首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The analysis of the not well understood composition of the stalk, a key ribosomal structure, in eukaryotes having multiple 12 kDa P1/P2 acidic protein components has been approached using these proteins tagged with a histidine tail at the C-terminus. Tagged Saccharomyces cerevisiae ribosomes, which contain two P1 proteins (P1 alpha and P1 beta) and two P2 proteins (P2 alpha and P2 beta), were fractionated by affinity chromatography and their stalk composition was determined. Different yeast strains expressing one or two tagged proteins and containing either a complete or a defective stalk were used. No indication of protein dimers was found in the tested strains. The results are only compatible with a stalk structure containing a single copy of each one of the four 12 kDa proteins per ribosome. Ribosomes having an incomplete stalk are found in wild-type cells. When one of the four proteins is missing, the ribosomes do not carry the three remaining proteins simultaneously, containing only two of them distributed in pairs made of one P1 and one P2. Ribosomes can carry two, one or no acidic protein pairs. The P1 alpha/P2 beta and P1beta/P2 alpha pairs are preferentially found in the ribosome, but they are not essential either for stalk assembly or function.  相似文献   

2.
The Saccharomyces cerevisiae ribosomal stalk is made of five components, the 32-kDa P0 and four 12-kDa acidic proteins, P1alpha, P1beta, P2alpha, and P2beta. The P0 carboxyl-terminal domain is involved in the interaction with the acidic proteins and resembles their structure. Protein chimeras were constructed in which the last 112 amino acids of P0 were replaced by the sequence of each acidic protein, yielding four fusion proteins, P0-1alpha, P0-1beta, P0-2alpha, and P0-2beta. The chimeras were expressed in P0 conditional null mutant strains in which wild-type P0 is not present. In S. cerevisiae D4567, which is totally deprived of acidic proteins, the four fusion proteins can replace the wild-type P0 with little effect on cell growth. In other genetic backgrounds, the chimeras either reduce or increase cell growth because of their effect on the ribosomal stalk composition. An analysis of the stalk proteins showed that each P0 chimera is able to strongly interact with only one acidic protein. The following associations were found: P0-1alpha.P2beta, P0-1beta.P2alpha, P0-2alpha.P1beta, and P0-2beta.P1alpha. These results indicate that the four acidic proteins do not form dimers in the yeast ribosomal stalk but interact with each other forming two specific associations, P1alpha.P2beta and P1beta.P2alpha, which have different structural and functional roles.  相似文献   

3.
The acidic ribosomal P proteins form a distinct protuberance on the 60 S subunit of eukaryotic ribosomes. In yeast this structure is composed of two heterodimers (P1alpha-P2beta and P1beta-P2alpha) attached to the ribosome via P0. Although for prokaryotic ribosomes the isolation of a pentameric stalk complex comprising the analogous proteins is well established, its observation has not been reported for eukaryotic ribosomes. We used mass spectrometry to examine the composition of the stalk proteins on ribosomes from Saccharomyces cerevisiae. The resulting mass spectra reveal a noncovalent complex of mass 77,291 +/- 7 Da assigned to the pentameric stalk. Tandem mass spectrometry confirms this assignment and is consistent with the location of the P2 proteins on the periphery of the stalk complex, shielding the P1 proteins, which in turn interact with P0. No other oligomers are observed, confirming the specificity of the pentameric complex. At lower m/z values the spectra are dominated by individual proteins, largely from the stalk complex, giving rise to many overlapping peaks. To define the composition of the stalk proteins in detail we compared spectra of ribosomes from strains in which genes encoding either or both of the interacting stalk proteins P1alpha or P2beta are deleted. This enables us to define novel post-translational modifications at very low levels, including a population of P2alpha molecules with both phosphorylation and trimethylation. The deletion mutants also reveal interactions within the heterodimers, specifically that the absence of P1alpha or P2beta destabilizes binding of the partner protein on the ribosome. This implies that assembly of the stalk complex is not governed solely by interactions with P0 but is a cooperative process involving binding to partner proteins for additional stability on the ribosome.  相似文献   

