首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many receptors on natural killer (NK) cells recognize major histocompatibility complex class I molecules in order to monitor unhealthy tissues, such as cells infected with viruses, and some tumors. Genes encoding families of NK receptors and related sequences are organized into two main clusters in humans: the natural killer complex on Chromosome 12p13.1, which encodes C-type lectin molecules, and the leukocyte receptor complex on Chromosome 19q13.4, which encodes immunoglobulin superfamily molecules. The composition of these gene clusters differs markedly between closely related species, providing evidence for rapid, lineage-specific expansions or contractions of sets of loci. The choice of NK receptor genes is polarized in the two species most studied, mouse and human. In mouse, the C-type lectin-related Ly49 gene family predominates. Conversely, the single Ly49 sequence is a pseudogene in humans, and the immunoglobulin superfamily KIR gene family is extensive. These different gene sets encode proteins that are comparable in function and genetic diversity, even though they have undergone species-specific expansions. Understanding the biological significance of this curious situation may be aided by studying which NK receptor genes are used in other vertebrates, especially in relation to species-specific differences in genes for major histocompatibility complex class I molecules.  相似文献   

2.
During mammalian evolution, complex systems of epigenetic gene regulation have been established: Epigenetic mechanisms control tissue-specific gene expression, X chromosome inactivation in females and genomic imprinting. Studying DNA sequence conservation in imprinted genes, it becomes evident that evolution of gene function and evolution of epigenetic gene regulation are tightly connected. Furthermore, comparative studies allow the identification of DNA sequence features that distinguish imprinted genes from biallelically expressed genes. Among these features are CpG islands, tandem repeats and retrotransposed elements that are known to play major roles in epigenetic gene regulation. Currently, more and more genetic and epigenetic data sets become available. In future, such data sets will provide the basis for more complex investigations on epigenetic variation in human populations. Therein, an exciting topic will be the genetic and epigenetic variability of imprinted genes and its input on human disease.  相似文献   

3.
王喜  张万江 《生物磁学》2009,(14):2766-2768,2727
随着人类基因组计划的完成和功能基因组学的研究的进展,多种结核病候选易感基因被发现,其中人类白细胞抗原(HLA)基因是主要的候选基因之一。HLA基因作为人类最复杂、最具多态性的遗传系统,其功能涉及到机体免疫的各个方面,不同个体对疾病易感性的差异在很大程度上是由遗传因素所决定的,因此HLA基因与某些免疫性疾病的相关性已经成为近年来研究的热点,国内外学者对不同种族的人群对结核分枝杆菌感染的易感性做了大量的研究,探讨HLA基因多态性与结核病遗传易感性的关系。本文对这方面的研究进展做一综述。  相似文献   

4.
Gene duplication is a crucial mechanism of evolutionary innovation. A substantial fraction of eukaryotic genomes consists of paralogous gene families. We assess the extent of ancestral paralogy, which dates back to the last common ancestor of all eukaryotes, and examine the origins of the ancestral paralogs and their potential roles in the emergence of the eukaryotic cell complexity. A parsimonious reconstruction of ancestral gene repertoires shows that 4137 orthologous gene sets in the last eukaryotic common ancestor (LECA) map back to 2150 orthologous sets in the hypothetical first eukaryotic common ancestor (FECA) [paralogy quotient (PQ) of 1.92]. Analogous reconstructions show significantly lower levels of paralogy in prokaryotes, 1.19 for archaea and 1.25 for bacteria. The only functional class of eukaryotic proteins with a significant excess of paralogous clusters over the mean includes molecular chaperones and proteins with related functions. Almost all genes in this category underwent multiple duplications during early eukaryotic evolution. In structural terms, the most prominent sets of paralogs are superstructure-forming proteins with repetitive domains, such as WD-40 and TPR. In addition to the true ancestral paralogs which evolved via duplication at the onset of eukaryotic evolution, numerous pseudoparalogs were detected, i.e. homologous genes that apparently were acquired by early eukaryotes via different routes, including horizontal gene transfer (HGT) from diverse bacteria. The results of this study demonstrate a major increase in the level of gene paralogy as a hallmark of the early evolution of eukaryotes.  相似文献   

