首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The prolipoprotein, a secretory precursor of the outer membrane lipoprotein of Escherichia coli, is known to be accumulated in the cell envelope when cells are grown in the presence of a cyclic antibiotic, globomycin. The prolipoprotein was localized in the cytoplasmic membrane when it was separated from the outer membrane by sucrose-density gradient centrifugation. However, when the envelope fraction was treated with sodium sarcosinate, the prolipoprotein was found almost exclusively in the sarcosinate-insoluble outer membrane fraction. The prolipoprotein separated in the cytoplasmic membrane by sucrose-density gradient centrifugation was soluble in sarcosinate and could not form a complex with the outer membrane once solubilized in sarcosinate. Labeling of the two lysine residues at positions 2 and 5 of the prolipoprotein with [3H]dinitrophenylfluorobenzene was enhanced 26-fold when the cells were disrupted by sonication. On the other hand, a tryptic fragment of the ompA protein, which is known to exist in the periplasmic space, increased its susceptibility to [3H]dinitrophenylfluorobenzene only 5.3-times upon disruption of the cell structure. These results indicate that the prolipoprotein accumulated in the presence of globomycin is translocated across the cytoplasmic membrane and interacts with the outer membrane. At the same time, it is attached to the cytoplasmic membrane with its amino-terminal signal peptide in such a way that the amino-terminal portion of the signal peptide containing two lysine residues is left inside the cytoplasm.  相似文献   

2.
Prolipoprotein modification and processing enzymes in Escherichia coli   总被引:7,自引:0,他引:7  
Prolipoprotein signal peptidase, a unique endopeptidase which recognizes glycyl glyceride cysteine as a cleavage site, was characterized in an in vitro assay system using purified prolipoprotein as the substrate. This enzyme did not require phospholipids for its catalytic activity and was found to be localized in the inner cytoplasmic membrane of the Escherichia coli cell envelope. Globomycin inhibited this enzyme activity in vitro with a half-maximal inhibiting concentration of 0.76 nM. Nonionic detergent, such as Nikkol or Triton X-100, was required for the in vitro activity. The optimum pH and reaction temperature of prolipoprotein signal peptidase were pH 7.9 and 37-45 degrees C, respectively. Phosphatidylglycerol:prolipoprotein glyceryl transferase (glyceryl transferase) activity was measured using [2-3H]glycerol-labeled JE5505 cell envelope and [35S]cysteine-labeled MM18 cell envelope as the donor and acceptor of glyceryl moiety, respectively. 3H and 35S dual-labeled glyceryl cysteine was identified in the product of this enzymatic reaction. The optimal pH and reaction temperature for glyceryl transferase were pH 7.8 and 37 degrees C, respectively.  相似文献   

3.
We have compared the rate of assembly of outer membrane proteins including the lipoprotein in a pair of isogenic mlpA+ (lpp+) and mlpA (lpp) strains by pulse-chase experiments. The rate of assembly of the mutant prolipoprotein into the outer membrane was slightly slower than that of the wild-type lipoprotein. The rate of assembly of protein I and protein H-2 was similar in the wild type and the mutant, whereas the rate of assembly of protein II into the outer membrane was slightly reduced in the mutant strain. The organization of outer membrane was slightly reduced in the mutant strain. The organization of outer membrane proteins in the mutant cells appeared not to be grossly altered, based on the apparent resistance (or susceptibility) of these proteins toward trypsin treatment and their resistance to solubilization by Sarkosyl. Like the wild-type lipoprotein, the mutant prolipoprotein in the outer membrane was resistant to trypsin. On the other hand, the prolipoprotein in the cytoplasmic membrane fraction of the mutant cell envelope was susceptible to trypsin digestion. We conclude from these data that proteolytic cleavage of prolipoprotein is not essential for the translocation and proper assembly of lipoprotein into outer membrane.  相似文献   