4.
Aspergillus fumigatus, an important human nosocomial pathogen, is resistant to sordarin derivatives, a new family of antifungals that inhibit protein synthesis by interaction with the EF-2-ribosomal stalk complex. To explore the role of the A. fumigatus ribosome in the resistance mechanism, the fungal stalk proteins were biochemically and genetically characterized and expressed in the sensitive Saccharomyces cerevisiae. Two acidic phosphoproteins homologous to the 12 kDa P1 and P2 proteins described in other organisms were found together with the 34 kDa P0 protein, the third stalk component. The genes encoding each fungal stalk protein were expressed in mutant S. cerevisiae strains lacking the equivalent proteins. Both AfP1 and AfP2 proteins interact with their yeast counterparts of the opposite type and bind to the ribosomal particles in the presence of either the S. cerevisiae or the A. fumigatus P0 protein. The A. fumigatus acidic phosphoproteins did not alter the yeast ribosome sordarin sensitivity. On the contrary, the presence of the fungal P0 induces in vivo and in vitro resistance to sordarin derivatives when present in the yeast ribosome. The mutations A117-->E, P122-->R and G124-->V in A. fumigatus P0 reduce the resistance capacity of the protein. An S. cerevisiae strain with the complete ribosomal stalk of A. fumigatus was obtained, which could be useful for the screening of new antifungals against this pathogenic fungus.  相似文献   

5.
In the silkworm Bombyx mori the ribosomal stalk P-protein family consists of two low MW acidic proteins, BmP1 and BmP2, and of one higher MW protein, BmP0, as shown by electrophoretical and immunoblotting western blot analysis of purified ribosomes. Treatment of ribosomes with alkaline phosphatase followed by electrofocusing shifted the isoelectric points to higher pH, implying phosphorylation of the proteins. The cDNAs encoding BmP1 and BmP2 proteins were constructed and expressed in the Saccharomyces cerevisiae mutant strains defective in either the endogenous P1 or P2 proteins. The recombinant silkworm proteins could complement the absence of the homologous yeast proteins and were incorporated to the ribosomes of the transformed strains, helping the binding of the remaining endogenous acidic proteins, present in the cytoplasm in different extent. Thus, BmP1 was able to replace YP1alpha, preferentially binding YP2beta to the ribosome, while BmP2 replaced both yeast P2 proteins and induced the binding of both YP1alpha and YP1beta.  相似文献   

6.
Protein P0 interacts with proteins P1alpha, P1beta, P2alpha, and P2beta, and forms the Saccharomyces cerevisiae ribosomal stalk. The capacity of RPP0 genes from Aspergillus fumigatus, Dictyostelium discoideum, Rattus norvegicus, Homo sapiens, and Leishmania infantum to complement the absence of the homologous gene has been tested. In S. cerevisiae W303dGP0, a strain containing standard amounts of the four P1/P2 protein types, all heterologous genes were functional except the one from L. infantum, some of them inducing an osmosensitive phenotype at 37 degrees C. The polymerizing activity and the elongation factor-dependent functions but not the peptide bond formation capacity is affected in the heterologous P0 containing ribosomes. The heterologous P0 proteins bind to the yeast ribosomes but the composition of the ribosomal stalk is altered. Only proteins P1alpha and P2beta are found in ribosomes carrying the A. fumigatus, R. norvegicus, and H. sapiens proteins. When the heterologous genes are expressed in a conditional null-P0 mutant whose ribosomes are totally deprived of P1/P2 proteins, none of the heterologous P0 proteins complemented the conditional phenotype. In contrast, chimeric P0 proteins made of different amino-terminal fragments from mammalian origin and the complementary carboxyl-terminal fragments from yeast allow W303dGP0 and D67dGP0 growth at restrictive conditions. These results indicate that while the P0 protein RNA-binding domain is functionally conserved in eukaryotes, the regions involved in protein-protein interactions with either the other stalk proteins or the elongation factors have notably evolved.  相似文献   