5.
芦加杰  赫晓磊  高峰 《生物磁学》2013,(36):7189-7190
溃疡性结肠炎(Ulcerativecolitis,uc)是一种直肠和结肠的慢性非特异性炎症性疾病,其病因至今仍未完全阐明,普遍认为与遗传因素和自身免疫异常有关。人类白细胞抗原(Humanleukocyteantigen,HLA)是人类主要组织相容性复合体(MHC)基因的编码产物,是调控人类免疫应答的关键因素之一,其中HLAII类基因参与外源性抗原的递呈,是目前研究的最为广泛的与炎症性肠病相关的区域。HLAII类基因中以HLA—DRB1等位基因的多态性最丰富,国内外大量研究均显示HLA—DRB1基因不仅与uc的发病密切相关,而且与UC的临床特点有关联,但研究的结果并不完全一致,而且其导致特定人群UC易感的分子生物学机制也不十分清楚。本文主要综述HLA.DRB1基因多态性与uc相关性的研究进展。  相似文献   

6.
The early origin of four vertebrate Hox gene clusters duringthe evolution of gnathostomes was likely caused by two consecutiveduplications of the entire genome and the subsequent loss ofindividual genes. The presumed conserved and important rolesof these genes in tetrapods during development led to the generalassumption that Hox cluster architecture had remained unchangedsince the last common ancestor of all jawed vertebrates. Butrecent data from teleost fishes reveals that this is not thecase. Here, we present an analysis of the evolution of vertebrateHox genes and clusters, with emphasis on the differences betweenthe Hox A clusters of fish (actinopterygian) and tetrapod (sarcopterygian)lineages. In contrast to the general conservation of genomicarchitecture and gene sequence observed in sarcopterygians,the evolutionary history of actinopterygian Hox clusters likelyincludes an additional (third) genome duplication that initiallyincreased the number of clusters from four to eight. We document,for the first time, higher rates of gene loss and gene sequenceevolution in the Hox genes of fishes compared to those of landvertebrates. These two observations might suggest that two differentmolecular evolutionary strategies exist in the two major vertebratelineages. Preliminary data from the African cichlid fish Oreochromisniloticus compared to those of the pufferfish and zebrafishreveal important differences in Hox cluster architecture amongfishes and, together with genetic mapping data from Medaka,indicate that the third genome duplication was not zebrafish-specific,but probably occurred early in the history of fishes. Each descendingfish lineage that has been characterized so far, distinctivelymodified its Hox cluster architecture through independent secondarylosses. This variation is related to the large body plan differencesobserved among fishes, such as the loss of entire sets of appendagesand ribs in some lineages.  相似文献   

7.
The conventional approach of candidate gene studies in complex diseases is to look at the effect of one gene at a time. However, as the outcome of chronic diseases is influenced by a large number of alleles, simultaneous analysis is needed. We demonstrate the application of multivariate regression and cluster analysis to a multiple sclerosis (MS) dataset with genotypes for 489 patients at 11 candidate genes selected on their involvement in the immune response. Using multivariate regression, we observed that different sets of genes were associated with different disease characteristics that reflect different aspects of disease. Out of 15 polymorphisms, we identified one that contributed to the severity of disease. In addition, the set of 15 polymorphisms was predictive for yearly increase in lesion volume as seen on T1-weighted MRI (p=0.044). From this set, no individual polymorphisms could be identified after adjustment for multiple hypotheses testing. By means of a cluster analysis, we aimed to identify subgroups of patients with different pathogenic subtypes of MS on the basis of their genetic profile. We constructed genetic profiles from the genotypes at the 11 candidate genes. The approach proved to be feasible. We observed three clusters in the sample of patients. In this study, we observed no significant differences in the usual clinical and MRI outcome measures between the different clusters. However, a number of consistent trends indicated that this clustering might be related to the course of disease. With a larger number of genes regulating the course of disease, we may be able to identify clinically relevant clusters. The analyses are easily implemented and will be applicable to candidate gene studies of complex traits in general.  相似文献   

8.
Annotation of the Anopheles gambiae genome has revealed a large increase in the number of genes encoding cuticular proteins with the Rebers and Riddiford Consensus (the CPR gene family) relative to Drosophila melanogaster. This increase reflects an expansion of the RR-2 group of CPR genes, particularly the amplification of sets of highly similar paralogs. Patterns of nucleotide variation indicate that extensive concerted evolution is occurring within these clusters. The pattern of concerted evolution is complex, however, as sequence similarity within clusters is uncorrelated with gene order and orientation, and no comparable clusters occur within similarly compact arrays of the RR-1 group in mosquitoes or in either group in D. melanogaster. The dearth of pseudogenes suggests that sequence clusters are maintained by selection for high gene-copy number, perhaps due to selection for high expression rates. This hypothesis is consistent with the apparently parallel evolution of compact gene architectures within sequence clusters relative to single-copy genes. We show that RR-2 proteins from sequence-cluster genes have complex repeats and extreme amino-acid compositions relative to single-copy CPR proteins in An. gambiae, and that the amino-acid composition of the N-terminal and C-terminal sequence flanking the chitin-binding consensus region evolves in a correlated fashion.  相似文献   

