首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The bacterial flagellar motor is a molecular machine that couples proton or sodium influx to force generation for driving rotation of the helical flagellar filament. In this study, we cloned a gene (motY) encoding a component of the sodium-driven polar flagellar motor in Vibrio alginolyticus. Nucleotide sequence analysis revealed that the gene encodes a 293-amino-acid polypeptide with a single putative transmembrane segment that is very similar (94.5% identity) to the recently described MotY of V. parahaemolyticus. Their C-terminal domains were similar to the C-terminal domains of many peptidoglycan-interacting proteins, e.g., Escherichia coli MotB and OmpA, suggesting that MotY may interact with peptidoglycan for anchoring the motor. By using the lac promoter-repressor system, motY expression was controlled in V. alginolyticus cells. Swimming ability increased with increasing concentrations of the inducer isopropyl-beta-D-thiogalactopyranoside, and the swimming fraction increased after induction. These results are consistent with the notion that MotY is a component of the force-generating unit. V. alginolyticus motY complemented the motY mutation of V. parahaemolyticus. However, motY appeared to lack a region corresponding to the proposed motY promoter of V. parahaemolyticus. Instead, sequences similar to the sigma54 consensus were found in the upstream regions of both species. We propose that they are transcribed from the sigma54 -specific promoters.  相似文献   

2.
Vibrio parahaemolyticus possesses two types of flagella, polar and lateral, powered by distinct energy sources, which are derived from the sodium and proton motive forces, respectively. Although proton-powered flagella in Escherichia coli and Salmonella enterica serovar Typhimurium have been extensively studied, the mechanism of torque generation is still not understood. Molecular knowledge of the structure of the sodium-driven motor is only now being developed. In this work, we identify the switch components, FliG, FliM, and FliN, of the sodium-type motor. This brings the total number of genes identified as pertinent to polar motor function to seven. Both FliM and FliN possess charged domains not found in proton-type homologs; however, they can interact with the proton-type motor of E. coli to a limited extent. Residues known to be critical for torque generation in the proton-type motor are conserved in the sodium-type motor, suggesting a common mechanism for energy transfer at the rotor-stator interface regardless of the driving force powering rotation. Mutants representing a complete panel of insertionally inactivated switch and motor genes were constructed. All of these mutants were defective in sodium-driven swimming motility. Alkaline phosphatase could be fused to the C termini of MotB and MotY without abolishing motility, whereas deletion of the unusual, highly charged C-terminal domain of FliM disrupted motor function. All of the mutants retained proton-driven, lateral motility over surfaces. Thus, although central chemotaxis genes are shared by the polar and lateral systems, genes encoding the switch components, as well as the motor genes, are distinct for each motility system.  相似文献   

3.
Four motor proteins, MotX, MotY, PomA, and PomB, have been identified as constituents of the Na(+)-driven flagellum of Vibrio species. In this study, the complete motX gene was cloned from Vibrio alginolyticus and shown to complement three mot mutations, motX94, motX115, and motX119, as well as a V. parahaemolyticus motX mutant. The motX94 mutant contains a frameshift at Val86 of MotX, while the motX115 and motX119 mutations comprise substitutions of Ala146 to Val and Gln 194 to amber, respectively. When MotX was overexpressed in Vibrio cells, the amount of MotY detected in the membrane fraction increased, and vice versa, suggesting that MotX and MotY mutually stabilize each other by interacting at the membrane level. When a plasmid containing the motX gene was introduced into motY mutants NMB117 (motY117) and VIO542 (motY542), the mutations were suppressed. In contrast, motY could not cause the recovery of any swarm-defective motX mutants studied. Considering the above evidence, we propose that MotX is more directly involved than MotY in the mechanical functioning of the Na(+)-type flagellar motor, and that MotY may stabilize MotX to support its interaction with other Mot proteins.  相似文献   

4.
Flagella act as semirigid helical propellers that are powered by reversible rotary motors. Two membrane proteins, MotA and MotB, function as a complex that acts as the stator and generates the torque that drives rotation. The genome sequence of Pseudomonas aeruginosa PAO1 contains dual sets of motA and motB genes, PA1460-PA1461 (motAB) and PA4954-PA4953 (motCD), as well as another gene, motY (PA3526), which is known to be required for motor function in some bacteria. Here, we show that these five genes contribute to motility. Loss of function of either motAB-like locus was dispensable for translocation in aqueous environments. However, swimming could be entirely eliminated by introduction of combinations of mutations in the two motAB-encoding regions. Mutation of both genes encoding the MotA homologs or MotB homologs was sufficient to abolish motility. Mutants carrying double mutations in nonequivalent genes (i.e., motA motD or motB motC) retained motility, indicating that noncognate components can function together. motY appears to be required for motAB function. The combination of motY and motCD mutations rendered the cells nonmotile. Loss of function of motAB, motY, or motAB motY produced similar phenotypes; although the swimming speed was only reduced to approximately 85% of the wild-type speed, translocation in semisolid motility agar and swarming on the surface of solidified agar were severely impeded. Thus, the flagellar motor of P. aeruginosa represents a more complex configuration than the configuration that has been studied in other bacteria, and it enables efficient movement under different circumstances.  相似文献   

