首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new l-amino acid oxidase (LAAO) was isolated from the Central Asian cobra Naja naja oxiana venom by size exclusion, ion exchange and hydrophobic chromatography. The N-terminal sequence and the internal peptide sequences share high similarity with other snake venom l-amino acid oxidases, especially with those isolated from elapid venoms. The enzyme is stable at low temperatures (− 20 °C, − 70 °C) and loses its activity by heating at 70 °C. Specific substrates for the isolated protein are l-phenylalanine, l-tryptophan, l-methionine and l-leucine. The enzyme has antibacterial activity inhibiting the growth of Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria. N. naja oxiana LAAO dose-dependently inhibited ADP- or collagen-induced platelet aggregation with IC50 of 0.094 μM and 0.036 μM, respectively. The antibacterial and anti-aggregating activity was abolished by catalase.  相似文献   

2.
The dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) is a critical bacterial enzyme for the construction of the bacterial cell wall. A screen biased toward compounds containing zinc-binding groups (ZBG’s) including thiols, carboxylic acids, boronic acids, phosphonates and hydroxamates has delivered a number of micromolar inhibitors of DapE from Haemophilus influenzae, including the low micromolar inhibitor l-captopril (IC50 = 3.3 μM, Ki = 1.8 μM). In vitro antimicrobial activity was demonstrated for l-captopril against Escherichia coli.  相似文献   

3.
An aerobic bacterium was isolated from activated sludge in a medium containing l-glutamate-N,N-diacetate (l-GLDA) as sole carbon and energy source. The isolate was identified as a Rhizobium radiobacter species. Besides l-GLDA, the strain utilized nitrilotriacetate (NTA) and proposed intermediates in l-GLDA metabolism such as glyoxylate and l-glutamate. l-GLDA-grown cells oxidized l-GLDA, l-glutamate but not iminodiacetate (IDA), and trans-ketoglutaconate, indicating removal of a carboxymethyl group as an initial degradation reaction. The removal of the first carboxymethyl group of l-GLDA is catalyzed by an NADH-dependent mono-oxygenase. The oxidative deamination of l-glutamate by a dehydrogenase resulting in the formation of oxoglutarate was also detected in cell-free extracts of R. radiobacter sp. A pathway for the metabolism of l-GLDA R. radiobacter sp. is proposed: First, l-GLDA leads to l-glutamate-N-monoacetate (l-GLMA) which in turn leads to l-glutamate. Then, l-glutamate leads to oxoglutarate, an intermediate of the TCA cycle.  相似文献   

4.
This study assessed the effect of two precursors (l-phenylalanine and p-amino benzoic acid) used alone or in combination with methyl jasmonate, on the growth and accumulation of paclitaxel, baccatin III and 10-deacetylbaccatin III in hairy root cultures of Taxus x media var. Hicksii. The greatest increase in dry biomass was observed after 4 weeks of culturing hairy roots in medium supplemented with 1 μM of l-phenylalanine (6.2 g L−1). Addition of 1 μM of l-phenylalanine to the medium also resulted in the greatest 10-deacetylbaccatin III accumulation (422.7 μg L−1), which was not detected in the untreated control culture. Supplementation with 100 μM of l-phenylalanine together with 100 μM of methyl jasmonate resulted in the enhancement of paclitaxel production from 40.3 μg L−1 (control untreated culture) to 568.2 μg L−1, the highest paclitaxel content detected in the study. The effect of p-amino benzoic acid on taxane production was less pronounced, and the highest yield of paclitaxel (221.8 μg L−1) was observed when the medium was supplemented with 100 μM of the precursor in combination with methyl jasmonate.Baccatin III was not detected under the conditions used in this experiment and the investigated taxanes were not excreted into the medium.  相似文献   

