首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The subcellular localization of superoxide dismutase (SOD; EC. 1.15.1.1) was studied in leaves of two ureide-producing leguminous plants ( Phaseolus vulgaris L. cv. Contender and Vigna unguiculata [L.] Walp). In leaves of Vigna and Phaseolus , three superoxide dismutases were found, an Mn-SOD and two Cu, Zn-containing SODs (I and II). Chloroplasts, mitochondria, and peroxisomes were purified by differential and density-gradient centrifugation using either Percoll or sucrose gradients. The yields obtained in intact chloroplasts and peroxisomes from Vigna were considerably higher than those achieved for Phaseolus . Purified chloroplasts only contained the Cu, Zn-SOD II isozyme, but in mitochondria both Mn-SOD and Cu, Zn-SOD I isozymes were present. In purified peroxisomes no SOD activity was detected. The absence of SOD activity in leaf peroxisomes from Vigna contrasts with results reported for the amide-metabolizing legume Pisum sativum L. where the occurrence of Mn-SOD was demonstrated in leaf peroxisomes (del Río et al. 1983. Planta 158: 216–224; Sandalio et al. 1987. Plant Sci. 51: 1–8). This suggests that in leaf peroxisomes from Vigna plants the generation of O2- radicals under normal conditions probably does not take place.  相似文献   

2.
The effect in vivo of high nutrient levels of copper (240 micromolar) on the activity of different metalloenzymes containing Cu, Mn, Fe, and Zn, distributed in chloroplasts, peroxisomes, and mitochondria, was studied in leaves of two varieties of Pisum sativum L. plants with different sensitivity to copper. The metalloenzymes studied were: cytochrome c oxidase, Mn-superoxide dismutase (Mn-SOD) and Cu,Zn-superoxide dismutase I (Cu,Zn-SOD I), for mitochondria; catalase and Mn-SOD, for peroxisomes; and isozyme Cu,Zn-SOD II for chloroplasts. The activity of mitochondrial SOD isozymes (Mn-SOD and Cu,Zn-SOD I) was very similar in Cu-tolerant and Cu-sensitive plants, whereas cytochrome c oxidase was lower in Cu-sensitive plants. Chloroplastid Cu,Zn-SOD activity was the same in the two plant varieties. In contrast, the peroxisomal Mn-SOD activity was considerably higher in Cu-tolerant than in Cu-sensitive plants, and the activity of catalase was also increased in peroxisomes of Cu-tolerant plants. The higher activities of these peroxisomal active oxygen-related enzymes in Cu-tolerant plants suggest the involvement of reactive oxygen intermediates (O2, OH) in the mechanism of Cu lethality, and also imply a function for peroxisomal Mn-SOD in the molecular mechanisms of plant tolerance to Cu in Pisum sativum L.  相似文献   

3.
By using highly purified peroxisomes from rat liver, we have shown that peroxisomes contain manganese superoxide dismutase (MnSOD) activity and a 23 kDa protein immunoreactive with antibodies against purified mitochondrial MnSOD. Immunocytochemical studies have also revealed immunoreaction (immunogold) with MnSOD antibodies in mitochondria and peroxisomes. Studies of the intraperoxisomal localization of MnSOD have shown that in peroxisomes MnSOD is a component of the peroxisomal limiting membranes and dense core. Furthermore, the MnSOD level in peroxisomes was modulated by oxidative stress conditions such as ischemia-reperfusion or the treatment with ciprofibrate, a peroxisomal proliferator. These findings suggest that MnSOD in peroxisomes may play an important role in the dismutation of superoxide generated on the peroxisomal membrane for keeping the delicate balance of the redox state.  相似文献   

