共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang MD Kiss RS Franklin V McBride HM Whitman SC Marcel YL 《Journal of lipid research》2007,48(3):633-645
Endocytosis of LDL and modified LDL represents regulated and unregulated cholesterol delivery to macrophages. To elucidate the mechanisms of cellular cholesterol transport and egress under both conditions, various primary macrophages were labeled and loaded with cholesterol or cholesteryl ester from LDL or acetylated low density lipoprotein (AcLDL), and the cellular cholesterol traffic pathways were examined. Confocal microscopy using fluorescently labeled 3,3'-dioctyldecyloxacarbocyanine perchlorate-labeled LDL and 1,1'-dioctyldecyl-3,3,3',3'-tetramethylindodicarbocyanine perchlorate-labeled AcLDL demonstrated their discrete traffic pathways and accumulation in distinct endosomes. ABCA1-mediated cholesterol efflux to apolipoprotein A-I (apoA-I) was much greater for AcLDL-loaded macrophages compared with LDL. Treatment with the liver X receptor ligand 22-OH increased efflux to apoA-I in AcLDL-loaded but not LDL-loaded cells. In contrast, at a level equivalent to AcLDL, LDL-derived cholesterol was preferentially effluxed to HDL, in keeping with increased ABCG1. In vivo studies of reverse cholesterol transport (RCT) from cholesterol-labeled macrophages injected intraperitoneally demonstrated that LDL-derived cholesterol was more efficiently transported to the liver and secreted into bile than AcLDL-derived cholesterol. This indicates a greater efficiency of HDL than lipid-poor apoA-I in interstitial fluid in controlling in vivo RCT. These assays, taken together, emphasize the importance of mediators of diffusional cholesterol efflux in RCT. 相似文献
2.
Z��lie Julia Emilie Duchene Natalie Fournier Natacha Bellanger M. John Chapman Wilfried Le Goff Maryse Guerin 《Journal of lipid research》2010,51(11):3350-3358
Lipid and cholesterol metabolism in the postprandial phase is associated with both quantitative and qualitative remodeling of HDL particle subspecies that may influence their anti-atherogenic functions in the reverse cholesterol transport pathway. We evaluated the capacity of whole plasma or isolated HDL particles to mediate cellular free cholesterol (FC) efflux, cholesteryl ester transfer protein (CETP)-mediated cholesteryl ester (CE) transfer, and selective hepatic CE uptake during the postprandial phase in subjects displaying type IIB hyperlipidemia (n = 16). Postprandial, large HDL2 displayed an enhanced capacity to mediate FC efflux via both scavenger receptor class B type I (SR-BI)-dependent (+12%; P < 0.02) and ATP binding cassette transporter G1 (ABCG1)-dependent (+31%; P < 0.008) pathways in in vitro cell systems. In addition, the capacity of whole postprandial plasma (4 h and 8 h postprandially) to mediate cellular FC efflux via the ABCA1-dependent pathway was significantly increased (+19%; P < 0.0003). Concomitantly, postprandial lipemia was associated with elevated endogenous CE transfer rates from HDL2 to apoB lipoproteins and with attenuated capacity (−17%; P < 0.02) of total HDL to deliver CE to hepatic cells. Postprandial lipemia enhanced SR-BI and ABCG1-dependent efflux to large HDL2 particles. However, postprandial lipemia is equally associated with deleterious features by enhancing formation of CE-enriched, triglyceride-rich lipoprotein particles through the action of CETP and by reducing the direct return of HDL-CE to the liver. 相似文献
3.
Ji A Wroblewski JM Cai L de Beer MC Webb NR van der Westhuyzen DR 《Journal of lipid research》2012,53(3):446-455
To study the mechanisms of hepatic HDL formation, we investigated the roles of ABCA1, ABCG1, and SR-BI in nascent HDL formation in primary hepatocytes isolated from mice deficient in ABCA1, ABCG1, or SR-BI and from wild-type (WT) mice. Under basal conditions, in WT hepatocytes, cholesterol efflux to exogenous apoA-I was accompanied by conversion of apoA-I to HDL-sized particles. LXR activation by T0901317 markedly enhanced the formation of larger HDL-sized particles as well as cellular cholesterol efflux to apoA-I. Glyburide treatment completely abolished the formation of 7.4 nm diameter and greater particles but led to the formation of novel 7.2 nm-sized particles. However, cells lacking ABCA1 failed to form such particles. ABCG1-deficient cells showed similar capacity to efflux cholesterol to apoA-I and to form nascent HDL particles compared with WT cells. Cholesterol efflux to apoA-I and nascent HDL formation were slightly but significantly enhanced in SR-BI-deficient cells compared with WT cells under basal but not LXR activated conditions. As in WT but not in ABCA1-deficient hepatocytes, 7.2 nm-sized particles generated by glyburide treatment were also detected in ABCG1-deficient and SR-BI-deficient hepatocytes. Our data indicate that hepatic nascent HDL formation is highly dependent on ABCA1 but not on ABCG1 or SR-BI. 相似文献
4.