9.
Summary The Escherichia coli K-12 genetic map was divided into intervals of equal length to count the number of genes per interval. Plots of genes per interval at four sets of interval lengths revealed large-scale clustering of genes with the major clusters occurring at regularly spaced distances apart. Major gene cluster properties were analyzed at a scale of 100 intervals wherein each interval corresponded to a genetic map unit length of 1 min. In any major gene cluster, the highest gene concentration was observed at or near the midpoint interval, and the number of genes per interval was found to decline exponentially as a function of the linear distance from the midpoint or interval of peak gene concentration of that cluster. An autocorrelation analysis of gene content in first-neighbor intervals throughout the chromosome revealed an ordered first-neighbor relationship in comparison to 2,000 randomized interval versions of the chromosome. Attempts to simulate gene placement by a Gaussian model did not produce large-scale gene clustering in any way comparable to that observed on the chromosome. We propose that major gene clusters formed from smaller gene clusters, and the contemporary chromosome formed from fusion of homologous or heterologous major gene clusters.  相似文献   

10.
The gentle art of gene arrangement: the meaning of gene clusters   总被引:2,自引:0,他引:2  
Trowsdale J 《Genome biology》2002,3(3):comment2002.1-comment20025
Genome sequence comparisons reveal that some sets of genes are in similar linkage groups in different organisms while other sets are dispersed. Are some linkage groups maintained by chance, or is there an advantage to such an arrangement? Some insights may come from large clusters of genes, such as the major histocompatibility complex which includes many genes involved in immune defense.With only rare exceptions, we all have the same order of genes along our chromosomes. Given that this order is maintained in members of the same species, to permit pairing at meiosis, is it of any other relevance? In other words, are genes arranged in optimal groupings, or could they just as well be scattered randomly, as long as they were coupled to the appropriate regulatory elements? Clustering of functionally related genes can be inferred from studies of conserved linkage groups in diverse prokaryote genomes [1], but is the same true of eukaryotes? Studies of transgenic animals reveal that some introduced genes become expressed in the appropriate tissues, but these experiments tell us nothing about the subtle advantages that may accrue from millions of years of chance reshuffling of the genome between speciation events. Evidence from a cursory comparison of the mouse and human genome sequences is consistent with at least one reordering of genes - one major break in synteny - occurring every million years. The enormous time scale of evolution means that selection can work on even very small margins, and a minor increase in fitness - say, 0.5% - can provide a significant long-term advantage. It therefore seems unlikely that gene order escapes optimization under the scrutiny of natural selection.What sort of selective advantages can be proposed for gene clusters? Expression of genes at the appropriate place and time in development and differentiation could be coordinated by linkage, as it is in the Hox gene cluster for example [2]. Genes could also be linked to facilitate functional interaction of the products of polymorphic alleles (discussed below). A linked arrangement could facilitate sequence exchange, as occurs in gene conversion, when one continuous nucleotide stretch within the genome is replaced with a similar stretch from a related, non-allelic gene present in the same genome. In addition, a consistent order is essential for the assembly of somatically rearranged genes, such as those for immunoglobulins, T-cell receptors, or similar diversifying molecules such as the protocadherins [3]. Genes that are imprinted may also be tightly clustered, one of the best examples being the Igf2 group of loci; in this case, clustering might facilitate the establishment and maintenance of the epigenetic marks that are crucial for imprinting [4].The availability of multiple human genome sequences and the comparison of these with sequences from other vertebrate genomes will help to elucidate the significance of gene order on a wider scale. There is already evidence from such data that genes with high levels of expression are concentrated into genomic patches [5]. Genes encoding proteins of the immune system are perhaps of particular relevance, because they are constantly subject to intense selection for disease resistance as a result of interactions with pathogens. Some immune-system genes have undergone repeated duplication; some result from the innovative use of pre-existing gene modules encoding protein domains [6]; and some, such as the major histocompatibility complex (MHC), are extensively polymorphic. Plasticity in immune-system gene evolution may be essential for defense against pathogens that can themselves evolve extremely rapidly. This article considers some aspects of the evolutionary history of gene clustering in the MHC and its consequences, and whether these insights can be extended to other parts of the genome.  相似文献   