4.
The mechanism by which the proapoptotic protein Bax releases cytochrome c from mitochondria is not fully understood. The present work approaches this problem using C-terminal truncated oligomeric Bax (BaxDeltaC). Micromolar concentrations of BaxDeltaC released cytochrome c from isolated rat heart and liver mitochondria, while the release of adenylate kinase was not significantly affected. BaxDeltaC also released cytochrome c but not adenylate kinase from outer membrane vesicles filled with these proteins. However, BaxDeltaC was ineffective in releasing cytochrome c when outer membrane vesicles were obtained in the presence of glycerol, conditions under which the number of contact sites was drastically reduced. BaxDeltaC did not liberate encapsulated cytochrome c and adenylate kinase from pure phospholipid vesicles or vesicles reconstituted with porin. However, when the hexokinase-porin-adenine nucleotide translocase complex from brain mitochondria was reconstituted in vesicles, BaxDeltaC released internal cytochrome c but not adenylate kinase. In all these systems, only a small portion of total cytochrome c present in either mitochondria or vesicles could be liberated by BaxDeltaC. BaxDeltaC also increased the accessibility of external cytochrome c to either oxidation by complex IV or reduction by complex III in intact liver and heart mitochondria. CONCLUSIONS: (1) BaxDeltaC selectively releases cytochrome c and enables a bidirectional movement of cytochrome c across the outer mitochondrial membrane. (2) A multiprotein complex that resembles the mitochondrial contact sites is a prerequisite for BaxDeltaC action. (3) A limited pool of cytochrome c becomes the first target for BaxDeltaC.  相似文献   

5.
Cu,Zn-Superoxide dismutase (SOD) was isolated from the liver of 3-, 12-, and 26-month-old Fisher 344 (F344) rats. Specific activity and metal content of the enzyme, purified by ion-exchange and size-exclusion chromatography, did not significantly change with age. Electrospray ionization-mass spectrometry and amino acid analysis of Cu,Zn-SOD apoprotein, further purified by reverse-phase HPLC, showed neither significant loss of amino acids nor accumulation of oxidized isoforms with age. When bovine Cu,Zn-SOD, oxidized with H(2)O(2) in vitro, was added to rat liver homogenate, we reisolated circa 70% of the oxidized bovine Cu,Zn-SOD together with the rat isoform, showing that oxidized Cu,Zn-SOD can be recovered from tissue homogenate. Therefore, our data do not confirm an earlier hypothesis that oxidatively modified Cu,Zn-SOD protein accumulates in the liver of aged F344 rats.  相似文献   

6.
The aim of this work was to determine the immunolocalization of the antioxidant enzymes catalase, Cu,Zn-superoxide dismutase (SOD), Mn-SOD, and glutathione peroxidase (GPX) in the bivalve mollusks Mytilus galloprovincialis and Crassostrea sp., the crab Carcinus maenas, and the teleostean fish Mugil cephalus. By immunoblotting, crossreactivity between antibodies and the corresponding proteins in the digestive gland/hepatopancreas of invertebrates and the fish liver was demonstrated. Immunohistochemical studies showed that the stomach epithelium was strongly immunostained for catalase in mollusks. In crabs, ducts showed stronger immunostaining than tubules and in mullet hepatocytes the reaction appeared in discrete granules corresponding to peroxisomes. With regard to Cu,Zn-SOD, the apex of the tubule cells in mussels and crabs was distinctly immunostained, whereas in oysters the reaction was more marked in ducts and in mullet liver a uniform diffuse cytoplasmic staining was found. Mn-SOD was strongly positive in mollusk and crab ducts and in mullet periportal hepatocytes. Finally, GPX was not detected in mussels while in oysters a slight reaction was noted in all cell types. In crabs, connective tissue cells and the apex of duct cells were immunostained, but in mullet liver only erythrocytes appeared reactive. Immunoelectron microscopy revealed that catalase was localized in peroxisomes with a dense labeling in fish and less intense labeling in invertebrates. Cu,Zn-SOD was mainly a cytosolic protein although additional positive subcellular sites (peroxisomes, nuclei) were also observed, while Mn-SOD was restricted to mitochondria. GPX was localized in the cytosol, nucleus, and lysosomes, occurring also in peroxisomes of the fish liver. The results presented here provide a basis for future application of the immunodetection techniques to study the possible differential induction of antioxidant enzymes in aquatic organisms subjected to oxidative stress as a result of exposure to environmental pollutants.  相似文献   