Asztalos BF de la Llera-Moya M Dallal GE Horvath KV Schaefer EJ Rothblat GH 《Journal of lipid research》2005,46(10):2246-2253
Our objective was to evaluate the associations of individual apolipoprotein A-I (apoA-I)-containing HDL subpopulation levels with ABCA1- and scavenger receptor class B type I (SR-BI)-mediated cellular cholesterol efflux. HDL subpopulations were measured by nondenaturing two-dimensional gel electrophoresis from 105 male subjects selected with various levels of apoA-I in pre-beta-1, alpha-1, and alpha-3 HDL particles. ApoB-containing lipoprotein-depleted serum was incubated with [(3)H]cholesterol-labeled cells to measure efflux. The difference in efflux between control and ABCA1-upregulated J774 macrophages was taken as a measure of ABCA1-mediated efflux. SR-BI-mediated efflux was determined using cholesterol-labeled Fu5AH hepatoma cells. Fractional efflux values obtained from these two cell systems were correlated with the levels of individual HDL subpopulations. A multivariate analysis showed that two HDL subspecies correlated significantly with ABCA1-mediated efflux: small, lipid-poor pre-beta-1 particles (P=0.0022) and intermediate-sized alpha-2 particles (P=0.0477). With regard to SR-BI-mediated efflux, multivariate analysis revealed significant correlations with alpha-2 (P=0.0004), alpha-1 (P=0.0030), pre-beta-1 (P=0.0056), and alpha-3 (P=0.0127) HDL particles. These data demonstrate that the small, lipid-poor pre-beta-1 HDL has the strongest association with ABCA1-mediated cholesterol even in the presence of all other HDL subpopulations. Cholesterol efflux via the SR-BI pathway is associated with several HDL subpopulations with different apolipoprotein composition, lipid content, and size. 相似文献
5.
We developed an assay that quantitates bidirectional cholesterol flux between cells and lipoproteins. Incubating Fu5AH cells with increasing concentrations of human serum resulted in increased influx and efflux; however, influx was 2- to 3-fold greater at all serum concentrations. With apolipoprotein B (apoB)-depleted serum, the ratio of influx to efflux (I/E) was close to 1, indicating cholesterol exchange. The apoB fraction of serum induced influx and little efflux, with I/E > 1. Using block lipid transport-1 to block scavenger receptor class B type I (SR-BI)-mediated flux with different acceptors, we determined that 50% to 70% of efflux was via SR-BI. With HDL, 90% of influx was via SR-BI, whereas with LDL or serum, 20% of influx was SR-BI-mediated. Cholesterol-enriched hepatoma cells produced increased efflux without a change in influx, resulting in reduced I/E. The assay was applied to cholesterol-normal and -enriched mouse peritoneal macrophages exposed to serum or LDL. The enrichment enhanced efflux without shifts in influx. With cholesterol-enriched macrophages, HDL efflux was enhanced and influx was greatly reduced. With all lipoproteins, cholesterol enrichment of murine peritoneal macrophages led to a reduced I/E. We conclude that this assay can simultaneously and accurately quantitate cholesterol bidirectional flux and can be applied to a variety of cells exposed to isolated lipoproteins or serum. 相似文献
6.