11.
12.
The genes of the polymorphic HLA-DR molecules are located within the human major histocompatibility complex. We have studied the HLA-DR genes of an HLA homozygous individual typed to be DR4, Dw4, and DRw53. Fourteen cosmid and phage clones from genomic libraries were isolated and grouped into three clusters comprising a total of 165 kilobases. These clusters contain four DR beta genes. Nucleotide sequence determination showed that two of the genes encode beta chains that carry the DR4 and DRw53 specificities, respectively, while the other two genes are presumably pseudogenes. Comparisons of the nucleotide sequences of all four DR beta genes of the DR4 haplotype show that the genes are extensively similar, approximately 90% in both exons and introns. All four genes are equally similar to each other. These observations are consistent with the notion that the genes arose by duplications that were followed by homogenization through gene conversion. The existence of more than one DR beta gene homologue but only a single DR alpha gene homologue in mouse, rabbit, and cattle suggests that the DR beta gene duplications occurred at or early during mammalian speciation.  相似文献   

13.
On the basis of established knowledge of microbial genetics one can distinguish three major natural strategies in the spontaneous generation of genetic variations in bacteria. These strategies are: (1) small local changes in the nucleotide sequence of the genome, (2) intragenomic reshuffling of segments of genomic sequences and (3) the acquisition of DNA sequences from another organism. The three general strategies differ in the quality of their contribution to microbial evolution. Besides a number of non-genetic factors, various specific gene products are involved in the generation of genetic variation and in the modulation of the frequency of genetic variation. The underlying genes are called evolution genes. They act for the benefit of the biological evolution of populations as opposed to the action of housekeeping genes and accessory genes which are for the benefit of individuals. Examples of evolution genes acting as variation generators are found in the transposition of mobile genetic elements and in so-called site-specific recombination systems. DNA repair systems and restriction-modification systems are examples of modulators of the frequency of genetic variation. The involvement of bacterial viruses and of plasmids in DNA reshuffling and in horizontal gene transfer is a hint for their evolutionary functions. Evolution genes are thought to undergo biological evolution themselves, but natural selection for their functions is indirect, at the level of populations, and is called second-order selection. In spite of an involvement of gene products in the generation of genetic variations, evolution genes do not programmatically direct evolution towards a specific goal. Rather, a steady interplay between natural selection and mixed populations of genetic variants gives microbial evolution its direction.  相似文献   

14.
Tandemly arrayed genes (TAGs) account for about one-third of the duplicated genes in eukaryotic genomes. They provide raw genetic material for biological evolution, and play important roles in genome evolution. The 22-kDa prolamin genes in cereal genomes represent typical TAG organization, and provide the good material to investigate gene amplification of TAGs in closely related grass genomes. Here, we isolated and sequenced the Coix 22-kDa prolamin (coixin) gene cluster (283 kb), and carried out a comparative analysis with orthologous 22-kDa prolamin gene clusters from maize and sorghum. The 22-kDa prolamin gene clusters descended from orthologous ancestor genes, but underwent independent gene amplification paths after the separation of these species, therefore varied dramatically in sequence and organization. Our analysis indicated that the gene amplification model of 22-kDa prolamin gene clusters can be divided into three major stages. In the first stage, rare gene duplications occurred from the ancestor gene copy accidentally. In the second stage, rounds of gene amplification occurred by unequal crossing over to form tandem gene array(s). In the third stage, gene array was further diverged by other genomic activities, such as transposon insertions, segmental rearrangements, etc. Unlike their highly conserved sequences, the amplified 22-kDa prolamin genes diverged rapidly at their expression capacities and expression levels. Such processes had no apparent correlation to age or order of amplified genes within TAG cluster, suggesting a fast evolving nature of TAGs after gene amplification. These results provided insights into the amplification and evolution of TAG families in grasses.  相似文献   

