首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new simple fast and reproducible purification procedure for the proteinase from rat liver mitochondria has been worked out. The specificity of cleavage of peptide bonds in glucagon, oxidized A and B chains of insulin and yeast proteinase B inhibitor by the proteinase of the inner mitochondrial membrane has been studied. The proteinase hydrolyzed three peptide bonds in glucagon, Tyr (13) - Leu (14), Trp (25) - Leu (26) and Phe (22) - Val (23) (minor cleavage site); none in the insulin A chain; one in the B chain of insulin, Tyr (16) - Leu (17); and three in the yeast proteinase B inhibitor, Phe (4) - Ile (5), Phe (20) - Leu (21) and Tyr (41) - Thr (42) (minor cleavage site).Thus, the mitochondrial proteinase cleaves peptide bonds at the carboxyl site of an aromatic amino acid and the amino site of a leucine, isoleucine, threonine or valine. The comparison with chymotrypsin A shows that the mitochondrial proteinase cleaves peptide bonds in a more restricted manner.  相似文献   

2.
Protein samples prepared for sodium dodecyl sulfate-polyacrylamide gel electrophoresis are preferentially cleaved at aspartyl-prolyl peptide bonds upon heating at 110 degrees C. The presence of aspartyl-prolyl peptide bonds in a protein can therefore be detected by gel electrophoresis of heated samples and the resulting peptides mapped. The method of heat cleavage also works well with proteins in bands cut from electrophoresed gels using modified stacking conditions in the second electrophoresis. An immunoblotting procedure for peptide mapping of nanogram quantities of specific proteins in complex mixtures is demonstrated. Peptide maps produced by aspartyl-prolyl peptide bond cleavage of fructose-1,6-bisphosphatases from different sources show the effectiveness of the above techniques and suggest a conservation of aspartyl-prolyl peptide bonds in pig kidney and mouse and rat liver fructose-1,6-bisphosphatases.  相似文献   

3.
Trypsin cleaves specifically peptide bonds at the C-terminal side of lysine and arginine residues, except for -Arg-Pro- and -Lys-Pro- bonds which are normally resistant to proteolysis. Here we report evidence for a -Lys-Pro- tryptic cleavage in modified oligotuftsin derivatives, Ac-[TKPKG]4-NH2) (1), using high-resolution mass spectrometry and HPLC as primary methods for analysis of proteolytic reactions. The proteolytic susceptibility of -Lys-Pro- bonds was strongly dependent on flanking residues, and the flexibility of the peptide backbone might be a prerequisite for this unusual cleavage. While -Lys-Gly- bonds in 1 were rapidly cleaved, the modification of these Lys residues by the attachment of a ss-amyloid(4-10) epitope to yield -Lys(X)-Gly derivatives prevented cleavage of this bond, and provided trypsin cleavage of -Lys-Pro- bonds, the pathway of this degradation being independent on the type of Lys-N(epsilon)-side chains (acetyl group, amino acid, peptide). Substitution of the Lys residues by Ala at the P'2 positions decreased the tryptic cleavage, while replacement of the bulky side chain of Thr at the P2 positions strongly increased the cleavage of -Lys-Pro- bonds. Circular dichroism (CD) data of the modified oligotuftsin derivatives are in accord with enhanced flexibility of the peptide backbone, as a prerequisite for increased susceptibility to cleavage of -Lys-Pro- bonds. These results obtained of oligotuftsin derivatives might have implications for the proteolytic degradation of target peptides that require specific conformational preconditions.  相似文献   