Zanotti I Potì F Pedrelli M Favari E Moleri E Franceschini G Calabresi L Bernini F 《Journal of lipid research》2008,49(5):954-960
The liver X receptors (LXRs) have been shown to affect lipoprotein plasma profile, lipid metabolism, and reverse cholesterol transport (RCT). In the present study, we investigated whether a short-term administration of the synthetic LXR agonist T0901317 (T0) to mice may affect RCT by modulating the capacity of plasma to promote cellular lipid efflux. Consistent with previous data, the pharmacological treatment of mice caused a significant increase of macrophage-derived [3H]cholesterol content in plasma, liver, and feces and resulted in improved capacity of plasma to promote cellular cholesterol release through passive diffusion and scavenger receptor class B type I (SR-BI)-mediated mechanisms. Differently, plasma from treated mice possessed similar or reduced capacity to drive lipid efflux via ABCA1. Consistent with these data, the analysis of plasma HDL fractions revealed that T0 caused the formation of larger, lipid-enriched particles. These results suggest that T0 promotes in vivo RCT from macrophages at least in part by inducing an enrichment of those HDL subclasses that increase plasma capacity to promote cholesterol efflux by passive diffusion and SR-BI-mediated mechanisms. 相似文献
7.
Yvan-Charvet L Pagler TA Wang N Senokuchi T Brundert M Li H Rinninger F Tall AR 《Journal of lipid research》2008,49(1):107-114
This study compares the roles of ABCG1 and scavenger receptor class B type I (SR-BI) singly or together in promoting net cellular cholesterol efflux to plasma HDL containing active LCAT. In transfected cells, SR-BI promoted free cholesterol efflux to HDL, but this was offset by an increased uptake of HDL cholesteryl ester (CE) into cells, resulting in no net efflux. Coexpression of SR-BI with ABCG1 inhibited the ABCG1-mediated net cholesterol efflux to HDL, apparently by promoting the reuptake of CE from medium. However, ABCG1-mediated cholesterol efflux was not altered in cholesterol-loaded, SR-BI-deficient (SR-BI(-/-)) macrophages. Briefly cultured macrophages collected from SR-BI(-/-) mice loaded with acetylated LDL in the peritoneal cavity did exhibit reduced efflux to HDL. However, this was attributable to reduced expression of ABCG1 and ABCA1, likely reflecting increased macrophage cholesterol efflux to apolipoprotein E-enriched HDL during loading in SR-BI(-/-) mice. In conclusion, cellular SR-BI does not promote net cholesterol efflux from cells to plasma HDL containing active LCAT as a result of the reuptake of HDL-CE into cells. Previous findings of increased atherosclerosis in mice transplanted with SR-BI(-/-) bone marrow probably cannot be explained by a defect in macrophage cholesterol efflux. 相似文献
8.
Catalano G Duchene E Julia Z Le Goff W Bruckert E Chapman MJ Guerin M 《Journal of lipid research》2008,49(3):635-643
We evaluated the impact of gender differences in both the quantitative and qualitative features of HDL subspecies on cellular free cholesterol efflux through the scavenger receptor class B type I (SR-BI), ABCA1, and ABCG1 pathways. For that purpose, healthy subjects (30 men and 26 women) matched for age, body mass index, triglyceride, apolipoprotein A-I, and high density lipoprotein-cholesterol (HDL-C) levels were recruited. We observed a significant increase (+14%; P < 0.03) in the capacity of whole sera from women to mediate cellular free cholesterol efflux via the SR-BI-dependent pathway compared with sera from men. Such enhanced efflux capacity resulted from a significant increase in plasma levels of large cholesteryl ester-rich HDL2 particles (+20%; P < 0.04) as well as from an enhanced capacity (+14%; P < 0.03) of these particles to mediate cellular free cholesterol efflux via SR-BI. By contrast, plasma from men displayed an enhanced free cholesterol efflux capacity (+31%; P < 0.001) via the ABCA1 transporter pathway compared with that from women, which resulted from a 2.4-fold increase in the plasma level of prebeta particles (P < 0.008). Moreover, in women, SR-BI-mediated cellular free cholesterol efflux was significantly correlated with plasma HDL-C (r = 0.72, P < 0.0001), whereas this relationship was not observed in men. In conclusion, HDL-C level may not represent the absolute indicator of the efficiency of the initial step of the reverse cholesterol transport. 相似文献
9.
