total growth of clonal fragments.  相似文献   

19.
Reliance on clonal reproduction is associated with an increased risk of extinction. Grevillea infecunda is a rare, putatively sterile shrub restricted to 11 populations in a localized coastal region of south-eastern Australia. We assessed the genetic diversity, clonal diversity and spatial distribution of clones in all populations of G. infecunda to guide conservation management. Eight chloroplast haplotypes were identified from the trnL – trnF and trnQ – rps16 intergenic spacer regions. All individuals belonged to a single maternal lineage dominated by one haplotype (95/111 samples). Minor haplotypes differed from the common haplotype only by single mutational steps. However, microsatellite markers revealed 89 multilocus genotypes (MLGs) in 38 multilocus lineages (MLLs) of variable size. MLLs were not shared among populations and ramets from different MLLs rarely intermingled physically. New shoots arising after fire were confirmed to belong to previously-existing MLLs, indicating that this species exhibits adaptation to fire. Genetically similar MLGs were more likely to be found in close proximity than less similar MLGs, resulting in significant spatial autocorrelation to ca 350 m. Genetic diversity was moderate but genotypic diversity was low once likely clonality was taken into account. Clonality appears to have arisen several times within the holly-leafed grevilleas and examining G. infecunda is a step towards understanding why and how often clonality occurs, and the long-term evolutionary outcomes of this life history.  相似文献   

20.
A three step decision-making process is advocated for coral reef managers which (1) evaluates an area at risk, (2) quantifies the risk, and (3) assesses recoverability and consequences in terms of ecological succession and bioconstruction. The judgements required at each stage of the decision-making process should be based on a clear understanding of their ecological and geomorphological implications. Biodiversity and bioconstruction criteria are used to evaluate locations on a five point scale. Ecological risk assessment assigns likelihoods for various damage scenarios. Acceptable change is scale and context dependent and ranges from zero to complete, depending on ecological value and alternate values. Three questions need to be addressed in relation to recoverability of damaged sites: (1) effects on future suitability for settlement, growth and/or repair, (2) certainty of supply of appropriate propagules; and (3) identifiable, on site ecological factors (such as predators, competitors, diseases) which may prevent recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号