4.
The cysteine-rich peptide hepcidin is an antimicrobial peptide and iron transport regulator that has been found in vertebrates including birds, fish and mammals. To elucidate the structure and biological function of fish hepcidin, which is difficult to produce synthetically, we have cloned several plasmid constructs encoding hepcidin from Japanese flounder, Paralichthys olivaceus, and tested expression of recombinant peptides, each with an N-terminal hexahistidine (6xHis) tag, in inclusion bodies or the periplasmic space of Escherichia coli. Hepcidin expressed in inclusion bodies was reduced, and subsequently refolded using a dilution technique with a cysteine redox system. The oxidized His-hepcidin monomer was separated from protein multimers and mass spectrometry analysis showed that the peptide was of the predicted size and contained four disulfide bonds. Removal of the 6xHis tag was attempted using enzymatic cleavage by Factor Xa and tobacco etch virus (TEV) protease or chemical cleavage by hydroxylamine. The Factor Xa cleavage was unsuccessful and hydroxylamine cleavage resulted in aggregation of cleaved peptide. TEV protease cleavage was successful but immediately resulted in hexamer formation despite varying reaction conditions (redox, non-redox, pH, temperature, target protein concentration, type of buffer). However, the recombinant His-hepcidin fusion peptide monomer showed considerable antimicrobial activity. NMR-based studies showed that hepcidin contained a rare vicinal disulfide linkage at the top of a loop structure and a short beta-sheet structure encompassing residues 7-13 and 19-25 that is stabilized by three disulfide bonds.  相似文献   

5.
The structural basis for neutrophil inactivation of C1 inhibitor.   总被引:8,自引:2,他引:6       下载免费PDF全文
Limited proteolysis of C1 inhibitor (C1-INH) by neutrophil elastase, Pseudomonas elastase and snake venoms resulted in initial cleavage within the molecule's N-terminus followed by further cleavage within the molecule's C-terminally placed reactive centre. N-Terminal proteolysis occurred at peptide bonds 14-15, 36-37 and 40-41. This had no effect on either the inhibitory activity or the heat-stability of C1-INH. Proteolysis within the reactive centre occurred at peptide bonds 439-440, 440-441, 441-442 and 442-443. Cleavage at any one of these sites inactivated C1-INH and conferred enhanced heat-stability upon a previously heat-labile molecule. Released neutrophil proteinases also cleaved and inactivated C1-INH, suggesting that they may physiologically regulate C1-INH during inflammatory episodes.  相似文献   

6.
Knowledge of cleavage site specificity and activity are major prerequisites for understanding protease function. On the basis of a recently presented approach for proteomic identification of cleavage sites (PICS) in proteome-derived peptide libraries, we developed an isobaric labeling quantitative LC-MALDI-TOF/TOF MS/MS approach (Q-PICS) for simultaneous determination of cleavage site specificity and robust relative quantification of proteolytic events. For GluC-protease, 737 cleavage sites were identified in a yeast proteome-derived peptide library; 94.0% showed the typical GluC specificity for peptide bonds at glutamyl and aspartyl residues. The six-plex tandem mass tagging strategy allowed for three simultaneous replicates in a single run, guaranteeing high confidence and robust statistics for quantitative measurements. Using the quantitative capacity of Q-PICS, we performed a comparison of cleavage site specificity of GluC in two different buffer systems. The results support earlier findings describing that apparent difference between the buffer systems are probably caused by the inhibitory effect of bicarbonate on the overall GluC activity and that the preference for Glu-X bonds compared to Asp-X bonds is independent of the buffer system used.  相似文献   

7.
Treatment of carboxymethylated actin with o-iodosobenzoic acid (Mahoney, W.C., and Hermodson, M.A. (1979) Biochemistry, 18, 3810–3814) did not produce the peptide pattern expected on the basis of specific peptide bond cleavage at tryptophanyl bonds. Isolation and amino acid sequence characterization of peptides from the digest indicated that in addition to cleavage at Trp residues, cleavages occurred at Tyr-53, Tyr-198, Tyr-218, Tyr-239 and probably at Tyr-91. These results indicate that the specificity of o-iodosobenzoic acid as a reagent for peptide bond cleavage is wider than previously reported. A simple explanation for the different susceptibilities of tyrosyl-containing peptide bonds to cleavage was not apparent from inspection of the sequences adjacent to these residues.  相似文献   