4.
Upon incubation of the envelope fraction of Escherichia coli a precursor of the major outer membrane lipoprotein that accumulates in the cytoplasmic membrane of the globomycin-treated cell is processed to the mature form [Hussain, M., Ichihara, S., and Mizushima, S. (1980) J. Biol. Chem. 255, 3707-3712; (1982) J. Biol. Chem. 257, 5177-5182]. When this precursor-containing envelope fraction was incubated in the presence of protease inhibitors such as antipain, leupeptin, chymostatin and elastatinal, a new peptide appeared on a polyacrylamide gel at the position where the signal peptide was expected to appear. This was proved to be the signal peptide of the lipoprotein from the following facts: (a) its appearance is in proportion to the appearance of the lipoprotein and disappearance of the precursor; (b) when the cleavage of the signal peptide from the precursor was inhibited by globomycin, the peptide did not appear on the gel; and (c) the results of labeling of the peptide with [3H]leucine, [35S]methionine and [3H]arginine were consistent with the amino acid composition of the signal peptide. The signal peptide thus accumulated in the envelope fraction was hydrolyzed by an enzyme named 'signal peptide peptidase' when the envelope fraction was washed to remove the inhibitors. The hydrolysis was inhibited by re-addition of these inhibitors. The signal peptide peptidase hydrolyzed the signal peptide only after its cleavage from the lipoprotein precursor.  相似文献   

5.
Bifunctional cross-linking reagents were used to identify cell envelope proteins that interacted with the murein sacculus. This revealed that a number of [3H]leucine-labeled proteins and [3H]palmitate-labeled lipoproteins were reproducibly cross-linked to the sacculus in plasmolyzed cells. The results suggested that most of the cell envelope lipoproteins, and not only the murein lipoprotein, mediate interactions between the murein sacculus and the inner and/or outer membrane of the cell.  相似文献   

6.
Synthesis of membrane proteins in a thermosensitive mutant of Escherichia coli K12, tsC42, that has a defect in a mechanism of cell cycle-dependent duplication of membrane enzymes was examined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The cells were labeled differentially with [14C]- and [3H]arginine and the membrane proteins synthesized at nonpermissive and permissive temperatures were compared. The results showed that at the nonpermissive temperature, the syntheses of cytoplasmic membrane proteins and outer membrane proteins were reduced more than 70% and 50%, respectively. No significant accumulation of precursor molecules of membrane proteins at the nonpermissive temperature was detected in pulse-chase experiments. It is therefore assumed that the mutant has a defect in a gene that regulates the biosynthesis of many membrane proteins.  相似文献   

7.
A murein-bound form of prolipoprotein was found in the cell envelope fraction of globomycin-treated Escherichia coli B. We suggest therefore that proteolytic cleavage of prolipoprotein to mature lipoprotein is not essential for the transpeptidation of the lipoprotein to peptidoglycan.  相似文献   

8.
Inhibitory effects of six antibiotics (kasugamycin, tetracycline, chloramphenicol, sparsomycin, puromycin and rifampicin) on the biosynthesis of envelope proteins of Escherichia coli were examined and compared with those on the biosynthesis of cytoplasmic proteins. Kasugamycin, puromycin and rifampicin were much more inhibitory to the over-all biosynthesis of cytoplasmic proteins than to that of envelope proteins. On the contrary, tetracycline and sparsomycin showed much stronger inhibitory effects on the biosynthesis of envelope proteins than on that of cytoplasmic proteins. Chloramphenicol showed little difference in its inhibitory effect on the biosynthesis of envelope proteins and cytoplasmic proteins.The envelope proteins were labeled with [3H]arginine in the presence of the antibiotics and separated by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The inhibitory effects of the antibiotics on the biosynthesis of individual envelope proteins were then examined. Inhibition patterns were found to be widely different from one envelope protein to the other. For example, the biosynthesis of one major envelope protein of molecular weight 38,000 was more resistant to kasugamycin, chloramphenicol and sparsomycin than that of the other envelope proteins. On the other hand, the biosynthesis of another major envelope protein (lipoprotein) of about 7500 molecular weight was much more resistant to puromycin and rifampicin than that of the other envelope proteins. In the case of tetracycline, little differential inhibitory effect on the biosynthesis of individual envelope proteins was observed.Stability of messenger RNAs for individual envelope proteins was also determined from the inhibitory effect of rifampicin on their biosynthesis. It was found that the average of half lives of mRNAs for major envelope proteins examined (5.5 minutes) is twice as long as the average of those of mRNAs for cytoplasmic proteins (2 minutes), except for the lipoprotein of about 7500 molecular weight which has extremely stable mRNA with a half life of 11.5 minutes. From these results the envelope proteins of E. coli appear to be biosynthesized in a somewhat different manner from that of the cytoplasmic proteins. Furthermore, at least some envelope proteins may have their own specific biosynthetic systems.  相似文献   