7.
The ribosomal stalk is essential for translation; however, its overall structure is poorly understood. Characterization of the region involved in the interactions between protein P0 and the 12 kDa acidic proteins P1 and P2 is fundamental to understand the assembly and function of this structure in the eukaryotic ribosome. The acidic protein content is important for the ribosome efficiency and affects the translation of specific mRNAs. By usage of a series of progressively truncated fragments of protein P0 in the two-hybrid test, a region between positions 213 and 250 was identified as the minimal protein part able to interact with the acidic proteins. Extensions at either end affect the binding capacity of the fragment either positively or negatively depending on the number of added amino acids. Deletions inside the binding region confirm its in vivo relevance since they drastically reduce the P0 interacting capacity with the 12 kDa acidic proteins, which are severely reduced in the ribosome when the truncated protein is expressed in the cell. Moreover, recombinant His-tagged P0 fragments containing the binding site and bound to Ni(2+)-NTA columns can form a complex with the P1 and P2 proteins, which is able to bind elongation factor EF2. The results indicate the existence of a region in P0 that specifically interacts with the acidic proteins. These interactions are, however, hindered by the presence of neighbor protein domains, suggesting the need for conformational changes in the complete P0 to allow the assembly of the ribosomal stalk.  相似文献   

8.
In Saccharomyces cerevisiae, the Mrt4 protein is a component of the ribosome assembly machinery that shares notable sequence homology to the P0 ribosomal stalk protein. Here, we show that these proteins can not bind simultaneously to ribosomes and moreover, a chimera containing the first 137 amino acids of Mrt4 and the last 190 amino acids from P0 can partially complement the absence of the ribosomal protein in a conditional P0 null mutant. This chimera is associated with ribosomes isolated from this strain when grown under restrictive conditions, although its binding is weaker than that of P0. These ribosomes contain less P1 and P2 proteins, the other ribosomal stalk components. Similarly, the interaction of the L12 protein, a stalk base component, is affected by the presence of the chimera. These results indicate that Mrt4 and P0 bind to the same site in the 25S rRNA. Indeed, molecular dynamics simulations using modelled Mrt4 and P0 complexes provide further evidence that both proteins bind similarly to rRNA, although their interaction with L12 displays notable differences. Together, these data support the participation of the Mrt4 protein in the assembly of the P0 protein into the ribosome and probably, that also of the L12 protein.  相似文献   

9.
The eukaryotic ribosomal proteins P1 and P2 bind to protein P0 through their N-terminal domain to form the essential ribosomal stalk. A mutational analysis points to amino acids at positions 2 and 3 as determinants for the drastic difference of Saccharomyces cerevisiae P1 and P2 half-life, and suggest different degradation mechanisms for each protein type. Moreover, the capacity to form P1/P2 heterodimers is drastically affected by mutations in the P2β four initial amino acids, while these mutations have no effect on P1β. Binding of P2β and, to a lesser extent, P1β to the ribosome is also seriously affected showing the high relevance of the amino acids in the first turn of the NTD α-helix 1 for the stalk assembly. The negative effect of some mutations on ribosome binding can be reversed by the presence of the second P1/P2 couple in the ribosome, indicating a stabilizing structural influence between the two heterodimers. Unexpectedly, some mutations totally abolish heterodimer formation but allow significant ribosome binding and, therefore, a previous P1 and P2 association seems not to be an absolute requirement for stalk assembly. Homology modeling of the protein complexes suggests that the mutated residues can affect the overall protein conformation.  相似文献   

10.
The interactions among the yeast stalk components (P0, P1alpha, P1beta, P2alpha and P2beta) and with EF-2 have been explored using immunoprecipitation, affinity chromatography and the two-hybrid system. No stable association was detected between acidic proteins of the same type. In contrast, P1alpha and P1beta were found to interact with P2beta and P2alpha respectively. An interaction of P0 with P1 proteins, but not with P2 proteins, was also detected. This interaction is strongly increased with the P0 carboxyl end, which is able to form a pentameric complex with the four acidic proteins. The P1/P2 binding site has been located between residues 212 and 262 using different C-terminal P0 fragments. Immunoprecipitation shows the association of EF-2 with protein P0. However, the interaction is stronger with the P1/P2 proteins than with P0 in the two-hybrid assay. This interaction improves using the 100-amino-acid-long C-end of P0 and is even higher with the last 50 amino acids. The data indicate a specific association of P1alpha with P2beta and of P1beta with P2alpha rather than the dimerization of the acidic proteins found in prokaryotes. In addition, they suggest that stalk assembly begins by the interaction of the P1 proteins with P0. Moreover, as functional interactions of the complete P0 were found to increase using protein fragments, the data suggest that some active sites are exposed in the ribosome as a result of conformational changes that take place during stalk assembly and function.  相似文献   