8.
Rabbit myelin basic protein (BP) contains several Arg-X bonds with differing susceptibilities to thrombic cleavage as measured by the yields of the various cleavage products obtained under three different conditions. Under conditions where the thrombin-to-substrate ratio was very low (1 NIH unit/mg BP), the concentration of substrate was relatively low (4 mg BP/ml), and the incubation time was short (2 h), the rabbit BP was cleaved essentially completely and specifically at a single site, the Arg(95)-Thr(96) bond. The BPs of other species (beef, pig, guinea pig, rat) were similarly cleaved, no doubt because all have the same amino acid sequence in this region of the protein. Under conditions in which the enzyme-to-substrate ratio and the substrate concentration were higher (2 NIH units/mg BP, 8 mg BP/ml) and the incubation time was long (24 h), additional, partial cleavages occurred, principally at the Arg(43)-Phe(44) and Arg(128)-Ala(129) bonds, but with some cleavage at the Arg(31)-His(32) and Arg(63)-Thr(64) bonds as well. Under conditions in which all three variables were elevated (5 NIH units/mg peptide, 20 mg peptide/ml, 24 h), more extensive cleavage occurred at the above sites. In peptide (96-168), which we examined in detail, nearly complete cleavage of the Arg(128)-Ala(129) bond occurred, with partial cleavage at the unmethylated Arg(105)-Gly(106), Arg(111)-Phe(112), Arg(150)-Leu(151), and Arg(160)-Ser(161) bonds. The susceptibilities to cleavage of the Arg-X bonds in the BP can be explained with varying degrees of success in terms of the known specificity of thrombin. Cleavage of two of the bonds, Arg(128)-Ala(129) and Arg(160)-Ser(161), suggests the occurrence of a chain reversal or beta-turn in the sequence preceding the scissile bonds. Most cleavages of the BP with thrombin do not occur in the more hydrophobic regions; in particular, the hydrophobic region in the center of the molecule that includes the Phe-Phe(87-88) sequence is left intact.  相似文献   

9.
For about twenty years, there has been a dramatic increase in the number of methods available for cleaving a peptide chain specially at certain amino acid residues (methionine, tryptophan, etc). We extensively treated the chemical cleavage of methionyl-X bonds by cyanogen bromide and tryptophanyl-X bonds by BNPS-skatole and iodosobenzoic acid and other reagents. The cleavage of X-cysteinyl bonds by “Cyssor” and by nitro-thiocyanobenzoic acid is also treated. The special cases of Asp-Pro and Asn-Gly bonds were also dealt with. Most of the mechanisms of reaction of chemical cleavage are dealt with. The use of scavenger reagents to prevent side reactions during the chemical cleavage was also treated in detail. The chemically cleaved residues occur only infrequently in the peptide chain and if well distributed, a small number of daughter peptides are produced. Therefore the overlapping of the enzymatic and chemical produced peptides is greatly facilitated.  相似文献   

10.
An endopeptidase was solubilized and highly purified from the synaptosomal membrane fraction of guinea pig brain, and its specificity of action on various neuropeptides was investigated. It hydrolyzed specifically the Pro10-Tyr11 bond of neurotensin and showed a marked specificity toward Pro-X bonds present in the interior parts of various neuropeptides and related peptides. No cleavage, however, was observed at the first and second peptide bonds from the NH2-termini or from the COOH-termini of the peptides examined, suggesting that the enzyme requires both NH2- and COOH-terminal extentions of at least 3 residues from the scissile bond for its action. In addition, a limited number of other peptide bonds were cleaved, indicating that the enzyme is not strictly specific to Pro-X bonds. These results suggest the possible implication of this enzyme in the specific degradation of neurotensin and other peptide neurotransmitters in the synaptic cleft.  相似文献   

11.
Hitherto the mechanisms controlling the selective cleavage of peptide bonds by the 20 S proteasome have been poorly understood. The observation that peptide bond cleavage may eventually occur at the carboxyl site of either amino acid residue rules out a simple control of cleavage preferences by the P1 residue alone. Here, we follow the rationale that the presence of specific cleavage-determining amino acids motifs (CDAAMs) around the scissile peptide bond are required for the attainment of substrate conformations susceptible to cleavage. We present an exploratory search for these putative motifs based on empirical regression functions relating the cleavage probability for a given peptide bond to some selected side-chain properties of the flanking amino acid residues. Identification of the sequence locations of cleavage-determining residues relative to the scissile bond and of their optimal side-chain properties was carried out by fitting the cleavage probability to (binary) experimental observations on peptide bond cleavage gathered among a set of seven different peptide substrates with known patterns of proteolytic degradation products. In this analysis, all peptide bonds containing the same residue in the P1 position were assumed to be cleaved by the same active sites of the proteasome, and thus to be under control of the same CDAAMs. We arrived at a final set of ten different CDAAMs, accounting for the cleavage of one to five different groups of peptide bonds with an overall predictive correctness of 93 %. The CDAAM is composed of two to four "anchor" positions preferentially located between P5 and P5' around the scissile bond. This implies a length constraint for the usage of cleavage sites, which could considerably suppress the excision of shorter fragments and thus partially explain for the observed preponderance of medium-size cleavage products.  相似文献   