Nieland TJ Chroni A Fitzgerald ML Maliga Z Zannis VI Kirchhausen T Krieger M 《Journal of lipid research》2004,45(7):1256-1265
Scavenger receptor class B type I (SR-BI) and ABCA1 are structurally dissimilar cell surface proteins that play key roles in HDL metabolism. SR-BI is a receptor that binds HDL with high affinity and mediates both the selective lipid uptake of cholesteryl esters from lipid-rich HDL to cells and the efflux of unesterified cholesterol from cells to HDL. ABCA1 mediates the efflux of unesterified cholesterol and phospholipids from cells to lipid-poor apolipoprotein A-I (apoA-I). The activities of ABCA1 and other ATP binding cassette superfamily members are inhibited by the drug glyburide, and SR-BI-mediated lipid transport is blocked by small molecule inhibitors called BLTs. Here, we show that one BLT, [1-(2-methoxy-phenyl)-3-naphthalen-2-yl-urea] (BLT-4), blocked ABCA1-mediated cholesterol efflux to lipid-poor apoA-I at a potency similar to that for its inhibition of SR-BI (IC(50) approximately 55-60 microM). Reciprocally, glyburide blocked SR-BI-mediated selective lipid uptake and efflux at a potency similar to that for its inhibition of ABCA1 (IC(50) approximately 275-300 microM). As is the case with BLTs, glyburide increased the apparent affinity of HDL binding to SR-BI. The reciprocal inhibition of SR-BI and ABCA1 by BLT-4 and glyburide raises the possibility that these proteins may share similar or common steps in their mechanisms of lipid transport. 相似文献
10.
Recent developments in lipid metabolism have shown the importance of ATP binding cassette transporters (ABCs) in controlling cellular and total body lipid homeostasis. ABCA1 mediates the transport of cholesterol and phospholipids from cells to lipid-poor apolipoprotein A-I (apoA-I), whereas ABCG1 and ABCG4 mediate the transport of cholesterol from cells to lipidated lipoproteins. ABCA1, ABCG1, and ABCG4 are all expressed in cholesterol-loaded macrophages, and macrophages from ABCA1 and ABCG1 knockout mice accumulate cholesteryl esters. Here, we show that the lipidated particles generated by incubating cells overexpressing ABCA1 with apoA-I are efficient acceptors for cholesterol released from cells overexpressing either ABCG1 or ABCG4. The cholesterol released to the particles was derived from a cholesterol oxidase-accessible plasma membrane pool in both ABCG1 and ABCG4 cells, which is the same pool of cholesterol shown previously to be removed by high density lipoproteins. ABCA1 cells incubated with apoA-I generated two major populations of cholesterol- and phospholipid-rich lipoprotein particles that were converted by ABCG1 or ABCG4 cells to one major particle population that was highly enriched in cholesterol. These results suggest that ABCG1 and ABCG4 act in concert with ABCA1 to maximize the removal of excess cholesterol from cells and to generate cholesterol-rich lipoprotein particles. 相似文献
11.
Yanni Xu Qi Liu Yang Xu Chang Liu Xiao Wang Xiaobo He Ningyu Zhu Jikai Liu Yexiang Wu Yongzhen Li Ni Li Tingting Feng Fangfang Lai Murui Zhang Bin Hong Jian-Dong Jiang Shuyi Si 《Journal of lipid research》2014,55(8):1634-1647
ABCA1 and scavenger receptor class B type I (SR-BI)/CD36 and lysosomal integral membrane protein II analogous 1 (CLA-1) are the key transporter and receptor in reverse cholesterol transport (RCT). Increasing the expression level of ABCA1 and SR-BI/CLA-1 is antiatherogenic. The aim of the study was to find novel antiatherosclerotic agents upregulating expression of ABCA1 and SR-BI/CLA-1 from natural compounds. Using the ABCA1p-LUC and CLA-1p-LUC HepG2 cell lines, we found that rutaecarpine (RUT) triggered promoters of ABCA1 and CLA-1 genes. RUT increased ABCA1 and SR-BI/CLA-1 expression in vitro related to liver X receptor alpha and liver X receptor beta. RUT induced cholesterol efflux in RAW264.7 cells. ApoE-deficient (ApoE−/−) mice treated with RUT for 8 weeks showed ∼68.43, 70.23, and 85.56% less en face lesions for RUT (L), RUT (M), and RUT (H) groups, respectively, compared with the model group. Mouse macrophage-specific antibody and filipin staining indicated that RUT attenuated macrophages and cholesterol accumulations in atherosclerotic lesions, respectively. Additionally, ABCA1 and SR-BI expression was highly induced by RUT in livers of ApoE−/− mice. Meanwhile, RUT treatment significantly increased the fecal 3H-cholesterol excretion, which demonstrated that RUT could promote RCT in vivo. RUT was identified to be a candidate that protected ApoE−/− mice from developing atherosclerosis through preferentially promoting activities of ABCA1 and SR-BI within RCT. 相似文献
12.