11.
The ribosomal stalk is formed by four acidic phosphoproteins in Saccharomyces cerevisiae, P1α, P1β, P2α and P2β, which form two heterodimers, P1α/P2β and P1β/P2α, that preferentially bind to sites A and B of the P0 protein, respectively. Using mutant strains carrying only one of the four possible P1/P2 combinations, we found a specific phenotype associated to each P1/P2 pair, indicating that not all acidic P proteins play the same role. The absence of one P1/P2 heterodimer reduced the rate of cell growth by varying degrees, depending on the proteins missing. Synthesis of the 60S ribosomal subunit also decreased, particularly in strains carrying the unusual P1α-P2α or P1β-P2β heterodimers, although the distinct P1/P2 dimers are bound with similar affinity to the mutant ribosome. While in wild-type strains the B site bound P1β/P2α in a highly specific manner and the A site bound the four P proteins similarly, both the A and B binding sites efficiently bound practically any P1/P2 pair in mutant strains expressing truncated P0 proteins. The reported results support that while most ribosomes contain a P1α/P2β-P0-P1β/P2α structure in normal conditions, the stalk assembly mechanism can generate alternative compositions, which have been previously detected in the cell.  相似文献   

12.
Shiga toxins produced by Escherichia coli O157:H7 are responsible for food poisoning and hemolytic uremic syndrome (HUS). The A subunits of Shiga toxins (Stx1A and Stx2A) inhibit translation by depurinating a specific adenine in the large rRNA. To determine if Stx1A and Stx2A require the ribosomal stalk for depurination, their activity and cytotoxicity were examined in the yeast P protein deletion mutants. Stx1A and Stx2A were less toxic and depurinated ribosomes less in a strain lacking P1/P2 on the ribosome and in the cytosol (ΔP2) than in a strain lacking P1/P2 on the ribosome, but containing free P2 in the cytosol (ΔP1). To determine if cytoplasmic P proteins facilitated depurination, Stx1A and Stx2A were expressed in the P0ΔAB mutant, in which the binding sites for P1/P2 were deleted on the ribosome, and P1/P2 accumulated in the cytosol. Stx1A was less toxic and depurinated ribosomes less in P0ΔAB, suggesting that intact binding sites for P1/P2 were critical. In contrast, Stx2A was toxic and depurinated ribosomes in P0ΔAB as in wild type, suggesting that it did not require the P1/P2 binding sites. Depurination of ΔP1, but not P0ΔAB ribosomes increased upon addition of purified P1α/P2βin vitro, and the increase was greater for Stx1 than for Stx2. We conclude that cytoplasmic P proteins stimulate depurination by Stx1 by facilitating the access of the toxin to the ribosome. Although ribosomal stalk is important for Stx1 and Stx2 to depurinate the ribosome, Stx2 is less dependent on the stalk proteins for activity than Stx1 and can depurinate ribosomes with an incomplete stalk better than Stx1.  相似文献   

13.
The eukaryotic acidic P1 and P2 proteins modulate the activity of the ribosomal stalk but playing distinct roles. The aim of this work was to analyze the structural features that are behind their different function. A structural characterization of Saccharomyces cerevisaie P1 alpha and P2 beta proteins was performed by circular dichroism, nuclear magnetic resonance, fluorescence spectroscopy, thermal denaturation, and protease sensitivity. The results confirm the low structure present in both proteins but reveal clear differences between them. P1 alpha shows a virtually unordered secondary structure with a residual helical content that disappears below 30 degrees C and a clear tendency to acquire secondary structure at low pH and in the presence of trifluoroethanol. In agreement with this higher disorder P1 alpha has a fully solvent-accessible tryptophan residue and, in contrast to P2 beta, is highly sensitive to protease degradation. An interaction between both proteins was observed, which induces an increase in the global secondary structure content of both proteins. Moreover, mixing of both proteins causes a shift of the P1 alpha tryptophan 40 signal, pointing to an involvement of this region in the interaction. This evidence directly proves an interaction between P1 alpha and P2 beta before ribosome binding and suggests a functional complementation between them. On a whole, the results provide structural support for the different functional roles played by the proteins of the two groups showing, at the same time, that relatively small structural differences between the two stalk acidic protein types can result in significant functional changes.  相似文献   