12.
The time course of the interaction between trypsin and a synthetic peptide corresponding to a segment (residues 676-703) of the bait region (residues 666-706) of human alpha 2-macroglobulin (alpha 2M) was studied by measuring the generation of cleavage products as a function of time by HPLC. Three primary cleavage sites for trypsin were present in the synthetic peptide. The fastest cleavage occurred at the bond corresponding to Arg696-Leu in alpha 2M with an estimated kcat/Km = 1-2 x 10(6) M-1.s-1. This value is of the same magnitude as that characterizing the interaction of alpha 2M and trypsin when taking into account the fact that alpha 2M is a tetramer, kcat/Km = 5 x 10(6) M-1.s-1 [Christensen, U. & Sottrup-Jensen, L. (1984) Biochemistry 23, 6619-6626]. The values of kcat/Km for cleavage at bonds corresponding to Arg681-Val and Arg692-Gly in alpha 2M were 1.5 x 10(5) M-1.s-1 and 1.3 x 10(5) M-1.s-1, respectively. Cleavage of intermediate product peptides was slower, with kcat/Km in the range 13-1.3 x 10(6) M-1.s-1. The value of Km determined for fast cleavage in the synthetic peptide was 8-10 microM. 1H-NMR spectroscopy indicated no ordered structure of the peptide. Hence, the very fast cleavage of the peptide is compatible with a loose structure that readily adopts a conformation favorable for recognition and cleavage by trypsin.  相似文献   

13.
Proteasomes are multicatalytic cellular protease complexes that degrade intracellular proteins into smaller peptides. Proteasomal in vitro digests have revealed that the various peptide bonds of a given substrate are cleaved in a highly selective manner. Regarding the key role of proteasomes as the main supplier of antigenic peptides for MHC class I-mediated antigen presentation, it is important to know to what extent these preferences for specific peptide bonds may vary among proteasomes of different cellular origin and of different subunit composition. Here, we quantify such cleavage rates by means of a kinetic proteasome model that relates the time-dependent changes of the amount of any generated peptide to the rates with which this peptide can be either generated from longer precursor peptides or degraded into smaller successor peptides. Numerical values for these rates are estimated by minimizing the distance between simulated and measured time-courses. The proposed method is applied to kinetic data obtained by combining HPLC fractionation and mass spectrometry (MS) to trace the degradation of two model peptides (pp89-25mer and LLO-27mer) by either the constitutive (T2) or immunoproteasome (T2.27). To convert the intensity of the MS signals into the respective peptide amounts, we use two methods leading to similar results: experimental calibration curves and theoretically determined linear scaling functions based on a novel approach using mass conservation rules. Comparison of the cleavage probabilities and procession rates obtained for the two types of proteasomes reveals that the striking differences between the time-dependent peptide profiles can be accounted for mainly by a generally higher turnover rate of the immunoproteasome. For the pp89-25mer, there is no significant change of the cleavage probabilities for any of the ten observed cleavage sites. For the LLO-27mer, there appears to be a significant change in the cleavage probabilities for four of the nine observed cleavage sites when switching from the constitutive to the immunoproteasome.  相似文献   

14.
5-Methyltetrahydrofolate cannot be cleaved at the C9N10 bond by the zinc/HCl reductive or the permanganate oxidative cleavage methods. A new method has been developed to perform this cleavage, using peracetic acid in 50% trifluoroacetic acid; the cleavage is quantitative and nondestructive of γ-glutamyl peptide bonds.  相似文献   