5.
6.
The gene encoding α-methylserine aldolase was isolated from Bosea sp. AJ110407. Sequence analysis revealed that the predicted amino acid sequence encoded by the 1320-bp open reading frame was 65.0% similar to the corresponding sequence of the enzyme isolated from Ralstonia sp. AJ110405. The gene was expressed in Escherichia coli, and the recombinant enzyme was purified. Gel filtration revealed the molecular mass of the purified enzyme to be approximately 78 kDa, suggesting that the enzyme is a homodimer. The enzyme exhibited a specific peak at 429 nm in the spectrum and contained 1 mol pyridoxal 5′-phosphate per mole of the subunit. The Vmax value was 1.40 μmol min−1 mg−1, and the Km value was 1.5 mM for the reaction wherein formaldehyde was released from α-methyl-l-serine. This enzyme could also catalyze the reverse reaction, i.e., the synthesis of α-methyl-l-serine from l-alanine and formaldehyde. This activity was inhibited in the excess of formaldehyde; however, α-methyl-l-serine was efficiently produced from l-alanine in the presence of formaldehyde. This method was also applicable for producing α-ethyl-l-serine from l-2-aminobutyric acid.  相似文献   

7.
Astrocytes possess a concentrativel-ascorbate (vitamin C) uptake mechanism involving a Na+-dependentl-ascorbate transporter located in the plasma membrane. The present experiments examined the effects of deprivation and supplementation of extracellularl-ascorbate on the activity of this transport system. Initial rates ofl-ascorbate uptake were measured by incubating primary cultures of rat astrocytes withl-[14C]ascorbate for 1 min at 37°C. We observed that the apparent maximal rate of uptake (V max) increased rapidly (<1 h) when cultured cells were deprived ofl-ascorbate. In contrast, there was no change in the apparent affinity of the transport system forl-[14C]ascorbate. The increase inV max was reversed by addition ofl-ascorbate, but notD-isoascorbate, to the medium. The effects of external ascorbate on ascorbate transport activity were specific in that preincubation of cultures withl-ascorbate did not affect uptake of 2-deoxy-D-[3H(G)]glucose. We conclude that the astroglial ascorbate transport system is modulated by changes in substrate availability. Regulation of transport activity may play a role in intracellular ascorbate homeostasis by compensating for regional differences and temporal fluctuations in external ascorbate levels.  相似文献   

8.
Postnatal development changes in mechanisms of synaptosomal amino acid transport have been studied in rat cerebral cortex. Specific uptake of radiolabeled l-serine was examined and compared with that of radiolabeled GABA using synaptosomes-enriched fractions freshly prepared from cerebral cortex at different postnatal days from the birth to young adulthood. The preparations were incubated with 10 nM of [3H]l-serine and 10 nM of [3H]-GABA in either the presence or absence of NaCl, KCl or choline chloride, at 2 and 30 °C, for different periods up to 30 min. The uptake of [3H]l-serine was temperature dependent in synaptosomal fractions prepared from cerebral cortex of rats in postnatal days 5, 7, 13 and 21, but stronger dependence was observed in adult brain, irrespective of the presence of Na+, K+ or choline ions. At all postnatal ages studied, [3H]-GABA uptake showed a high activity in the presence of Na+ ions and at 30 °C. The values of Km were 90–489 μM in l-serine uptake. However, in the uptake of GABA the values of Km were 80–150 μM. The highest values of Vmax were obtained at 5 and 21 postnatal days for both transport systems. These results indicate that the uptake of l-serine and GABA are regulated differentially during postnatal development.  相似文献   

9.
Aspergillus niger is moderately susceptible to inhibition by phosphinothricin (PPT)—a potent inhibitor of glutamine synthetase. This growth inhibition was relieved by l-glutamine. PPT inhibited A. niger glutamine synthetase in vitro (KI, 54 μM) and the inhibition was competitive with l-glutamate. The bar gene, imparting resistance to PPT, was successfully exploited as a dominant marker to transform this fungus. Very high PPT concentrations were required in the overlay for selection. Apart from bar transformants, colonies spontaneously resistant to PPT were frequently encountered on selection media. Reasons for such spontaneous resistance, albeit of moderate growth phenotype, were sought using one such isolate (SRPPT). The SRPPT isolate showed a 2–3-fold decrease in its glutamate uptake rate. Elevated external glutamate levels further suppressed the PPT-induced growth inhibition. Cellular entry of PPT could be through the l-glutamate uptake system thereby accounting for the observed spontaneous resistant phenotype. These results were useful in the fine-tuning of bar-selection in A. niger.  相似文献   