14.
The ribosome has a distinct lateral protuberance called the stalk; in eukaryotes it is formed by the acidic ribosomal P-proteins which are organized as a pentameric entity described as P0-(P1-P2)(2). Bilateral interactions between P0 and P1/P2 proteins have been studied extensively, however, the region on P0 responsible for the binding of P1/P2 proteins has not been precisely defined. Here we report a study which takes the current knowledge of the P0 - P1/P2 protein interaction beyond the recently published information. Using truncated forms of P0 protein and several in vitro and in vivo approaches, we have defined the region between positions 199 and 258 as the P0 protein fragment responsible for the binding of P1/P2 proteins in the yeast Saccharomyces cerevisiae. We show two short amino acid regions of P0 protein located at positions 199-230 and 231-258, to be responsible for independent binding of two dimers, P1A-P2B and P1B-P2A respectively. In addition, two elements, the sequence spanning amino acids 199-230 and the P1A-P2B dimer were found to be essential for stalk formation, indicating that this process is dependent on a balance between the P1A-P2B dimer and the P0 protein.  相似文献   

15.
The ribosomal stalk composed of acidic P1/P2 proteins and protein P0 is involved directly in the interaction of the elongation factors and mRNAs with the ribosome during protein synthesis. All P proteins are found to be phosphorylated in eucaryotic organisms. In Saccharomyces cerevisiae five different cAMP-independent protein kinases phosphorylating P proteins have been identified and characterized. In contrast to many other protein kinases, relatively little is known about inhibitors of these enzymes. A new protein inhibitor of protein kinases has been purified and characterized. It is a small (18.5 kDa) and acidic (pI = 4.2) protein with high inhibitory potency for PK60S and CK 2. The inhibitor is competitive with respect to protein substrates with Ki values in the range of approximately 6.5 microM for PK60S and approximately 22 microM for CK 2.  相似文献   

16.
Saccharomyces cerevisiae strains with either three inactivated genes (triple disruptants) or four inactivated genes (quadruple disruptants) encoding the four acidic ribosomal phosphoproteins, YP1 alpha, YP1 beta, YP2 alpha, and YP2 beta, present in this species have been obtained. Ribosomes from the triple disruptants and, obviously, those from the quadruple strain do not have bound P proteins. All disrupted strains are viable; however, they show a cold-sensitive phenotype, growing very poorly at 23 degrees C. Cell extracts from the quadruple-disruptant strain are about 30% as active as the control in protein synthesis assays and are stimulated by the addition of free acidic P proteins. Strains lacking acidic proteins do not have a higher suppressor activity than the parental strains, and cell extracts derived from the quadruple disruptant do not show a higher degree of misreading, indicating that the absence of acidic proteins does not affect the accuracy of the ribosomes. However, the patterns of protein expressed in the cells as well as in the cell-free protein system are affected by the absence of P proteins from the particles; a wild-type pattern is restored upon addition of exogenous P proteins to the cell extract. In addition, strains carrying P-protein-deficient ribosomes are unable to sporulate but recover this capacity upon transformation with one of the missing genes. These results indicate that acidic proteins are not an absolute requirement for protein synthesis but regulate the activity of the 60S subunit, affecting the translation of certain mRNAs differently.  相似文献   