9.
A globomycin-resistant mutant of Escherichia coli was found to produce a precursor of the major outer membrane lipoprotein (prolipoprotein), in which the glycine residue at position 14 within the signal peptide was replaced by an aspartic acid residue. The same mutation has been reported by Lin et al. (Proc. Natl. Acad. Sci. U.S.A. 175:4891-4895, 1978). The structural gene of the mutant prolipoprotein was inserted into an inducible expression cloning vehicle. When the mutant prolipoprotein was produced in lipoprotein-minus host cells, 82% of the unprocessed protein was found in the membrane fraction, with the remaining 18% localized in the soluble fraction. However, when the production of the mutant prolipoprotein was induced in the wild-type lpp+ host cells, only 31% of the mutant prolipoprotein was found in the membrane fraction, leaving the remaining 69% in the soluble, cytoplasmic fraction. In addition, the assembly of the wild-type lipoprotein in these cells was not affected, whether the mutant prolipoprotein was produced or not. These results suggest that secretions of both mutant and wild-type prolipoproteins utilize the same component(s) responsible for the initial stages of secretion across the cytoplasmic membrane. However, it appears that the wild-type lipoprotein has a higher affinity for these components than does the mutant lipoprotein.  相似文献   

10.
Summary A crude cell envelope suspension has been prepared from Proteus mirabilis after osmotic shock of penicillin-induced spheroplasts. Employing discontinuous sucrose gradients this cell envelope suspension can be fractionated into four fractions. Besides a pellet of remaining spheroplasts and an intermediate fraction with mixed composition a highly purified cytoplasmic membrane fraction and an outer membrane fraction have been obtained. The cytoplasmic membrane fraction is not contaminated with mucopeptide or outer membrane material. It has a buoyant density of 1.13 g/ml and a protein content of 38%. The specific activities of formate dehydrogenase and nitrate reductase and the content of cytochrome b1 have increased sixfold in comparison with the crude cell envelope suspension. The outer membrane fraction contains only few contaminations with cytoplasmic membrane components and with mucopeptide.The gradient fractions have been characterized by electron microscopy and by polyacrylamide gel electrophoresis.  相似文献   

11.
Biogenesis of membrane lipoproteins in Escherichia coli.   总被引:5,自引:0,他引:5       下载免费PDF全文
H C Wu  J S Lai  S Hayashi    C Z Giam 《Biophysical journal》1982,37(1):307-315
Globomycin-resistant mutants of Escherichia coli have been isolated and partially characterized. Approximately 2-5% of these mutants synthesize structurally altered Braun's lipoprotein. The majority of these mutants contain unprocessed and unmodified prolipoprotein. One mutant is found to contain modified, processed, but structurally altered lipoprotein. Mutants containing lipid-deficient prolipoprotein or lipoprotein also show increased resistance to globomycin. These results suggest that the inhibition of processing of modified prolipoprotein by globomycin may require fully modified prolipoprotein as the biochemical target of this novel antibiotic. Our failure to isolate mutant containing cleaved but unmodified lipoprotein among globomycin-resistant mutants is consistent with the possibility that modification of prolipoprotein precedes the removal of signal sequence by a unique signal peptidase. Recent evidence indicates that the minor lipoproteins in the cell envelope of E. coli are also synthesized as lipid-containing prolipoproteins and the processing of these prolipoproteins is inhibited by globomycin. These results suggest the existence of modifying enzymes in E. coli which would transfer glyceryl and fatty acyl moieties to cysteine residues located in the proper sequences of the precursor proteins. This speculation is confirmed by our demonstration that Bacillus licheniformis penicillinase synthesized in E. coli as well as in B. licheniformis is a lipoprotein containing glyceride-cysteine at its NH2-terminus.  相似文献   