Chun Liu Beihai Ge Chao He Yi Zhang Xiaowen Liu Kejian Liu Cuiping Qian Yu Zhang Wenzhong Peng Xiaomei Guo 《Biochemical and biophysical research communications》2014
Mitofusin 2 (Mfn2) inhibits atherosclerotic plaque formation, but the underlying mechanism remains elusive. This study aims to reveal how Mfn2 functions in the atherosclerosis. Mfn2 expression was found to be significantly reduced in arterial atherosclerotic lesions of both mice and human compared with healthy counterparts. Here, we observed that Mfn2 increased cellular cholesterol transporter expression in macrophages by upregulating peroxisome proliferator-activated receptor-γ, an effect achieved at least partially by inhibiting extracellular signal-regulated kinase1/2 (ERK1/2) and p38 mitogen-activated protein kinases (MAPKs) pathway. These findings provide insights into potential mechanisms of Mfn2-mediated alterations in cholesterol transporter expression, which may have significant implications for the treatment of atherosclerotic heart disease. 相似文献
13.
Hoekstra M Meurs I Koenders M Out R Hildebrand RB Kruijt JK Van Eck M Van Berkel TJ 《Journal of lipid research》2008,49(4):738-745
Receptor-mediated cholesterol uptake has been suggested to play a role in maintaining the adrenal intracellular free cholesterol pool and the ability to produce hormones. Therefore, in the current study, we evaluated the importance of scavenger receptor class B type I (SR-BI)-mediated cholesteryl ester uptake from HDL for adrenal glucocorticoid hormone synthesis in vivo. No difference was observed in the plasma level of corticosterone between SR-BI-deficient and wild-type mice under ad libitum feeding conditions. Overnight fasting ( approximately 16 h) stimulated the plasma level of corticosterone by 2-fold in wild-type mice. In contrast, no effect of fasting on plasma corticosterone levels was observed in SR-BI-deficient mice, leading to a 44% lower plasma corticosterone level compared with their wild-type littermate controls. In parallel, an almost complete depletion of lipid stores in the adrenal cortex of fasted SR-BI-deficient mice was observed. Plasma adrenocorticotropic hormone levels were increased by 5-fold in fasted SR-BI-deficient mice. SR-BI deficiency induced marked changes in the hepatic expression of the glucocorticoid-responsive genes cholesterol 7alpha-hydroxylase, HMG-CoA synthase, apolipoprotein A-IV, corticosteroid binding globulin, interleukin-6, and tumor necrosis factor-alpha, which coincided with a 42% decreased plasma glucose level under fasting conditions. In conclusion, we show that the absence of adrenal HDL cholesteryl ester uptake in SR-BI-deficient mice impairs the adrenal glucocorticoid-mediated stress response to fasting as a result of adrenal glucocorticoid insufficiency and attenuated liver glucocorticoid receptor signaling, leading to hypoglycemia under fasting conditions. 相似文献
14.
Scavenger receptor BI (SR-BI) is an HDL receptor. It binds HDL and mediates the uptake of cholesteryl ester from HDL. Early studies have pointed out that the extracellular domain of SR-BI is critical for SR-BI-mediated cholesteryl ester uptake. However, the extracellular loop of SR-BI is large: it contains 403 amino acids. The HDL binding site and the modulation of SR-BI-mediated cholesteryl ester uptake remain to be identified. In this study, using C323G mutant SR-BI, we showed that C323G mutant SR-BI lost its HDL binding and cholesteryl ester uptake activity, indicating that the highly conserved C323 is required for SR-BI-mediated HDL binding and cholesteryl ester uptake. Using a blocking antibody against C323 region, we demonstrated that C323 is directly involved in HDL binding and likely an HDL binding site. Using C323G mutant transgenic mouse model, we further demonstrated that C323 of SR-BI is required for regulating plasma cholesterol levels in vivo. Using redox reagents, we showed that physiological relevant levels of H(2)O(2) upregulated the SR-BI-mediated cholesteryl ester uptake activity by 65%, whereas GSH or DTT significantly downregulated SR-BI-mediated cholesteryl ester uptake activity by 45%. C323 of SR-BI is critical for SR-BI-mediated HDL binding and cholesteryl ester uptake, and changes in redox status may be a regulatory factor modulating SR-BI-mediated cholesterol transport. 相似文献
15.
