首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Gal repressosome contains an antiparallel DNA loop   总被引:6,自引:0,他引:6  
Gal repressosome assembly and repression of the gal operon in Escherichia coli occurs when two dimeric GalR proteins and the histone-like HU protein bind to cognate sites causing DNA looping. Structure-based genetic analysis defined the GalR surfaces interacting to form a stacked, V-shaped, tetrameric structure. Stereochemical models of the four possible DNA loops compatible with the GalR tetramer configuration were constructed using the sequence-dependent structural parameters of the interoperator DNA and conformation changes caused by GalR and asymmetric HU binding. Evaluation of their DNA elastic energies gave unambiguous preference to a loop structure in which the two gal operators adopt an antiparallel orientation causing undertwisting of DNA.  相似文献   

5.
6.
7.
8.
9.
Efficient repression of the two promoters P1 and P2 of the gal operon requires the formation of a DNA loop encompassing the promoters. In vitro, DNA looping-mediated repression involves binding of the Gal repressor (GalR) to two gal operators (OE and OI) and binding of the histone-like protein HU to a specific locus (hbs) about the midpoint between OE and OI, and supercoiled DNA. Without DNA looping, GalR binding to OE partially represses P1 and stimulates P2. We investigated the requirement for DNA supercoiling and HU in repression of the gal promoters in vivo in strains containing a fusion of a reporter gene, gusA or lacZ, to each promoter individually. While the P1 promoter was found to be repressible in the absence of DNA supercoiling and HU, the repression of P2 was entirely dependent upon DNA supercoiling in vivo. The P2 promoter was fully derepressed when supercoiling was inhibited by the addition of coumermycin in cells. P2, but not P1, was also totally derepressed by the absence of HU or the OI operator. From these results, we propose that the repression of the gal promoters in vivo is mediated by the formation of a higher order DNA-multiprotein complex containing GalR, HU and supercoiled DNA. In the absence of this complex, P1 but not P2 is still repressed by GalR binding to OE. The specific nucleoprotein complexes involving histone-like proteins, which repress promoter activity while remaining sensitive to inducing signals, as discussed, may occur more generally in bacterial nucleoids.  相似文献   

10.
Signal integration in the galactose network of Escherichia coli   总被引:1,自引:1,他引:0  
  相似文献   

11.
Chatterjee S  Ghosh K  Dhar A  Roy S 《Proteins》2002,49(4):554-559
Gal repressor (GalR) binds D-galactose, which is responsible for lifting of repression of the gal operon. Proton T1 measurements of alpha- and beta-anomers of galactose as a function of gal repressor show preferential binding of the beta-anomer. The beta-anomer was isolated by high-performance liquid chromatography and was shown to bind tightly to GalR. Calorimetry was used to determine enthalpy changes at several temperatures. Heat capacity change was found to be positive, indicating that a significant amount of hydrophobic surface area was exposed upon galactose binding. Bis-ANS binding to GalR is significantly enhanced in the presence of a saturating amount of galactose, indicating additional exposure of hydrophobic surfaces. We propose that the galactose-induced conformational change involves the opening of the two subdomains, which may disrupt protein-protein interactions responsible for repression.  相似文献   

12.
The galactose regulon of Escherichia coli   总被引:5,自引:2,他引:3  
  相似文献   

13.
14.
15.
16.
17.
18.
The galR gene, which encodes the Gal repressor protein in Escherichia coli, has been fused to the strong pL promoter of bacteriophage lambda in plasmid pKC31. The pL promoter is kept repressed by a thermolabilie lambda repressor, CIts857, to prevent cell killing. Heat induction of the pL-galR fusion plasmid synthesizes large amounts of active Gal repressor. The protein has been purified to homogeneity in three steps. The purification is greatly aided by the reversible insolubility of active repressor in crude extract at salt concentrations of less than 200 mM. The amino-terminal amino acid sequence determined by automated Edman degradation is: N-Ala-Thr-Ile-Lys-Asp-Val-Ala-Arg-Leu-Ala-Gly-Val-Ser-Val-Ala-Thr-Val-. Comparison of this sequence with that deduced from the DNA sequence of the galR gene showed that the formyl methionine residue preceding alanine at position 1 is cleaved off. The repressor is present in solution as a dimer of a 37-kDa subunit. The protein binds to gal DNA containing wild type and not mutant operator sequences. As predicted, this sequence-specific binding is inhibited by the presence of D-galactose or D-fucose, both of which are in vivo inducers of the gal operon. Gal repressor inhibits the expresison of gal operon by binding to two spatially separated operators which flank, but do not overlap, the gal promoter segment. Experiments to study the mechanism of repressor action are discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号