10.
Cystathionine β-synthase (CBS) catalyzes the pyridoxal-5′-phosphate-dependent condensation of l-serine and l-homocysteine to form l-cystathionine in the first step of the transsulfuration pathway. Although effective expression systems for recombinant human CBS (hCBS) have been developed, they require multiple chromatographic steps as well as proteolytic cleavage to remove the fusion partner. Therefore, a series of five expression constructs, each incorporating a 6-His tag, were developed to enable the efficient purification of hCBS via immobilized metal ion affinity chromatography. Two of the constructs express hCBS in fusion with a protein partner, while the others bear only the affinity tag. The addition of an amino-terminal, 6-His tag, in the absence of a protein fusion partner and in the absence or presence of a protease-cleavable linker, was found to be sufficient for the purification of soluble hCBS and resulted in enzyme with 86–91% heme saturation and with activity similar to that reported for other hCBS expression constructs. The continuous assay for l-Cth production, employing cystathionine β-lyase and l-lactate dehydrogenase as coupling enzymes, was employed here for the first time to determine the steady-state kinetic parameters of hCBS, via global analysis, and revealed previously unreported substrate inhibition by l-Hcys (Kil-Hcys = 2.1 ± 0.2 mM). The kinetic parameters for the hCBS-catalyzed hydrolysis of l-Cth to l-Ser and l-Hcys were also determined and the kcat/Kml-Cth of this reaction is only 2-fold lower than the kcat/Kml-SER of the physiological, condensation reaction.  相似文献   

11.
A water-soluble polysaccharide isolated from Dalbergia sissoo Roxb. leaves was purified and major homogeneous fraction obtained by GPC. Complete hydrolysis of the polysaccharide followed by paper chromatography and GLC analysis indicated the presence of l-rhamnose, d-glucuronic acid, d-galactose and d-glucose in molar ratio of 1:1:2:2.33, respectively. Partial hydrolysis of the polysaccharide furnished one tri-[I], one hepta-[II] and one nona-[III] saccharides. Hydrolysis of the oligosaccharide I, II and III followed by GLC analysis furnished d-glucose and l-rhamnose (2:1); l-rhamnose, d-galactose and d-glucuronic acid (1:3:3); and l-rhamnose, d-galactose and d-glucose (1:3:5), respectively. Methylation analysis and periodate oxidation of the oligosaccharide I indicated the presence of two non reducing glucose units linked to rhamnose by 1→2 and 1→4 linkages, respectively. Oligosaccharide II is a branched molecule with a main chain consisting of 1,3-linked β-d-galactopyranosyl (2 mol), 1,3,4 linked α-l-rhamnopyranosyl (1 mol) and 1,4,6 linked β-d-galactopyranosyl unit (1 mol) and non reducing β-d-glucuronic acid at the end along with side chains of β-d-glucouronopyranosyl units (2 mol). Oligosaccharide III is also a branched molecule with a main chain consisting of 1,3,4 linked α-l-rhamnopyranosyl (1 mol), 1,2,4 linked β-d-glucopyranosyl (1 mol), 1,3 and 1,4 linked β-d-galactopyranosyl (2 and 1 mol, respectively) having β-d-glucopyranosyl as a non reducing end.  相似文献   

12.
The aim of the present study was to evaluate the protective effect of l-glutamine (l-Gln) against cryopreservation injuries on boar sperm. In Experiment 1, l-Gln from 20 to 80 mM was evaluated as a supplement for a standard freezing extender (egg yolk – EY – 20%, and glycerol 3%). No significant improvement (P > 0.05) was obtained for any post-thaw sperm parameter assessed (objective sperm motility – CASA system – and flow cytometric analysis of plasma and acrosomal membrane integrity −SYBR14/PI/PE-PNA− and plasma membrane stability −M540/YoPro1−). In Experiment 2, l-Gln was evaluated as a partial glycerol substitute in the freezing extender. Significant (P < 0.05) enhancement of post-thaw sperm motion parameters was achieved in sperm frozen in the presence of 2% glycerol and 80 mM l-Gln compared to control (3% glycerol). In Experiment 3, l-Gln was evaluated as an EY substitute in the freezing extender, and no functional sperm were recovered after thawing sperm frozen in the presence of l-Gln and the absence of EY. In conclusion, l-Gln has the ability to cryoprotect boar sperm when it is used as a partial glycerol substitute in the freezing extender.  相似文献   