15.
Recombinant rat insulysin was shown to cleave the internally quenched fluorogenic peptide 2-aminobenzyl-GGFLRKVGQ-ethylenediamine-2,4-dinitrophenol at the R-K bond, exhibiting a K(m) of 13 microm and a V(max) of 2.6 micromol min(-1) mg(-1). Derivatives of this peptide in which the P(2) leucine or the P(2)' valine were replaced with other residues were used to probe the subsite specificity of the enzyme. Varying the P(2) residue produced a 4-fold range in K(m) and a 7-fold range in k(cat). The nature of the P(2) residue had a significant effect on the site of cleavage. Leucine, isoleucine, valine, and aspartate produced cleavage at the R-K bond. Asparagine produced 36% cleavage at the N-R bond and 64% cleavage at the R-K bond, whereas with alanine or serine the A-R and S-R bonds were the major cleavage sites. With tyrosine, phenylalanine, methionine, or histidine representing the varied residue X, cleavages at F-X, X-R, and R-K were seen, whereas with tryptophan equal cleavage occurred at the F-W and W-R bonds. Variable P(2)' residues produce less of a change in both K(m) and k(cat) and have little influence on the cleavage site. Exceptions are phenylalanine, tyrosine, leucine, and isoleucine, which in addition to producing cleavage at the R-K bond, produce significant cleavage at the L-R bond. Alanine and tyrosine were unique in producing cleavage at the F-L bond. Taken together, these data suggest that insulysin specificity is directed toward the amino side of hydrophobic and basic residues and that the enzyme has an extended substrate binding site.  相似文献   

16.
We have studied the time sequence degradation of native insulin by insulin protease from human fibroblast using multiple steps involving purification of the products by high performance liquid chromatography, determination of peak composition by amino acid sequence analysis, and confirmation of structure by mass spectrometry and thus elucidated the sites of cleavage of insulin by human insulin protease. We observed that as early as 0.5 min of incubation, three major new peptide peaks, intact insulin, and four smaller peptide peaks can be detected. The major peptides are portions of the insulin molecule, with the amino ends of the A and B chains or the carboxyl ends of the A and B chains still connected by disulfide bonds. Peptide peak I is A1-13-B1-9. Peptide peak II is A1-14-B1-9. Peptide peak III is A14-21-B14-30. The smaller peptide peaks are A14-21-B17-30, A15-21-B14-30, A15-21-B10-30, and A14-21-B10-30. The major peptide bond cleavage sites therefore consist of A13-14, A14-15, B9-10, B13-14, and B10-17. With longer incubation times, peptide peak II appears to lose the A14 tyrosine to form peptide peak I. This peptide I, which is the amino end of the A and B chains, is not further degraded even after 1.5 h of incubation. With longer incubation times, the peptides containing the carboxyl ends of the A and B chains are further degraded to form products from cleavage at the A18-19, B14-15, B25-26, and a small amount of A19-20, B10-11, and B24-25 cleavage and the emergence of 2-5-amino acid peptide chains, tyrosine, alanine, histidine, and leucine-tyrosine. We conclude, based on the three-dimensional structure of insulin, that human insulin protease recognizes the alpha-helical regions around leucine-tyrosine bonds and that final degradation steps to small peptides do not require lysosomal involvement.  相似文献   

17.
A major goal of this paper was to estimate a dynamic range of equilibrium constant for the opening of a single peptide bond in a model protein, bovine pancreatic trypsin inhibitor (BPTI). Ten mutants of BPTI containing a single Xaa-->Met substitution introduced in different parts of the molecule were expressed in Escherichia coli. The mutants were folded, purified to homogeneity, and cleaved with cyanogen bromide to respective cleaved forms. Conformation of the intact mutants was similar to the wildtype, as judged from their circular dichroism spectra. Substantial conformational changes were observed on the chemical cleavage of three single peptide bonds--Met46-Ser, Met49-Cys, and Met53-Thr--located within the C-terminal helix. Cleavage of those peptide bonds caused a significant destabilization of the molecule, with a drop of the denaturation temperature by 56.4 degrees C to 68 degrees C at pH 4.3. Opening of the remaining seven peptide bonds was related to a 10.8 degrees C to 39.4 degrees C decrease in T(den). Free energies of the opening of 10 single peptide bonds in native mutants (Delta G(op,N)) were estimated from the thermodynamic cycle that links denaturation and cleavage free energies. To calculate those values, we assumed that the free energy of opening of a single peptide bond in the denatured state (Delta G(op,D)) was equal to -2.7 kcal/mole, as reported previously. Calculated Delta G(op,N) values in BPTI were in the range from 0.2 to 10 kcal/mole, which was equivalent to a >1 million-fold difference in equilibrium constants. The values of Delta G(op,N) were the largest for peptide bonds located in the C-terminal helix and significantly lower for peptide bonds in the beta-structure or loop regions. It appears that opening constants for single peptide bonds in various proteins span across 33 orders of magnitude. Typical equilibrium values for a single peptide bond opening in a protein containing secondary structure elements fall into negligibly low values, from 10(-3) to 10(-8), and are efficient to ensure stability against proteolysis.  相似文献   

