首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X Zhang  Q Lu  M Inouye    C K Mathews 《Journal of bacteriology》1996,178(14):4115-4121
Bacteriophage T4 encodes nearly all of its own enzymes for synthesizing DNA and its precursors. An exception is nucleoside diphosphokinase (ndk gene product), which catalyzes the synthesis of ribonucleoside triphosphates and deoxyribonucleoside triphosphates (dNTPs) from the corresponding diphosphates. Surprisingly, an Escherichia coli ndk deletion strain grows normally and supports T4 infection. As shown elsewhere, these ndk mutant cells display both a mutator phenotype and deoxyribonucleotide pool abnormalities. However, after T4 infection, both dNTP pools and spontaneous mutation frequencies are near normal. An E. coli strain carrying deletions in ndk and pyrA and pyrF, the structural genes for both pyruvate kinases, also grows and supports T4 infection. We examined anaerobic E. coli cultures because of reports that in anaerobiosis, pyruvate kinase represents the major route for nucleoside triphosphate synthesis in the absence of nucleoside diphosphokinase. The dNTP pool imbalances and the mutator phenotype are less pronounced in the anaerobic than in the corresponding aerobic ndk mutant strains. Anaerobic dNTP pool data, which have not been reported before, reveal a disproportionate reduction in dGTP, relative to the other pools, when aerobic and anaerobic conditions are compared. The finding that mutagenesis and pool imbalances are mitigated in both anaerobic and T4-infected cultures provides strong, if circumstantial, evidence that the mutator phenotype of ndk mutant cells is a result of the dNTP imbalance. Also, the viability of these cells indicates the existence of a second enzyme system in addition to nucleoside diphosphokinase for nucleoside triphosphate synthesis.  相似文献   

2.
Microtubule protein, prepared by cycles of polymerisation and dissociation, contained a nucleoside diphosphokinase (NDP kinase) activity (EC 2.7.4.6). This activity was not intrinsic to the tubulin dimer or the so-called microtubule-associated proteins. The NDP kinase had the following properties. (1) The enzyme existed in a low-molecular-weight form and in association with the complex of microtubule-associated proteins and tubulin (i.e. multimeric tubulin). (2) The low-molecular-weight species was also formed by dissociation of multimeric tubulin by salt or by removal of microtubule-associated proteins on phosphocellulose. (3) GDP bound to the exchangeable site of multimeric tubulin and also GDP derived from the E site of the tubulin dimer was a substrate for the NDP kinase. (4) The NDP kinase showed a 7-fold increase in activity during ATP-dependent microtubule assembly. On the basis of these properties, it is proposed that microtubule protein contains an NDP kinase specifically associated with tubulin and its functions.  相似文献   

3.
Nucleotide metabolism in potato (Solanum tuberosum) mitochondria was studied using 31P-nuclear magnetic resonance spectroscopy and the O2 electrode. Immediately following the addition of ADP, ATP synthesis exceeded the rate of oxidative phosphorylation, fueled by succinate oxidation, due to mitochondrial adenylate kinase (AK) activity two to four times the maximum activity of ATP synthase. Only when the AK reaction approached equilibrium was oxidative phosphorylation the primary mechanism for net ATP synthesis. A pool of sequestered ATP in mitochondria enabled AK and ATP synthase to convert AMP to ATP in the presence of exogenous inorganic phosphate. During this conversion, AK activity can indirectly influence rates of oxidation of both succinate and NADH via changes in mitochondrial ATP. Mitochondrial nucleoside diphosphokinase, in cooperation with ATP synthase, was found to facilitate phosphorylation of nucleoside diphosphates other than ADP at rates similar to the maximum rate of oxidative phosphorylation. These results demonstrate that plant mitochondria contain all of the machinery necessary to rapidly regenerate nucleoside triphosphates from AMP and nucleoside diphosphates made during cellular biosynthesis and that AK activity can affect both the amount of ADP available to ATP synthase and the level of ATP regulating electron transport.  相似文献   