5.
Lateral flagellar gene system of Vibrio parahaemolyticus   总被引:6,自引:0,他引:6       下载免费PDF全文
  相似文献   

6.
Bacterial flagella are powered by a motor that converts a transmembrane electrochemical potential of either H(+) or Na(+) into mechanical work. In Escherichia coli, the MotA and MotB proteins form the stator and function in proton translocation, whereas the FliG protein is located on the rotor and is involved in flagellar assembly and torque generation. The sodium-driven polar flagella of Vibrio species contain homologs of MotA and MotB, called PomA and PomB, and also contain two other membrane proteins called MotX and MotY, which are essential for motor rotation and that might also function in ion conduction. Deletions in pomA, pomB, motX, or motY in Vibrio cholerae resulted in a nonmotile phenotype, whereas deletion of fliG gave a nonflagellate phenotype. fliG genes on plasmids complemented fliG-null strains of the parent species but not fliG-null strains of the other species. FliG-null strains were complemented by chimeric FliG proteins in which the C-terminal domain came from the other species, however, implying that the C-terminal part of FliG can function in conjunction with the ion-translocating components of either species. A V. cholerae strain deleted of pomA, pomB, motX, and motY became weakly motile when the E. coli motA and motB genes were introduced on a plasmid. Like E. coli, but unlike wild-type V. cholerae, motility of some V. cholerae strains containing the hybrid motor was inhibited by the protonophore carbonyl cyanide m-chlorophenylhydrazone under neutral as well as alkaline conditions but not by the sodium motor-specific inhibitor phenamil. We conclude that the E. coli proton motor components MotA and MotB can function in place of the motor proteins of V. cholerae and that the hybrid motors are driven by the proton motive force.  相似文献   

7.
The polar flagellum of Vibrio alginolyticus rotates remarkably fast (up to 1,700 revolutions per second) by using a motor driven by sodium ions. Two genes, motX and motY, for the sodium-driven flagellar motor have been identified in marine bacteria, Vibrio parahaemolyticus and V. alginolyticus. They have no similarity to the genes for proton-driven motors, motA and motB, whose products constitute a proton channel. MotX was proposed to be a component of a sodium channel. Here we identified additional sodium motor genes, pomA and pomB, in V. alginolyticus. Unexpectedly, PomA and PomB have similarities to MotA and MotB, respectively, especially in the predicted transmembrane regions. These results suggest that PomA and PomB may be sodium-conducting channel components of the sodium-driven motor and that the motor part consists of the products of at least four genes, pomA, pomB, motX, and motY. Furthermore, swimming speed was controlled by the expression level of the pomA gene, suggesting that newly synthesized PomA proteins, which are components of a force-generating unit, were successively integrated into the defective motor complexes. These findings imply that Na+-driven flagellar motors may have similar structure and function as proton-driven motors, but with some interesting differences as well, and it is possible to compare and study the coupling mechanisms of the sodium and proton ion flux for the force generation.  相似文献   

8.
The bacterial flagellar motor is a tiny molecular machine that uses a transmembrane flux of H(+) or Na(+) ions to drive flagellar rotation. In proton-driven motors, the membrane proteins MotA and MotB interact via their transmembrane regions to form a proton channel. The sodium-driven motors that power the polar flagellum of Vibrio species contain homologs of MotA and MotB, called PomA and PomB. They require the unique proteins MotX and MotY. In this study, we investigated how ion selectivity is determined in proton and sodium motors. We found that Escherichia coli MotA/B restore motility in DeltapomAB Vibrio alginolyticus. Most hypermotile segregants isolated from this weakly motile strain contain mutations in motB. We constructed proteins in which segments of MotB were fused to complementary portions of PomB. A chimera joining the N terminus of PomB to the periplasmic C terminus of MotB (PotB7(E)) functioned with PomA as the stator of a sodium motor, with or without MotX/Y. This stator (PomA/PotB7(E)) supported sodium-driven motility in motA or motB E.coli cells, and the swimming speed was even higher than with the original stator of E.coli MotA/B. We conclude that the cytoplasmic and transmembrane domains of PomA/B are sufficient for sodium-driven motility. However, MotA expressed with a B subunit containing the N terminus of MotB fused to the periplasmic domain of PomB (MomB7(E)) supported sodium-driven motility in a MotX/Y-dependent fashion. Thus, although the periplasmic domain of PomB is not necessary for sodium-driven motility in a PomA/B motor, it can convert a MotA/B proton motor into a sodium motor.  相似文献   