12.
Escherichia coli contains several lipoproteins in addition to the major outer membrane lipoprotein (Ichihara, S., Hussain, M., and Mizushima, S. (1981) J. Biol. Chem. 256, 3125-3129). We cloned the gene for one of these new lipoproteins by using a synthetic 15-mer oligonucleotide probe identical to the DNA sequence at the signal peptide cleavage site of the major lipoprotein. The DNA sequence of the cloned gene revealed an open reading frame encoding a 272-amino acid protein with a signal peptide of 23 amino acid residues. The amino acid sequence of the putative cleavage site region of the signal peptide, -Leu-Leu-Ala-Gly-Cys-, is identical to that of the major lipoprotein. When the cloned gene was expressed in E. coli, a gene product with an apparent molecular weight of approximately 29,000 was identified which agrees well with the calculated molecular weight (27,800). The product was labeled with [3H]glycerol, and a precursor molecule of increased molecular weight was accumulated when cells were treated with globomycin, a specific inhibitor for prolipoprotein signal peptidase. We thus designed the gene product as lipoprotein-28. Unlike the major lipoprotein, lipoprotein-28 was found to be localized in the cytoplasmic membrane. A possible orientation of lipoprotein-28 in the E. coli envelope is discussed.  相似文献   

13.
A new form of structural lipoprotein of outer membrane of Escherichia coli.   总被引:1,自引:0,他引:1  
Among the membrane proteins synthesized in toluene-treated cells of Escherichia coli were two distinct membrane proteins of different molecular weights, which were cross-reactive with antiserum against a structural lipoprotein of the outer membrane. One was thought to be the known membrane lipoprotein since it migrated to the same position as that of the lipoprotein (Mr = 7,200) in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. However, the other protein migrated slower than the lipoprotein. No protein corresponding to the slower-migrating species was detected in the membrane proteins synthesized in vivo. The apparent molecular weight of the protein at the new peak was estimated to be between 10,000 and 15,000. Both the new protein and the lipoprotein were found to be synthesized from stable mRNA(s) in the toluene-treated cells. The synthesis of the new protein as well as the lipoprotein was sensitive to chloramphenicol, indicating that both proteins were synthesized on ribosomes. Peptides mapping of the new protein revealed the same COOH-terminal sequence as in the lipoprotein. This indicates that the new protein has an extra sequence at the NH2-terminal end. This hypothesis is supported by the finding that the NH2 terminus of the new lipoprotein is methionine, while that of the lipoprotein is a substituted cysteine. From double label experiments with each of 17 different amino acids and arginine, the amino acid composition of the extra region was deduced. The new protein was found to contain at least 18 to 19 extra amino acid residues over the lipoprotein, if it is assumed that the new protein has no extra arginine residues. It was found that 4 out of the 5 amino acids which were deficient in the lipoprotein (phenylalanine, tryptophan, proline, and histidine) were also deficient in the new protein, but the fifth one, glycine, was present in the new protein. From these results, it seems possible that this new form of the lipoprotine is a precursor of the lipoprotein (prolipoprotein) in the process of biosynthesis and assembly of the lipoprotein in the outer membrane.  相似文献   