18.
Staphylococcus aureus strain V8 protease is a serine endopeptidase which cleaves peptide bonds at the carboxyl side of Glu and Asp. Specific cleavage at Glu has previously been achieved in ammonium bicarbonate whereas in sodium phosphate cleavage at both Glu and Asp was observed. However, it is shown here that bicarbonate does not restrict the specificity to Glu-X bonds, it simply inhibits the enzyme. The degradation of a mixture of oxidized insulin and glucagon proceeds similarly in the two buffers, although faster in phosphate.  相似文献   

19.
Trp repressor of Escherichia coli K-12 is a dimeric protein (monomer size, 108 amino acids) that acquires high affinity for certain operator targets in double-stranded DNA upon interaction with L-tryptophan. High titer antiserum directed against E. coli Trp repressor protein, elicited in rabbits, was monospecific toward native or denatured Trp repressor. Using an enzyme-linked immunosorbent assay to measure antigen-antibody reaction, we found that the binding of L-tryptophan to Trp repressor was associated with a marked decrease in antibody reactivity that presumably accompanied a conformational change in this protein to a state with strong affinity for trp operator-bearing DNA. We analyzed the pattern of cleavage of Trp repressor by chymotrypsin and trypsin and the effect of L-tryptophan on such hydrolytic cleavages. Chymotrypsin cleaved Trp repressor mainly between residues 71 and 72. In the presence of L-tryptophan this cleavage was slowed. The first-order rate constants for chymotryptic digestion of Trp repressor were 7.6 X 10(-2) and 4.6 X 10(-2) min-1 in the absence and presence of L-tryptophan, respectively. Tryptic digestion was more complex. Initial cleavage of Trp repressor occurred with approximately equal facility between residues 69-70 or 84-85. Subsequent tryptic hydrolyses led eventually to a major core fragment containing the first 54 amino acids of Trp repressor plus four other fragments from the carboxyl-terminal half of the protein. In the presence of L-tryptophan, cleavage by trypsin between residues 54-55 and 84-85 was retarded, even when a previous hydrolytic event elsewhere in the protein had occurred. Tryptophan had essentially no effect on the tryptic hydrolysis of peptide bond 97-98, but accelerated cleavage at peptide bond 69-70. The first-order rate constants for the first tryptic cleavage of Trp receptor were 1.55 X 10(-1) and 1.33 X 10(-1) min-1 in the absence and presence of ligand, respectively. Our results are compatible with a structural model wherein certain amino acid side chains and peptide bonds of Trp repressor (specifically, those of residues 69-85) lie on or near the surface of the protein. This region of Trp repressor has been predicted to contain the operator recognition site. The susceptibility to proteolytic attack of at least four peptide bonds in this area changes when the protein interacts with L-tryptophan.  相似文献   

20.
IgG hinge region peptide bonds are susceptible to degradation by hydrolysis. To study the effect of Fab and Fc on hinge region peptide bond hydrolysis, a recombinant humanized monoclonal IgG1 antibody, its F(ab')2 fragment, and a model peptide with amino acid sequence corresponding to the hinge region were incubated at 40 degrees C in formulation buffer including complete protease inhibitor and EDTA for 0, 2, 4, 6 and 8 weeks. Two major cleavage sites were identified in the hinge region of the intact recombinant humanized monoclonal antibody and its F(ab')2 fragment, but only one major cleavage site of the model peptide was identified. Hinge region peptide bond hydrolysis of the intact antibody and its F(ab')2 fragment degraded at comparable rates, while the model peptide degraded much faster. It was concluded that Fab region of the IgG, but not Fc portion had significant effect on preventing peptide bond cleavage by direct hydrolysis. Hydrolysis of hinge region peptide bonds was accelerated under both acidic and basic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号