9.
Agrobacterium tumefaciens C58 was mutagenized with a mini-Tn5 transposon containing a promoterless gene encoding the green fluorescent protein (GFP). A mutant, CGS74, exhibited a higher GFP expression level in liquid media than on solid media. The ability of the mutant to cause tumors on plants was attenuated. Sequence analysis showed that the transposon was inserted at the fliG gene, which encodes a flagellar motor switch protein required for flagellar movement. Studies of the fliG-gfp fusion gene indicated that the promoter activity of the fliG gene was higher in liquid than in solid media. Electron microscopy studies demonstrated that the mutant was nonflagellate. This suggests that the A. tumefaciens motility is important for virulence and that bacterial flagellar synthesis occurs at a higher level in a liquid environment than in a solid environment, perhaps resulting in a higher motility.  相似文献   

10.
The bacterial flagellar motor is a molecular machine that converts ion flux across the membrane into flagellar rotation. The coupling ion is either a proton or a sodium ion. The polar flagellar motor of the marine bacterium Vibrio alginolyticus is driven by sodium ions, and the four protein components, PomA, PomB, MotX, and MotY, are essential for motor function. Among them, PomA and PomB are similar to MotA and MotB of the proton-driven motors, respectively. PomA shows greatest similarity to MotA of the photosynthetic bacterium Rhodobacter sphaeroides. MotA is composed of 253 amino acids, the same length as PomA, and 40% of its residues are identical to those of PomA. R. sphaeroides MotB has high similarity only to the transmembrane region of PomB. To examine whether the R. sphaeroides motor genes can function in place of the pomA and pomB genes of V. alginolyticus, we constructed plasmids including both motA and motB or motA alone and transformed them into missense and null pomA-paralyzed mutants of V. alginolyticus. The transformants from both strains showed restored motility, although the swimming speeds were low. On the other hand, pomB mutants were not restored to motility by any plasmid containing motA and/or motB. Next, we tested which ions (proton or sodium) coupled to the hybrid motor function. The motor did not work in sodium-free buffer and was inhibited by phenamil and amiloride, sodium motor-specific inhibitors, but not by a protonophore. Thus, we conclude that the proton motor component, MotA, of R. sphaeroides can generate torque by coupling with the sodium ion flux in place of PomA of V. alginolyticus.  相似文献   

11.
12.
The bacterial flagellar motor is a molecular machine that couples the influx of specific ions to the generation of the force necessary to drive rotation of the flagellar filament. Four integral membrane proteins, PomA, PomB, MotX, and MotY, have been suggested to be directly involved in torque generation of the Na(+)-driven polar flagellar motor of Vibrio alginolyticus. In the present study, we report the isolation of the functional component of the torque-generating unit. The purified protein complex appears to consist of PomA and PomB and contains neither MotX nor MotY. The PomA/B protein, reconstituted into proteoliposomes, catalyzed (22)Na(+) influx in response to a potassium diffusion potential. Sodium uptake was abolished by the presence of Li(+) ions and phenamil, a sodium channel blocker. This is the first demonstration of a purification and functional reconstitution of the bacterial flagellar motor component involved in torque generation. In addition, this study demonstrates that the Na(+)-driven motor component, PomA and PomB, forms the Na(+)-conducting channel.  相似文献   

13.
14.
15.
Effects of mot gene expression on the structure of the flagellar motor   总被引:33,自引:0,他引:33  
Direct freezing procedures have enabled us to visualize distinctive intramembrane particle ring structures in the cytoplasmic membranes of peritrichously flagellated bacteria by means of freeze-fracture electron microscopy. These structures were identified as flagellar motor components because their distribution matched that of flagella, and because they were absent in non-flagellated mutants of Escherichia coli. Particle rings were present in both the Gram-positive Streptococcus and the Gram-negative E. coli. In E. coli, a non-functional mocha operon produced flagellated but immotile cells lacking the particle rings. Simultaneous introduction of the motA and motB genes, led to recovery of both motility and the ring structures but neither gene alone was sufficient. The concomitant loss of the rings and motility is consistent with the ring particles having a central role in the flagellar motor.  相似文献   