14.
The cell envelope of Neisseria gonorrhoeae strain 2686, colonial type 4, was isolated from spheroplasts formed by the action of ethylenediaminetetraacetic acid and lysozyme. Isopycnic centrifugation of osmotically ruptured spheroplasts resolved the cell envelope into two main membrane fractions. Chemical and enzymatic analyses were used to characterize these isolated membranes. Succinic dehydrogenase, reduced nicotinamide adenine dinucleotide oxidase, and d-lactate dehydrogenase were localized in the membrane fraction of buoyant density, rho degrees = 1.141 g/cm(3). Lipopolysaccharide and over half of the cell envelope protein were associated with the membrane that banded in sucrose at rho degrees = 1.219 g/cm(3). These fractions were consequently designated cytoplasmic and outer or L-membrane, respectively. Sodium dodecyl sulfate-polyacrylamide electrophoresis of isolated membranes demonstrated the relative simplicity of the protein spectrum of the outer membrane. The majority of the protein in this membrane could be accounted for by proteins of molecular weights 34,500, 22,000, and 11,500. The protein of molecular weight 34,500 accounted for 66% of the total protein of the L-membrane. Isoelectric precipitation at pH 4.6 with 10% acetic acid selectively removed this protein from a 150 mM NaCl in 10 mM tris(hydroxymethyl)aminomethane-hydrochloride, pH 7.4, extract of purified outer membrane. At pH 4.0, the other proteins of the L-membrane were precipitated. It was concluded that the membrane components of the cell envelope of N. gonorrhoeae were similar to those of other gram-negative bacteria. The cell envelope fractions described here, in particular the outer membrane, are sufficiently well defined to provide a valuable tool for future biochemical and immunological studies on N. gonorrhoeae.  相似文献   

15.
An enzyme in the cytoplasmic membrane, nitrate reductase, can be solubilized by heating membranes to 60 degrees C for 10 min at alkaline pH. A protease in the cell envelope has been shown to be responsible for this solubilization. The localization of this protease in the outer membrane was demonstrated by separating the outer membrane from the cytoplasmic membrane, adding back various forms of outer membrane protein to the cytoplasmic membrane, and following the increase in nitrate reductase solubilization with increasing amounts of outer membrane proteins. This solubilization is accompanied by the cleavage of one of the subunits of nitrate reductase and is inhibited by the protease inhibitor p-aminobenzamidine. Analysis of membrane proteins synthesized by cells grown in the presence of various amounts of p-aminobenzamidine revealed that p-aminobenzamidine affects the synthesis of the major outer membrane proteins but has little effect on the synthesis of cytoplasmic membrane proteins. When outer membrane is reacted with the protease inhibitor [3H]diisopropylfluorophosphate, a single protein in the outer membrane is labeled. Since the interaction with diisopropylfluorophosphate is inhibited by p-aminobenzamidine, it is suggested that this single outer membrane protein is responsible for the in vitro solubilization of nitrate reductase and the in vivo processing of the major outer membrane proteins.  相似文献   

16.
Envelope preparations obtained by passing Escherichia coli cells through a French pressure cell were separated by sucrose density gradient centrifugation into two distinct particulate fractions. The fraction with the higher density was enriched in fragments derived from the cell wall, as indicated by the high content of lipopolysaccharide, the low content of cytochromes, and the similar morphology of the fragments and intact cell walls. The less-dense fraction was enriched in vesicles derived from the cytoplasmic membrane, as indicated by the enrichment of cytochromes, the enzymes lactic and succinic dehydrogenase and nitrate reductase, and the morphological similarity of the vesicles to intact cytoplasmic membrane. Both fractions were rich in phospholipid. The protein composition was compared by mixing the cytoplasmic membrane-enriched fraction from a (3)H-labeled culture with the cell wall-enriched fraction from a (14)C-labeled culture and examining the resulting mixture by gel electrophoresis. Thirty-four bands of radioactive protein were resolved; of these, 27 were increased two- to fourfold in the cytoplasmic membrane-enriched fraction, whereas 6 were similarly increased in the cell wall-enriched fraction. One of the proteins which is clearly localized in the cell wall is the protein with a molecular weight of 44,000, which is the major component of the envelope. This protein accounted for 70% of the total protein of the cell wall, and its occurrence in the envelope from spheroplasts suggests that it is a structural protein of the outer membranous component of the cell wall.  相似文献   