4.
Mitochondria isolated from rat heart contained nucleoside diphosphokinase (EC 2.7.4.6) at a specific activity of 30 mIU/mg protein, or about one half of liver mitochondrial activity, 60 mIU/mg. In contrast to liver mitochondria, no stimulation of O2 uptake was observed when 150 μM GDP was added to heart mitochondria respiring in post-ADP State 4, and the transphosphorylation of [γ-32Pi] from ATP into GTP was marginal. However, when heart mitochondria pretreated with oligomycin were solubilized with 0.03% Triton X-100, a five fold increase in the rate of GTP formation was observed. These results show that in heart mitochondria approximately 80% of the nucleoside diphosphokinase activity is localized within the inner compartment.  相似文献   

5.
A number of temperature-sensitive cdc- mutants of Schizosaccharomyces pombe that are affected in DNA replication, were screened for the absence of deoxynucleoside triphosphate(s) when blocked at their restrictive temperature. The preliminary screening simply involved analysis of perchloric acid-soluble cell extracts by two-dimensional thin-layer chromatography on poly(ethyleneimine)-impregnated cellulose. One mutant strain, cdc 22-M45, was found which apparently lacked dTTP. Pulse-labelling of intracellular nucleotides revealed that not only did dTTP become depleted, but that dTDP accumulated when this mutant was blocked by a temperature shift-up, indicating a defective nucleoside diphosphokinase. Nucleoside diphosphokinase from cdc 22-M45 was less active than that from wild-type strain 972 when assayed at high temperatures. The nucleoside diphosphokinase of the mutant also has an altered Km for dTDP at both permissive (25 degrees C), and at the restrictive (36.8 degrees C) temperatures. At the restrictive temperature the Km for dTDP of the mutant enzyme is more than 11-times greater than that of the wild type. Characterisation of the biochemical basis of the defect in this cdc- mutant has shown that in S. pombe, despite its having an apparently complex system of genetic control over progression through S-phase, one factor at least is merely availability of a nucleoside triphosphate precursor to DNA synthesis.  相似文献   

6.
Previous studies from this laboratory have proposed that membrane-associated nucleoside diphosphate kinase (m-NDP kinase) may play a role in regulation of adenylate cyclase by channeling GTP, an essential cofactor of adenylate cyclase regulation, into GTP-binding protein (Gs) in a hormone-dependent manner. To understand the true role of m-NDP kinase, in the present study, the m-NDP kinase was solubilized and purified to apparent homogeneity from rat liver purified plasma membranes and characterized in comparison with the cytosolic enzyme purified from the same tissue (s-NDP kinase). Some physical properties determined were: molecular weight (monomer), 18,300; sedimentation coefficient (s20,w), 6.2 S; isoelectric point (pI), 6.0. These values and kinetic parameters of the m-NDP kinase were almost identical to those of the s-NDP kinase whose characteristics were more extensively studied. A peptide mapping study of the 125I-labeled m- and s-NDP kinases gave essentially identical patterns. Polyclonal antibodies against the s-NDP kinase, which also cross-reacted with the m-NDP kinase, were prepared. Immunoblotting studies with the affinity-purified antibodies revealed that the monomer molecular weight of the purified m- and s-NDP kinases was identical to the values of unpurified enzymes present in membranes and crude extract. These results demonstrate that the purified m-NDP kinase underwent no remarkable modification during solubilization and purification, and that the m- and s-NDP kinases are quite similar in protein structure, if at all different. The physiological relevance of the m-NDP kinase in relation to the adenylate cyclase system is discussed.  相似文献   

7.
In previous studies we have proposed that the membrane-associated nucleoside diphosphate kinase (m-NDP kinase) may play a role as a GTP channeling machinery for adenylate cyclase regulation by hormones. In this study, whether the m-NDP kinase has a direct interaction with the component (GTP-binding protein (Gs)) of the glucagon- and beta-adrenergic agonist-sensitive adenylate cyclase systems in rat liver membranes was examined by extraction with octylglucoside, followed by immunoprecipitation by affinity-purified monospecific anti-NDP kinase antibodies. The results demonstrated that the m-NDP kinase and the Gs were extractable as a complexed form and that the complex formation was reversibly regulated, through cell surface receptors, by hormones which had an ability to cause activation of the rat liver adenylate cyclase. Also, it was suggested that guanine nucleotides rather than hormones were primary regulators of the m-NDP kinase-Gs interaction. These results were discussed in relation to the regulatory cycle of the Gs of adenylate cyclase system.  相似文献   