13.
1. Retroperitoneal white adipose tissue (RpWAT) antioxidative defense was investigated in untreated, l-arginine-treated and Nω-nitro-l-arginine methyl ester (l-NAME)-treated rats kept at 4±1 °C (1, 3, 7, 12, 21 and 45 days) and compared to control rats at 22±1 °C.
2. Cold-acclimation-induced RpWAT weight decrease was accompanied by a decline in glutathione level and increased activity of manganese superoxide dismutase (MnSOD), glutathione S-transferase (GST), catalase, glutathione peroxidase and glutathione reductase at different time-points.
3. l-arginine accelerated RpWAT weight decrease, the increase in MnSOD and GST activities and the prolonged increase of catalase, MnSOD and GST activities. l-NAME delayed cold-induced catalase activity increase and tissue weight decrease. Prolonged l-NAME-treatment had a similar effect on RpWAT as l-arginine.
4. Results suggest the involvement of l-arginine/NO pathway in RpWAT oxidative metabolic augmentation induced by cold-acclimation.
Keywords: White adipose tissue; Antioxidative defense; l-arginine; Nitric oxide; l-NAME; Cold  相似文献   

14.
Through the screening of microorganisms capable of utilizing α-methylserine, three representative strains belonging to the bacterial genera Paracoccus, Aminobacter, and Ensifer were selected as potent producers of α-methylserine hydroxymethyltransferase, an enzyme that catalyzes the interconversion between α-methyl-l-serine and d-alanine via tetrahydrofolate. Among these strains, Paracoccus sp. AJ110402 was selected as the strain exhibiting the highest α-methylserine hydroxymethyltransferase activity. The enzyme was purified to homogeneity from a cell-free extract of this strain. The native enzyme is a homodimer with apparent molecular mass of 85 kDa and contains 1 mol of pyridoxal-5′-phosphate per mol of the subunit. The Km for α-methyl-l-serine and tetrahydrofolate was 0.54 mM and 73 μM, respectively. The gene from Paracoccus sp. AJ110402 encoding α-methylserine hydroxymethyltransferase was cloned and expressed in Escherichia coli. Sequence analysis revealed an open reading frame of 1278 bp, encoding a polypeptide with a calculated molecular mass of 46.0 kDa. Using E. coli cells as whole-cell catalysts, 9.7 mmol of α-methyl-l-serine was stereoselectively obtained from 15 mmol of d-alanine and 13.2 mmol of formaldehyde.  相似文献   

15.
Giardia lamblia arginine deiminase (GlAD), the topic of this paper, belongs to the hydrolase branch of the guanidine-modifying enzyme superfamily, whose members employ Cys-mediated nucleophilic catalysis to promote deimination of l-arginine and its naturally occurring derivatives. G. lamblia is the causative agent in the human disease giardiasis. The results of RNAi/antisense RNA gene-silencing studies reported herein indicate that GlAD is essential for G. lamblia trophozoite survival and thus, a potential target for the development of therapeutic agents for the treatment of giardiasis. The homodimeric recombinant protein was prepared in Escherichia coli for in-depth biochemical characterization. The 2-domain GlAD monomer consists of a N-terminal domain that shares an active site structure (depicted by an in silico model) and kinetic properties (determined by steady-state and transient state kinetic analysis) with its bacterial AD counterparts, and a C-terminal domain of unknown fold and function. GlAD was found to be active over a wide pH range and to accept l-arginine, l-arginine ethyl ester, Nα-benzoyl-l-arginine, and Nω-amino-l-arginine as substrates but not agmatine, l-homoarginine, Nα-benzoyl-l-arginine ethyl ester or a variety of arginine-containing peptides. The intermediacy of a Cys424–alkylthiouronium ion covalent enzyme adduct was demonstrated and the rate constants for formation (k1 = 80 s−1) and hydrolysis (k2 = 35 s−1) of the intermediate were determined. The comparatively lower value of the steady-state rate constant (kcat = 2.6 s−1), suggests that a step following citrulline formation is rate-limiting. Inhibition of GlAD using Cys directed agents was briefly explored. S-Nitroso-l-homocysteine was shown to be an active site directed, irreversible inhibitor whereas Nω-cyano-l-arginine did not inhibit GlAD but instead proved to be an active site directed, irreversible inhibitor of the Bacillus cereus AD.  相似文献   