15.
What are the commonalities between genes, whose expression level is partially controlled by eQTL, especially with regard to biological functions? Moreover, how are these genes related to a phenotype of interest? These issues are particularly difficult to address when the genome annotation is incomplete, as is the case for mammalian species. Moreover, the direct link between gene expression and a phenotype of interest may be weak, and thus difficult to handle. In this framework, the use of a co-expression network has proven useful: it is a robust approach for modeling a complex system of genetic regulations, and to infer knowledge for yet unknown genes. In this article, a case study was conducted with a mammalian species. It showed that the use of a co-expression network based on partial correlation, combined with a relevant clustering of nodes, leads to an enrichment of biological functions of around 83%. Moreover, the use of a spatial statistics approach allowed us to superimpose additional information related to a phenotype; this lead to highlighting specific genes or gene clusters that are related to the network structure and the phenotype. Three main results are worth noting: first, key genes were highlighted as a potential focus for forthcoming biological experiments; second, a set of biological functions, which support a list of genes under partial eQTL control, was set up by an overview of the global structure of the gene expression network; third, pH was found correlated with gene clusters, and then with related biological functions, as a result of a spatial analysis of the network topology.  相似文献   

16.
Rheumatoid arthritis (RA) is a chronic inflammatory joint disease with a multifactorial genetic basis. However, pathogenic genes for RA other than the human leukocyte antigen (HLA)-DRB1 gene have yet to be identified. Here, we investigated whether there is a second susceptibility locus for RA within the human major histocompatibility complex using 18 microsatellite markers distributed from the centromeric (HSET) to the telomeric end (P5-15) of the 3.6-Mb HLA region. Statistical studies of associated alleles on each microsatellite locus showed that one pathogenic gene for RA in the HLA region is localized in the DRB1 gene, as expected. Further, a second susceptibility gene of RA was suggested to be present in the HLA class III region, narrowed to 70 kb, that is just telomeric of the TNF gene cluster (TNFA and LTA) and that is located between the microsatellites TNFa and C1-2-A. In this critical segment, four expressed genes have been thus far identified, NFKBIL1 (IkappaBL), ATP6G, BAT1, and MICB, all of which are candidate genes for determining susceptibility to RA. These results exclude the possibility of involvement of the TNFA genes (TNF-alpha) in the development of RA, which was suggested previously to be a strong candidate for RA in the class III region.  相似文献   

17.
18.
MOTIVATION: Establishment of intra-cellular life involved a profound re-configuration of the genetic characteristics of bacteria, including genome reduction and rearrangements. Understanding the mechanisms underlying these phenomena will shed light on the genome rearrangements essential for the development of an intra-cellular lifestyle. Comparison of genomes with differences in their sizes poses statistical as well as computational problems. Little efforts have been made to develop flexible computational tools with which to analyse genome reduction and rearrangements. RESULTS: Investigation of genome reduction and rearrangements in endosymbionts using a novel computational tool (GRAST) identified gathering of genes with similar functions. Conserved clusters of functionally related genes (CGSCs) were detected. Heterogeneous gene and gene cluster non-functionalization/loss are identified between genome regions, functional gene categories and during evolution. Results show that gene non-functionalisation has accelerated during the last 50 MY of Buchnera's evolution while CGSCs have been static.  相似文献   

19.
20.
Analysis of evolution of paralogous genes in a genome is central to our understanding of genome evolution. Comparison of closely related bacterial genomes, which has provided clues as to how genome sequences evolve under natural conditions, would help in such an analysis. With species Staphylococcus aureus, whole-genome sequences have been decoded for seven strains. We compared their DNA sequences to detect large genome polymorphisms and to deduce mechanisms of genome rearrangements that have formed each of them. We first compared strains N315 and Mu50, which make one of the most closely related strain pairs, at the single-nucleotide resolution to catalogue all the middle-sized (more than 10 bp) to large genome polymorphisms such as indels and substitutions. These polymorphisms include two paralogous gene sets, one in a tandem paralogue gene cluster for toxins in a genomic island and the other in a ribosomal RNA operon. We also focused on two other tandem paralogue gene clusters and type I restriction-modification (RM) genes on the genomic islands. Then we reconstructed rearrangement events responsible for these polymorphisms, in the paralogous genes and the others, with reference to the other five genomes. For the tandem paralogue gene clusters, we were able to infer sequences for homologous recombination generating the change in the repeat number. These sequences were conserved among the repeated paralogous units likely because of their functional importance. The sequence specificity (S) subunit of type I RM systems showed recombination, likely at the homology of a conserved region, between the two variable regions for sequence specificity. We also noticed novel alleles in the ribosomal RNA operons and suggested a role for illegitimate recombination in their formation. These results revealed importance of recombination involving long conserved sequence in the evolution of paralogous genes in the genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号