8.
Nucleotides have at least two functions in eukaryotic cilia and flagella. ATP, originating in the cells, is utilized for motility by energy-transducing protein(s) called dynein, and the binding of guanine nucleotides to tubulin, and probably certain transformations of the bound nucleotides, are prerequisites for the assembly of microtubules. Besides dynein, which can be solubulized from Chlamydomonas flagella as a heterogeneous, Mg2+ or Ca2+-activated ATPase, we have purified and characterized five other flagellar enzymes involved in nucleotide transformations. A homogeneous, low molecular weight, Ca2+-specific adenosine triphosphatase was isolated, which was inhibited by Mg2+ and was not specific for ATP. This enzyme was not formed by treating purified dynein with proteases. It was absent from extracts of Tetrahymena cilia. Its function might be an auxiliary energy transducer, or in steering or tactic responses. Two species of adenylate kinase were isolated, one of which was much elevated in regenerating flagella; the latter was also present in cell bodies. A large part of flagellar nucleoside diphosphokinase activity could not be solubilized. Two soluble enzyme species were identified, one of which was also present in cell bodies. Since these enzymes are of interest because they might function in microtubule assembly, we studied the extent to which brain nucleoside diphosphokinase co-polymerizes with tubulin purified by repeated cycles of polymerization. Arginine kinase was not detected in Chlamydomonas flagellar extracts.  相似文献   

9.
The coleopteran firefly, Photinus pyralis, luciferase was produced in lepidopteran Trichoplusia ni insect cells using a baculovirus expression vector. The recombinant protein was equipped with a polyhistidine affinity tag at the carboxyl terminus and purified by immobilized metal-ion affinity chromatography in combination with an expanded bed adsorption system. This approach enabled an efficient, one-step purification protocol of a genetically modified luciferase with properties similar to those of the authentic counterpart. According to light emission measurements, the final yield of highly purified protein was 23 mg l(-1) of cell culture. In addition, no specific interaction of interfering substances, such as, ATP, adenylate kinase, nucleoside diphosphokinase, as well as, creatine kinase of the final preparation were identified. Together, the results presented here clearly show that the baculovirus expression system in combination with immobilized metal-ion affinity chromatography is a potential strategy for process scale-up of polyhistidine tagged insect luciferase.  相似文献   

10.
Response of nucleoside diphosphate kinase to the adenylate energy charge   总被引:5,自引:0,他引:5  
The reaction catalyzed by nucleoside diphosphate kinase responds to the energy charge of the adenylate pool. The velocity is maximal at a charge of 1.0, and decreases sharply with a decrease in the charge. This response may control the flow of phosphate from ATP into the other nucleotide pools and thus participate in the regulation of macromolecular synthesis by the energy level of the cell, as reflected in the charge of the adenylate pool.  相似文献   