16.
An amperometric biosensor was developed for the interference-free determination of l-glutamate with a bienzyme-based Clark electrode. This sensor is based on the specific dehydrogenation by l-glutamate dehydrogenase (GLDH, EC 1.4.1.3) in combination with salicylate hydroxylase (SHL, EC 1.14.13.1). The enzymes were entrapped by a poly(carbamoyl) sulfonate (PCS) hydrogel on a Teflon membrane. The principle of the determination scheme is as follows: the specific detecting enzyme, GLDH, catalyses the specific dehydrogenation of l-glutamate consuming NAD+. The product, NADH, initiates the irreversible decarboxylation and the hydroxylation of salicylate by SHL in the presence of oxygen. This results in a detectable signal due to the SHL-enzymatic consumptions of dissolved oxygen in the measurement of l-glutamate. The sensor has a fast steady-state measuring time of 20 s with a quick response (1 s) and a short recovery (1 min). It shows a linear detection range between 10 μM and 1.5 mM l-glutamate with a detection limit of 3.0 μM. A Teflon membrane, which is used to fabricate the sensor, makes the determination to avoid interferences from other amino acids and electroactive substances.  相似文献   

17.
d-Amino acid oxidase is a FAD-dependent enzyme that catalyses the conversion of the d-enantiomer of amino acids into the corresponding α-keto acid. Substrate specificity of the enzyme from the yeast Rhodotorula gracilis was investigated towards aromatic amino acids, and particularly synthetic α-amino acids.A significant improvement of the activity (Vmax,app) and of the specificity constant (the Vmax,app/Km,app ratio) on a number of the substrates tested was obtained using a single-point mutant enzyme designed by a rational approach. With R. gracilis d-amino acid oxidase the complete resolution of d,l-homo-phenylalanine was obtained with the aim to produce the corresponding pure l-isomer and to use the corresponding α-keto acid as a precursor of the amino acid in the l-form.  相似文献   

18.
A synthetic gene encoding a Streptomyces l-proline-3-hydroxylase was constructed and used to produce the hydroxylase protein in recombinant Escherichia coli. A fermentation process for growth of this recombinant E. coli for enzyme production was scaled-up to 250 L. A biotransformation process was developed using cell suspensions of the recombinant E. coli and subsequently scaled-up to 10 L for conversion of l-proline to cis-3-hydroxy-l-proline. A reaction yield of 85 M% and d.e. of 99.9% was obtained for cis-3-hydroxy-l-proline.  相似文献   

19.
Lectins are carbohydrate-binding proteins with many biological functions including cellular recognition and innate immunity. In this study, a major l-fucose-binding lectin from the serum of Nile tilapia (Oreochromis niloticus L.), designated as TFBP, was isolated by l-fucose-BSA Sepharose CL6B affinity chromatography. The SDS-PAGE (10%) analysis of TFBP revealed a major band of approximately 23 kDa with an N-terminal amino acid sequence of DQTETAGQQSXPQDIHAVLREL which did not give significant similarities to the protein databases using BLASTp searches. Ruthenium red staining indicate positive calcium-binding property of TFBP. The purified TFBP agglutinated human type O erythrocytes but not the type A and B fresh erythrocytes. Live Aeromonas hydrophila and Enterococcus faecalis cells were also agglutinated by the lectin. The fucose-binding proteins were detected in the soluble protein extracts from the gills, gut, head kidneys, liver, serum and spleen using a fucose-binding protein probe (l-fucose-BSA-horseradish peroxidase). The binding of TFBP with the l-fucose–BSA probe was inhibited by l-fucose but not by α-methyl-d-mannose.  相似文献   

20.
Three new nervogenic acid glycosides, 1-O-α-l-rhamnopyranosyl 3,5-bis(3-methyl-but-2-enyl)-4-O-[α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl]-benzoate, 3,5-bis(3-methyl-but-2-enyl)-4-O-[α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl]-benzoic acid, and bis{3,5-bis(3-methyl-but-2-enyl)-4-O-[α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl]-benzoyl} 1,2-O-β-d-glucopyranose, which we named condobulbosides A–C, were isolated from a methanol extract of the leaves of Liparis condylobulbon together with an apigenin C-glycoside, schaftoside. Their structures were established on the basis of spectral techniques, namely, UV, IR, HR-MS spectroscopy, both 1D and 2D NMR experiments, and chemical reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号