7.
A sensitive and reliable assay method was developed to characterize crude cell homogenates and subcellular fractions with regard to their superoxide dismutase (SOD) activities. The determination of SOD activities was based on the well-known spectrophotometric assay introduced by McCord & Fridovich [(1969) J. Biol. Chem. 244, 6049-6055], with partially succinylated (3-carboxypropionylated) rather than native ferricytochrome c as indicating scavenger. Partial succinylation of cytochrome c resulted in minimization of interference associated with the interaction of cytochrome c with mitochondrial cytochrome c oxidase or cytochrome c reductases. The further increase in specificity, with regard to exclusion of cytochrome c oxidase interference, gained as a consequence of the high pH of 10 enabled the analysis of samples as rich in cytochrome c oxidase activity as the mitochondrial fraction in the presence or absence of membrane-disrupting detergents. Linear relationships for the dependence of the SOD activities with protein concentration were obtained with rat liver homogenate, mitochondrial and microsomal fractions, indicating negligible interference. Furthermore, by choosing a high pH for the assay medium, a 4-fold increase in sensitivity compared with the classical SOD assay, carried out at pH 7.8, was gained as well as a more precise resolution of Cu/Zn-SOD and Mn-SOD by 2 mM-KCN in samples with a high ratio of Mn-SOD to Cu/Zn-SOD, such as mitochondria. The complete trapping of the O2.- radicals, which was more feasible at pH 10 than at pH 7.8, enabled the application of a simple equation derived for the calculation of appropriately defined units of SOD activity from a single experiment.  相似文献   

8.
Rat liver mitochondria were loaded with cytochrome c by incubation with large amounts of [14C]apocytochrome c. After being washed they were incubated with either more apocytochrome c or cytochrome c. There was no release of labeled proteins from the mitochondria when incubated with cytochrome c. However, there was when incubated with apocytochrome c. The material released showed only one radioactive band which migrated as cytochrome c. Also no release of proteins other than cytochrome c was detected when liver mitochondria isolated from rats injected with [35S]methionine were incubated with apocytochrome c. These results suggest that the level and possibly the turnover of cytochrome c in rat liver mitochondria is regulated by the entry of apocytochrome c into mitochondria.  相似文献   

9.
Sterol carrier protein-2 (SCP-2) is a nonenzymatic protein of 13.5 kD which has been shown in in vitro experiments to be required for several stages in cholesterol utilization and biosynthesis. The subcellular localization of SCP-2 has not been definitively established. Using affinity-purified rabbit polyclonal antibodies against electrophoretically pure SCP-2 from rat liver, we demonstrate by immunoelectron microscopic labeling of ultrathin frozen sections of rat liver that the largest concentration of SCP-2 is inside peroxisomes. In addition the immunolabeling indicates that there are significant concentrations of SCP-2 inside mitochondria, and associated with the endoplasmic reticulum and the cytosol, but not inside the Golgi apparatus, lysosomes, or the nucleus. These results were confirmed by immunoblotting experiments with proteins from purified subcellular fractions of the rat liver cells carried out with the anti-SCP-2 antibodies. The large concentration of SCP-2 inside peroxisomes strongly supports the proposal that peroxisomes are critical sites of cholesterol utilization and biosynthesis. The presence of SCP-2 inside peroxisomes and mitochondria raises questions about the mechanisms involved in the differential targeting of SCP-2 to these organelles.  相似文献   

10.
Metal-dependent superoxide dismutases (SOD; EC 1.15.1.1) are present in many cell compartments (mitochondria, plastids, nuclei, peroxisomes, endoplasmic reticulum, cell wall and cytosol). We have established that SOD is also localized in the central vacuole. Cyanide-sensitive Cu, Zn-SOD was found in the fraction of isolated vacuoles of red beet roots (Beta vulgaris L.). The enzyme was represented by three isoforms. Comparison of isoenzyme composition and the level of SOD activity in vacuoles, nuclei, plastids and mitochondria isolated from root cells has shown that Cu, Zn-SOD is present in vacuoles and nuclei, two SOD forms (Cu, Zn- and Fe-SOD) are present in plastids, and two SOD forms (Cu, Zn- and Mn-SOD) are present in mitochondria. Cu, Zn-SOD of organelles, unlike vacuolar Cu, Zn-SOD, had only one isoform. The level of enzyme activity from the vacuolar fraction was twice higher than the level of SOD activity from the fractions of isolated organelles. Previously it has been suggested that Cu, Zn-SOD may be localized on the vacuolar membrane or in the near-membrane space from the side of cytoplasm. Our tests have revealed the Cu, Zn-SOD activity in water-soluble extracts of isolated vacuole fractions in the absence of detergent, which may confirm localization of the enzyme inside the organelles.  相似文献   