11.
Wang L 《The FEBS journal》2007,274(8):1983-1990
Mollicutes are wall-less bacteria and cause various diseases in humans, animals and plants. They have the smallest genomes with low G + C content and lack many genes of DNA, RNA and protein precursor biosynthesis. Nucleoside diphosphate kinase (NDK), a house-keeping enzyme that plays a critical role in the synthesis of nucleic acids precursors, i.e. NTPs and dNTPs, is absent in all the Mollicutes genomes sequenced to date. Therefore, it would be of interest to know how Mollicutes synthesize dNTPs/NTPs without NDK. To answer this question, nucleoside monophosphate kinases (NMPKs) from Ureaplasma were studied regarding their role in the synthesis of NTPs/dNTPs. In this work, Ureaplasma adenylate kinase, cytidylate kinase, uridylate kinase and thymidylate kinase were cloned and expressed in Escherichia coli. The recombinant enzymes were purified and characterized. These NMPKs are base specific, as indicated by their names, and capable of converting (d)NMPs directly to (d)NTPs. The catalytic rates of (d)NTPs and (d)NDP synthesis by these NMPKs were determined using tritium-labelled (d)NMPs, and the rates for (d)NDP synthesis, in general, were much higher (up to 100-fold) than that of (d)NTP. Equilibrium studies with adenylate kinase suggested that the rates of NTPs/dNTPs synthesis by NMPKs in vivo are probably regulated by the levels of (d)NMPs. These results strongly indicate that NMPKs could substitute the NDK function in vivo.  相似文献   

12.
Nucleotide activation of P2 receptors is important in autocrine and paracrine regulation in many tissues. In the epidermis, nucleotides are involved in proliferation, differentiation, and apoptosis. In this study, we have used a combination of luciferin-luciferase luminometry, pharmacological inhibitors, and confocal microscopy to demonstrate that HaCaT keratinocytes release ATP into the culture medium, and that there are three mechanisms for nucleotide interconversion, resulting in ATP generation at the cell surface. Addition of ADP, GTP, or UTP to culture medium elevated the ATP concentration. ADP to ATP conversion was inhibited by diadenosine pentaphosphate, oligomycin, and UDP, suggesting the involvement of cell surface adenylate kinase, F(1)F(0) ATP synthase, and nucleoside diphosphokinase (NDPK), respectively, which was supported by immunohistochemistry. Simultaneous addition of ADP and GTP elevated ATP above that for each nucleotide alone indicating that GTP acts as a phosphate donor. However, the activity of NDPK, F(1)F(0) ATP synthase or the forward reaction of adenylate kinase could not fully account for the culture medium ATP content. We postulate that this discrepancy is due to the reverse reaction of adenylate kinase utilizing AMP. In normal human skin, F(1)F(0) ATP synthase and NDPK were differentially localized, with mitochondrial expression in the basal layer, and cell surface expression in the differentiated layers. We and others have previously demonstrated that keratinocytes express multiple P2 receptors. In this study we now identify the potential sources of extracellular ATP required to activate these receptors and provide better understanding of the role of nucleotides in normal epidermal homeostasis and wound healing.  相似文献   

13.
Purine nucleoside kinases in human T- and B-lymphoblasts   总被引:1,自引:0,他引:1  
Purine nucleoside kinases in human B- and T-lymphoblasts were fractionated by DEAE-cellulose chromatography. Human B-lymphoblast cell extracts showed three peaks of nucleoside kinase activities, adenosine kinase (EC 2.7.1.20), deoxyguanosine kinase and deoxycytidine kinase (EC 2.7.1.74). However, T-lymphoblast cell extracts showed a nucleoside kinase activity which phosphorylates deoxycytidine, deoxyadenosine and deoxyguanosine, similar to deoxycytidine kinase, in addition to the three nucleoside kinases. The Km values of T-lymphoblast-specific nucleoside kinase for deoxyadenosine and deoxyguanosine, 15 and 26 microM, respectively, were smaller than those of deoxycytidine kinase, 150 and 330 microM, respectively. Deoxyadenosine phosphorylation by deoxycytidine kinase was strongly inhibited by dCTP, but the phosphorylation by T-lymphoblast-specific nucleoside kinase was only weakly inhibited by dCTP. Deoxyadenosine phosphorylating activity in B-lymphoblast extracts was more distinctly inhibited by dCTP than that in T-lymphoblast extracts.  相似文献   