Hassan HH Denis M Lee DY Iatan I Nyholt D Ruel I Krimbou L Genest J 《Journal of lipid research》2007,48(11):2428-2442
It is well accepted that both apolipoprotein A-I (apoA-I) and ABCA1 play crucial roles in HDL biogenesis and in the human atheroprotective system. However, the nature and specifics of apoA-I/ABCA1 interactions remain poorly understood. Here, we present evidence for a new cellular apoA-I binding site having a 9-fold higher capacity to bind apoA-I compared with the ABCA1 site in fibroblasts stimulated with 22-(R)-hydroxycholesterol/9-cis-retinoic acid. This new cellular apoA-I binding site was designated \"high-capacity binding site\" (HCBS). Glyburide drastically reduced (125)I-apoA-I binding to the HCBS, whereas (125)I-apoA-I showed no significant binding to the HCBS in ABCA1 mutant (Q597R) fibroblasts. Furthermore, reconstituted HDL exhibited reduced affinity for the HCBS. Deletion of the C-terminal region of apoA-I (Delta187-243) drastically reduced the binding of apoA-I to the HCBS. Interestingly, overexpressing various levels of ABCA1 in BHK cells promoted the formation of the HCBS. The majority of the HCBS was localized to the plasma membrane (PM) and was not associated with membrane raft domains. Importantly, treatment of cells with phosphatidylcholine-specific phospholipase C, but not sphingomyelinase, concomitantly reduced the binding of (125)I-apoA-I to the HCBS, apoA-I-mediated cholesterol efflux, and the formation of nascent apoA-I-containing particles. Together, these data suggest that a functional ABCA1 leads to the formation of a major lipid-containing site for the binding and the lipidation of apoA-I at the PM. Our results provide a biochemical basis for the HDL biogenesis pathway that involves both ABCA1 and the HCBS, supporting a two binding site model for ABCA1-mediated nascent HDL genesis. 相似文献
16.
17.
Brundert M Heeren J Bahar-Bayansar M Ewert A Moore KJ Rinninger F 《Journal of lipid research》2006,47(11):2408-2421
Scavenger receptor class B type I (SR-BI) mediates the selective uptake of HDL cholesteryl esters (CEs) and facilitates the efflux of unesterified cholesterol. SR-BI expression in macrophages presumably plays a role in atherosclerosis. The role of SR-BI for selective CE uptake and cholesterol efflux in macrophages was explored. Macrophages and HDL originated from wild-type (WT) or SR-BI knockout (KO; homozygous) mice. For uptake, macrophages were incubated in medium containing 125I-/3H-labeled HDL. For lipid removal, [3H]cholesterol efflux was analyzed using HDL as acceptor. Selective uptake of HDL CE ([3H]cholesteryl oleyl ether - 125I-tyramine cellobiose) was similar in WT and SR-BI KO macrophages. Radiolabeled SR-BI KO-HDL yielded a lower rate of selective uptake compared with WT-HDL in WT and SR-BI KO macrophages. Cholesterol efflux was similar in WT and SR-BI KO cells using HDL as acceptor. SR-BI KO-HDL more efficiently promoted cholesterol removal compared with WT-HDL from both types of macrophages. Macrophages selectively take up HDL CE independently of SR-BI. Additionally, in macrophages, there is substantial cholesterol efflux that is not mediated by SR-BI. Therefore, SR-BI-independent mechanisms mediate selective CE uptake and cholesterol removal. SR-BI KO-HDL is an inferior donor for selective CE uptake compared with WT-HDL, whereas SR-BI KO-HDL more efficiently promotes cholesterol efflux. 相似文献
18.