16.
MotX, the channel component of the sodium-type flagellar motor.   总被引:15,自引:9,他引:6       下载免费PDF全文
Thrust for propulsion of flagellated bacteria is generated by rotation of a propeller, the flagellum. The power to drive the polar flagellar rotary motor of Vibrio parahaemolyticus is derived from the transmembrane potential of sodium ions. Force is generated by the motor on coupling of the movement of ions across the membrane to rotation of the flagellum. A gene, motX, encoding one component of the torque generator has been cloned and sequenced. The deduced protein sequence is 212 amino acids in length. MotX was localized to the membrane and shown to interact with MotY, which is the presumed stationary component of the motor. Overproduction of MotX, but not that of a nonfunctional mutant MotX, was lethal to Escherichia coli. The rate of lysis caused by induction of motX was proportional to the sodium ion concentration. Li+ and K+ substituted for Na+ to promote lysis, while Ca2+ did not enhance lysis. Protection from the lethal effects of induction of motX was afforded by the sodium channel blocker amiloride. The data suggest that MotX forms a sodium channel. The deduced protein sequence for MotX shows no homology to its ion-conducting counterpart in the proton-driven motor; however, in possessing only one hydrophobic domain, it resembles other channels formed by small proteins with single membrane-spanning domains.  相似文献   

17.
We have shown that a hybrid motor consisting of proton-type Rhodobacter sphaeroides MotA and sodium-type VIBRIO: alginolyticus PomB, MotX and MotY, can work as a sodium-driven motor in VIBRIO: cells. In this study, we tried to substitute the B subunits, which contain a putative ion-binding site in the transmembrane region. Rhodobacter sphaeroides MotB did not work with either MotA or PomA in Vibrio cells. Therefore, we constructed chimeric proteins (MomB), which had N-terminal MotB and C-terminal PomB. MomB proteins, with the entire transmembrane region derived from the H(+)-type MotB, gave rise to an Na(+) motor with MotA. The other two MomB proteins, in which the junction sites were within the transmembrane region, also formed Na(+) motors with PomA, but were changed for Na(+) or Li(+) specificity. These results show that the channel part consisting of the transmembrane regions from the A and B subunits can interchange Na(+)- and H(+)-type subunits and this can affect the ion specificity. This is the first report to have changed the specificity of the coupling ions in a bacterial flagellar motor.  相似文献   

18.
19.
The four motor proteins PomA, PomB, MotX and MotY, which are believed to be stator proteins, are essential for motility by the Na(+)-driven flagella of Vibrio alginolyticus. When we purified the flagellar basal bodies, MotX and MotY were detected in the basal body, which is the supramolecular complex comprised of the rotor and the bushing, but PomA and PomB were not. By antibody labelling, MotX and MotY were detected around the LP ring. These results indicate that MotX and MotY associate with the basal body. The basal body had a new ring structure beneath the LP ring, which was named the T ring. This structure was changed or lost in the basal body from a DeltamotX or DeltamotY strain. The T ring probably comprises MotX and MotY. In the absence of MotX or MotY, we demonstrated that PomA and PomB were not localized to a cell pole. From the above results, we suggest that MotX and MotY of the T ring are involved in the incorporation and/or stabilization of the PomA/PomB complex in the motor.  相似文献   

20.
Archaeal flagella are unique motility structures, and the absence of bacterial structural motility genes in the complete genome sequences of flagellated archaeal species suggests that archaeal flagellar biogenesis is likely mediated by novel components. In this study, a conserved flagellar gene family from each of Methanococcus voltae, Methanococcus maripaludis, Methanococcus thermolithotrophicus, and Methanococcus jannaschii has been characterized. These species possess multiple flagellin genes followed immediately by eight known and supposed flagellar accessory genes, flaCDEFGHIJ. Sequence analyses identified a conserved Walker box A motif in the putative nucleotide binding proteins FlaH and FlaI that may be involved in energy production for flagellin secretion or assembly. Northern blotting studies demonstrated that all the species have abundant polycistronic mRNAs corresponding to some of the structural flagellin genes, and in some cases several flagellar accessory genes were shown to be cotranscribed with the flagellin genes. Cloned flagellar accessory genes of M. voltae were successfully overexpressed as His-tagged proteins in Escherichia coli. These recombinant flagellar accessory proteins were affinity purified and used as antigens to raise polyclonal antibodies for localization studies. Immunoblotting of fractionated M. voltae cells demonstrated that FlaC, FlaD, FlaE, FlaH, and FlaI are all present in the cell as membrane-associated proteins but are not major components of isolated flagellar filaments. Interestingly, flaD was found to encode two proteins, each translated from a separate ribosome binding site. These protein expression data indicate for the first time that the putative flagellar accessory genes of M. voltae, and likely those of other archaeal species, do encode proteins that can be detected in the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号