14.
Adenylate kinase, which catalyzes the reversible ATP-dependent phosphorylation of AMP to ADP and dAMP to dADP, can also catalyze the conversion of nucleoside diphosphates to the corresponding triphosphates. Lu and Inouye (Lu, Q., and Inouye, M. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 5720-5725) showed that an Escherichia coli ndk mutant, lacking nucleoside diphosphate kinase, can use adenylate kinase as an alternative source of nucleoside triphosphates. Bacteriophage T4 can reproduce in an Escherichia coli ndk mutant, implying that adenylate kinase can meet a demand for deoxyribonucleoside triphosphates that increases by up to 10-fold as a result of T4 infection. In terms of kinetic linkage and specific protein-protein associations, NDP kinase is an integral component of T4 dNTP synthetase, a multienzyme complex containing phage-coded enzymes, which facilitates the synthesis of dNTPs and their flow into DNA. Here we asked whether, by similar criteria, adenylate kinase of the host cell is also a specific component of the complex. Experiments involving protein affinity chromatography, immunoprecipitation, optical biosensor measurements, and glutathione S-transferase pulldowns demonstrated direct interactions between adenylate kinase and several phage-coded enzymes, as well as E. coli nucleoside diphosphate kinase. These results identify adenylate kinase as a specific component of the complex. The rate of DNA synthesis after infection of an ndk mutant was found to be about 40% of the rate seen in wild-type infection, implying that complementation of the missing NDP kinase function by adenylate kinase is fairly efficient, but that adenylate kinase becomes rate-limiting for DNA synthesis when it is the sole source of dNTPs.  相似文献   

15.
1. A method is described to prepare an ATPase-ATP synthase complex from pig heart mitochondria exhibiting a very high ATP-32Pi exchange activity (1.6 mumol/min per mag protein in optimal conditions). 2. The preparation is virtually devoid of nucleoside diphosphokinase and adenylate kinase activities. 3. Freeze-fracture studies show that the ATPase-ATP synthase complex is integrated in lipid vesicles of 400-600 A in diameter. 4. It contains the endogenous natural proteic inhibitor which seems to behave as a coupling factor. 5. The rate of ATP hydrolysis catalyzed by the ATPase-ATP synthase complex is competitively inhibited by ADP, while the presence of ADP increases the initial rate of 32Pi incorporation into ATP. 6. The 32Pi incorporation into ATP can occur at a rate almost equal to that of nucleoside triphosphate (NTP) hydrolysis provided that the rate of NTP hydrolysis is kept low and that the ADP concentration is high enough. In these conditions, a very high coupling between NTP hydrolysis and ATP synthesis can be demonstrated.  相似文献   

16.
17.
Initial rate studies of the intrinsic purine nucleoside-5′-diphosphokinase activity of Escherichia coli acetate kinase suggest that the kinetic reaction pathway is a ping-pong (or double-displacement) mechanism. Further evidence to support this mechanistic assignment was obtained through the use of the alternative substrate approach with ITP and GTP and by competitive inhibition studies with CrGTP and CrADP. That this diphosphokinase activity is intrinsic to the acetate kinase was demonstrated by the concomitant loss of the two activities when the phosphorylated form of acetate kinase was treated with 1 m hydroxylamine at pH 8. These data are fully consistent with the participation of an acyl-P intermediary in the acetate kinase and nucleoside diphosphokinase activities. The kinetic parameters suggest that the acetate kinase is a competent purine nucleoside-5′-diphosphokinase, but the metabolic significance of this function remains unassessed.  相似文献   

18.
We are examining the relationship of RNA metabolism and de novo pyrimidine synthesis as parameters of malignant transformation. These initial experiments on normal hamster embryo fibroblasts have shown that excreted nucleosides are markers for intracellular RNA metabolism. We employed affinity chromatography to concentrate the nucleosides in the medium and sensitive column chromatographic procedures to quantitatively measure them. The excretion of pyrimidine nucleoside from hamster embryo fibroblasts in sulture was found to be dependent on the growth state of the cells, with the greatest accumulation occurring cell quiescence. The major nucleoside excretion products, uridine and cytidine, were both normal end products of RNA metabolism and the major nucleoside excretion products from cultured cells. The modified nucleosides N-1-methylguanosine, N-2-methylguanosine, N-2-dimethylguanosine, N-4-acetylcytidine, N-1-methylinosine, pseudouridine, N-1-methyladenosine, N-3-methylcytidine, and 5-methyleycytidine were found, as were several unidentified nucleosides.  相似文献   