17.
Photoactivable reagents have been useful for studying the structural aspects of membrane hydrophobic core. We have reported earlier (Anjaneyulu, P.S.R., and Lala, A. K. (1982) FEBS Lett. 146, 165-167) the use of diazofluorene as a probe for fluorescent photochemical labeling of hydrophobic core in artificial membranes. To quantitate and enhance the monitoring ability of this probe, we have synthesized 2-[3H]diazofluorene of high specific activity. This reagent rapidly partitions into phosphatidylcholine vesicles and selectively labels the fatty acyl chains of phosphatidylcholine. The insertion yield (13%) is not affected by the presence of scavengers like reduced glutathione. 2-[3H]Diazofluorene also readily partitions into erythrocyte membranes and on photolysis labels the membrane. The overall insertion was 48% with 9.7% in protein fraction and the rest in lipids. The distribution of radioactivity in labeled protein fraction was restricted to integral membrane proteins with Band 3 being the major protein labeled. There is little or no labeling associated with extrinsic proteins like spectrin. Further analysis of labeled Band 3 by treatment with chymotrypsin indicated that the labeling was restricted to the membrane spanning CH-17 and CH-35 fragments. No labeling of the cytoplasmic fragment of Band 3 could be observed. 2-[3H]Diazofluorene should prove useful for studying integral membrane proteins and their membrane-spanning regions.  相似文献   

18.
The insertion of newly synthesized proteins into the outer membrane of Escherichia coli has been examined. The results show that there is no precurser pool of outer membrane proteins in the cytoplasmic membrane because first, the incorporation of a [35S]methionine pulse into outer membrane proteins completely parallels its incorporation into cytoplasmic membrane proteins, and second, under optimal isolation conditions, no outer membrane proteins are found in the cytoplasmic membrane, even when the membranes are analysed after being labeled for only 15 s. The [35S]methionine present in the outer membrane after a pulse of 15 s was found in protein fragments of varying sizes rather than in specific outer membrane proteins. This label could however be chased into specific proteins within 30--120 s, depending on the size of the protein, indicating that although unfinished protein fragments were present in the outer membrane, they were completed by subsequent chain elongation. Thus, outer membrane proteins are inserted into the outer membrane while still attached to ribosomes. Since ribosomes which are linked to the cell envelope by nascent polypeptide chains are stationary, the mRNA which is being translated by these ribosomes moves along the inner cell surface.  相似文献   

19.
Rickettsia prowazeki were disrupted in a French pressure cell and fractionated into soluble (cytoplasm) and envelope fractions. The envelope contained 25% of the cell protein, with the cytoplasm containing 75%. Upon density gradient centrifugation, the envelope fraction separated into a heavy band (1.23 g/cm3) and a lighter band (1.19 g/cm3). The heavy band had a high content of 2-keto-3-deoxyoctulosonic acid, a marker for bacterial lipopolysaccharide, but had no succinic dehydrogenase, a marker for cytoplasmic membrane activity, and therefore represented outer membrane. The lighter band exhibited a high succinate dehydrogenase activity, and thus contained inner (cytoplasmic) membrane. Outer membrane purified by this method was less than 5% contaiminated by cytoplasmic membrane; however, inner membrane from the gradient was as much as 30% contaminated by outer membrane. The protein composition of each cellular fraction was characterized by sodium dodecyl sulfate--polyacrylamide gel electrophoresis. The outer membrane contained four major proteins, which were also major proteins of the whole cell. The cytoplasmic membrane and soluble cytoplasm exhibited a more complex pattern on gels.  相似文献   

20.
A glycerol-requiring mutant of Salmonella typhimurium was used in a study of the biosynthesis and assembly of a structural lipoprotein in the cell envelope of gram-negative bacteria. Upon removal of glycerol from the growth medium, the biosynthesis of lipoprotein, as measured by radioactive arginine incorporation, was reduced by the same extent as that of other envelope proteins, the cumulative incorporation of arginine being 20% of that of the unstarved control cells. However, the incorporation of radioactive palmitate into lipoprotein was more severely curtailed after glycerol starvation, the cumulative rate of which was 8% of that observed in the unstarved cells. It was further observed that the lipoprotein synthesized in the glycerol-starved cells was more enriched in unmodified cysteine, which is known to be the N-terminal amino acid of lipoprotein, than that synthesized in the unstarved cells. We conclude that the synthesis of the apoprotein portion of Braun's lipoprotein proceeds independently of the attachment of diglyceride to the sulfhydryl group of the N-terminal cysteine and may, in fact, precede the incorporation of the diglyceride moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号