17.
Saccharomyces cerevisiae ribosomal stalk consists of five proteins: P0 protein, with molecular mass of 34 kDa, and four small, 11 kDa, P1A, P1B, P2A and P2B acidic proteins, which form a pentameric complex P0-(P1A-P2B)/(P1B-P2A). This structure binds to a region of 26S rRNA termed GTPase-associated domain and plays a crucial role in protein synthesis. The consecutive steps leading to the formation of the stalk structure have not been fully elucidated and the function of individual P-proteins in the assembling of the stalk and protein synthesis still remains elusive. We applied an integrated approach in order to examine all the P-proteins with respect to stalk assembly. Several in vitro methods were utilized to mimic protein self-organization in the cell. Our efforts resulted in reconstitution of the whole recombinant stalk in solution as well as on the ribosomal particle. On the basis of our analysis, it can be inferred that the P1A-P2B protein complex may be regarded as the key element in stalk formation, having structural and functional importance, whereas P1B-P2A protein complex is implicated in regulation of stalk function. The mechanism of quaternary structure formation could be described as a sequential co-folding/association reaction of an oligomeric system with P0-(P1A-P2B) protein complex as an essential element in the acquisition of a stable quaternary structure of the ribosomal stalk. On the other hand, the P1B-P2A complex is not involved in the cooperative stalk formation and our results indicate an increased rate of protein synthesis due to the latter protein pair.  相似文献   

18.
Precipitation of Saccharomyces cerevisiae ribosomes by ethanol under experimental conditions that do not release the ribosomal proteins can affect the activity of the particles. In the presence of 0.4 M NH4Cl and 50% ethanol only the most acidic proteins from yeast and rat liver ribosomes are released. At 1 M NH4Cl two more non-acidic proteins are lost from the ribosomes. The release of the acidic proteins causes a small inactivation of the polymerizing activity of the particles, additional to that caused by the precipitation itself. The elongation-factor-2-dependent GTP hydrolysis of the ribosomes is, however, more affected by the loss of acidic proteins. These proteins can stimulate the GTPase but not the polymerising activity when added back to the treated particles. Eukaryotic proteins cannot be substituted for bacterial acidic proteins L7 and L12. We have not detected immunological cross-reaction between acidic proteins from Escherichia coli and those from yeast, Artemia salina and rat liver or between acidic proteins from these eukaryotic ribosomes among themselves.  相似文献   

19.
The ribosomal "stalk" structure is a distinct lateral protuberance located on the large ribosomal subunit in prokaryotic, as well as in eukaryotic cells. In eukaryotes, this ribosomal structure is composed of the acidic ribosomal P proteins, forming two hetero-dimers (P1/P2) attached to the ribosome through the P0 protein. The "stalk" is essential for the ribosome activity, taking part in the interaction with elongation factors.In this report, we have shown that the subcellular distribution of the human P proteins does not fall into standard behavior of regular ribosomal proteins. We have used two approaches to assess the distribution of the P proteins, in vivo experiments with GFP fusion proteins and in vitro one with anti-P protein antibodies. In contrast to standard r-proteins, the P1 and P2 proteins are not actively transported into the nucleus compartment, remaining predominantly in the cytoplasm (the perinuclear compartment). The P0 protein was found in the cytoplasm, as well as in the nucleus; however, the nucleoli were excluded. This protein was scattered around the nuclei, and the distribution might reflect association with the so-called nuclear bodies. This is the first example of r-proteins that are not actively transported into the nucleus; moreover, this might imply that the "stalk" constituents are assembled onto the ribosomal particle at the very last step of ribosomal maturation, which takes part in the cell cytoplasm.  相似文献   

20.
Eukaryotic ribosomal stalk protein L12 and its bacterial orthologue L11 play a central role on ribosomal conformational changes during translocation. Deletion of the two genes encoding L12 in Saccharomyces cerevisiae resulted in a very slow-growth phenotype. Gene RPL12B, but not the RPL12A, cloned in centromeric plasmids fully restored control protein level and the growth rate when expressed in a L12-deprived strain. The same strain has been transformed to express Escherichia coli protein EcL11 under the control of yeast RPL12B promoter. The bacterial protein has been found in similar amounts in washed ribosomes from the transformed yeast strain and from control E. coli cells, however, EcL11 was unable to restore the defective acidic protein stalk composition caused by the absence of ScL12 in the yeast ribosome. Protein EcL11 induced a 10% increase in L12-defective cell growth rate, although the in vitro polymerizing capacity of the EcL11-containing ribosomes is restored in a higher proportion, and, moreover, the particles became partially sensitive to the prokaryotic specific antibiotic thiostrepton. Molecular dynamic simulations using modelled complexes support the correct assembly of bacterial L11 into the yeast ribosome and confirm its direct implication of its CTD in the binding of thiostrepton to ribosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号