19.
1. Procedures are given for the syntheses of alpha,omega-dinucleoside 5'-polyphosphates as inhibitors of adenylate kinases. The following order for the ability of inhibiting pig muscle adenylate kinase was observed: Ap5A greater than 1:N6-etheno-Ap5A greater than Ap6A greater than Gp5A greater than Ap4A greater than Up5A. The synthesis of adenosine tetraphosphate, the starting material for Ap5A, is also described. 2. One molecule of pig muscle adenylate kinase binds one molecule of Ap5A. The difference spectrum of Ap5A-adenylate kinase with its maximum of 5050 M-1 - cm-1 at 271 nm, as well as the fluorescence properties of 1:N6-etheno-Ap5A can be used for kinetic and binding studies. 3. The specific binding of the negatively charged Ap5A was exploited in the preparation of human muscle adenylate kinase. The enzyme was purified to homogeneity with an overall yield of 65%, the absolute value being 70 mg per kg of muscle. 4. The effect of Ap5A on adenylate kinase in extracts of various cells and cell organelles was tested. A ratio of 1:50 (mol/mol) for Ap5A to other nucleotides was used for suppressing the adenylate kinase activity in extracts of mammalian and insect skeletal muscel, of human erythrocytes and of Staphylococcus aureus. A ratio of 1:5 was found to be necessary for the adenylate kinase from tobacco leaves and spinach chloroplasts, and a ratio of 2:1 was needed for suppressing the adenylate kinase from bovine liver mitochondria, human kidney homogenate and from Escherichia coli. Ap5A appears not to be metabolized in any of the above extracts. These results indicate that Ap5A can be used for evaluating the contribution of adenylate kinase to the production of ATP fro ADP in energy-transducing systems. 5. Contaminating adenylate kinase can be inhibited by a concentration of Ap5A which does not interfere in the study of many (phospho)kinases and ATPases. The applications of Ap5A in the assay for nucleoside diphosphokinase and in the study of mechanical and biochemical properties of contractile proteins are representative examples. The use of Ap5A makes it possible to study the effect of ADP per se in such systems. 6. Sepharose-bound Ap5A was used for removing traces of adenylate kinase from samples of myosin and creatine kinase. 7. In the presence of Ap5A the activity of creatine kinase was measured in hemolytic serum of venous blood, in plasma of capillary blood and in samples of whole blood after complete hemolysis had been induced. The clinical significance of these findings are shown for cases of myocardial infarction and muscular dystrophy.  相似文献   

20.
The interaction of the cardiac glycoside [3H]ouabain with the Na+, K+ pump of resealed human erythrocyte ghosts was investigated. Binding of [3H]ouabain to high intracellular Na+ ghosts was studied in high extracellular Na+ media, a condition determined to produce maximal ouabain binding rates. Simultaneous examination of both the number of ouabain molecules bound per ghost and the corresponding inhibition of the Na+, K+-ATPase revealed that one molecule of [3H]ouabain inhibited one Na+, K+-ATPase complex. Intracellular magnesium or magnesium plus inorganic phosphate produced the lowest ouabain binding rate. Support of ouabain binding by adenosine diphosphate (ADP) was negligible, provided synthesis of adenosine triphosphate (ATP) through the residual adenylate kinase activity was prevented by the adenylate kinase inhibitor Ap5A. Uridine 5'-triphosphate (UTP) alone did not support ouabain binding after inhibition of the endogenous nucleoside diphosphokinase by trypan blue and depletion of residual ATP by the incorporation of hexokinase and glucose. ATP acting solely at the high- affinity binding site of the Na+, K+ pump (Km approximately 1 microM) promoted maximal [3H]ouabain binding rates. Failure of 5'-adenylyl-beta- gamma-imidophosphate (AMP-PNP) to stimulate significantly the rate of ouabain binding suggests that phosphorylation of the pump was required to expose the ouabain receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号