Lee JY Timmins JM Mulya A Smith TL Zhu Y Rubin EM Chisholm JW Colvin PL Parks JS 《Journal of lipid research》2005,46(10):2233-2245
Patients homozygous for Tangier disease have a near absence of plasma HDL as a result of mutations in ABCA1 and hypercatabolize normal HDL particles. To determine the relationship between ABCA1 expression and HDL catabolism, we investigated intravascular remodeling, plasma clearance, and organ-specific uptake of HDL in mice expressing the human apolipoprotein A-I (apoA-I) transgene in the Abca1 knockout background. Small HDL particles (7.5 nm), radiolabeled with (125)I-tyramine cellobiose, were injected into recipient mice to quantify plasma turnover and the organ uptake of tracer. Small HDL tracer was remodeled to 8.2 nm diameter particles within 5 min in human apolipoprotein A-I transgenic (hA-I(Tg)) mice (control) and knockout mice. Decay of tracer from plasma was 1.6-fold more rapid in knockout mice (P < 0.05) and kidney uptake was twice that of controls, with no difference in liver uptake. We also observed 2-fold greater hepatic expression of ABCA1 protein in hA-I(Tg) mice compared with nontransgenic mice, suggesting that overexpression of human apoA-I stabilized hepatic ABCA1 protein in vivo. We conclude that ABCA1 is not required for in vivo remodeling of small HDLs to larger HDL subfractions and that the hypercatabolism of normal HDL particles in knockout mice is attributable to a selective catabolism of HDL apoA-I by the kidney. 相似文献
19.
Recently, we showed that holo HDL particle uptake and resecretion occur in physiologically relevant cell lines and that HDL uptake is mediated by scavenger receptor class B type I (SR-BI). Furthermore, we established that HDL resecretion is accompanied by [(3)H]cholesterol efflux. This study shows that HDL uptake and resecretion occur even when LDL uptake and cholesterol trafficking are disturbed. First, we used a set of inhibitors that block cholesterol transport out of the lysosome: chloroquine, imipramine, U18666A, and monensin. In all cases, HDL retroendocytosis occurred and HDL resecretion mediated [(3)H]cholesterol efflux, although to a lesser extent. Second, cell lines carrying somatic mutations in intracellular cholesterol transport were used: CHO 2-2 and CHO 3-6 cells accumulated LDL-derived lipid in the lysosome but showed all components of HDL retroendocytosis. SR-BI overexpression increased HDL uptake and resecretion and [(3)H]cholesterol efflux in these mutant cells. Finally, we used Niemann-Pick type C (NPC) patient fibroblast cells, which carry a defect in cholesterol transfer out of the lysosome. NPC fibroblast cells accumulate cholesterol in the lysosome as a result of a mutation in the NPC1 gene. Despite disturbed intracellular cholesterol transfer, NPC fibroblast cells exhibited HDL retroendocytosis and [(3)H]cholesterol efflux via HDL resecretion, although to a lesser extent. Thus, [(3)H]cholesterol efflux via HDL resecretion is independent of the cholesterol uptake pathway via the LDL receptor and may be an alternative way to remove excess cholesterol. 相似文献
20.
High density lipoprotein (HDL) cholesterol has direct effects on numerous cell types that influence cardiovascular and metabolic health. These include endothelial cells, vascular smooth-muscle cells, leukocytes, platelets, adipocytes, skeletal muscle myocytes, and pancreatic β cells. The effects of HDL or apoA-I, its major apolipoprotein, occur through the modulation of intracellular calcium, oxygen-derived free-radical production, numerous kinases, and enzymes, including endothelial nitric-oxide synthase (eNOS). ApoA-I and HDL also influence gene expression, particularly genes encoding mediators of inflammation in vascular cells. In many paradigms, the change in intracellular signaling occurs as a result of cholesterol efflux, with the cholesterol acceptor methyl-β-cyclodextrin often invoking responses identical to HDL or apoA-I. The ABC transporters ABCA1 and ABCG1 and scavenger receptor class B, type I (SR-BI) frequently participate in the cellular responses. Structure-function relationships are emerging for signal initiation by ABCA1 and SR-BI, with plasma membrane cholesterol binding by the C-terminal transmembrane domain of SR-BI uniquely enabling it to serve as a sensor of changes in membrane cholesterol. Further investigation of the processes underlying HDL and apoA-I modulation of intracellular signaling will potentially reveal new prophylactic and therapeutic strategies to optimize both cardiovascular and metabolic health. 相似文献