11.
Bax mediates cytochrome c release and apoptosis during neurodevelopment. Brain mitochondria that were isolated from 8-day, 17-day, and adult rats displayed decreasing levels of mitochondrial Bax. The amount of cytochrome c released from brain mitochondria by a peptide containing the BH3 cell death domain decreased with increasing age. However, approximately 60% of cytochrome c in adult brain mitochondria could be released by the BH3 peptide in the presence of exogenous human recombinant Bax. Mitochondrial Bax was downregulated in PC12S neural cells differentiated with nerve growth factor, and mitochondria isolated from these cells demonstrated decreased sensitivity to BH3-peptide-induced cytochrome c release. These results demonstrate that immature brain mitochondria and mitochondria from undifferentiated neural cells are particularly sensitive to cytochrome c release mediated by endogenous Bax and a BH3 death domain peptide. Postnatal developmental changes in mitochondrial Bax levels may contribute to the increased susceptibility of neurons to pathological apoptosis in immature animals.  相似文献   

12.
The mechanisms of truncated BID (tBID)-induced Cyt c release from non-synaptosomal brain mitochondria were examined. Addition of tBID to mitochondria induced partial Cyt c release which was inhibited by anti-BAK antibodies, implicating BAK. Immunoblotting showed the presence of BAK, but not BAX, in brain mitochondria. tBID did not release Cyt c from rat liver mitochondria, which lacked both BAX and BAK. This indicated that tBID did not act independently of BAX and BAK. tBID plus monomeric BAX produced twice as much Cyt c release as did tBID or oligomeric BAX alone. Neither tBID alone nor in combination with BAX induced mitochondrial swelling. In both cases Cyt c release was insensitive to cyclosporin A plus ADP, inhibitors of the mitochondrial permeability transition (mPT). Recombinant Bcl-xL inhibited Cyt c release induced by tBID alone or in combination with monomeric BAX. Koenig's polyanion, an inhibitor of VDAC, suppressed tBID-induced Cyt c release from brain mitochondria mediated by BAK but not by BAX. Thus, tBID can induce mPT-independent Cyt c release from brain mitochondria by interacting with exogenous BAX and/or with endogenous BAK that may involve VDAC. In contrast, neither adenylate kinase nor Smac/DIABLO was released from isolated rat brain mitochondria via BAK or BAX.  相似文献   

13.
Increased mitochondrial Ca2+ accumulation is a trigger for the release of cytochrome c from the mitochondrial intermembrane space into the cytosol where it can activate caspases and lead to apoptosis. This study tested the hypothesis that Ca2+-induced release of cytochrome c in vitro can occur by membrane permeability transition (MPT)-dependent and independent mechanisms, depending on the tissue from which mitochondria are isolated. Mitochondria were isolated from rat liver and brain and suspended at 37 degrees C in a K+-based medium containing oxidizable substrates, ATP, and Mg2+. Measurements of changes in mitochondrial volume (via light scattering and electron microscopy), membrane potential and the medium free [Ca2+] indicated that the addition of 0.3 - 3.2 micromol Ca2+ mg-1 protein induced the MPT in liver but not brain mitochondria. Under these conditions, a Ca2+ dose-dependent release of cytochrome c was observed with both types of mitochondria; however, the MPT inhibitor cyclosporin A was only capable of inhibiting this release from liver mitochondria. Therefore, the MPT is responsible for cytochrome c release from liver mitochondria, whereas an MPT-independent mechanism is responsible for release from brain mitochondria.  相似文献   

14.
Investigations were conducted on the distribution of rat liver catalase subsequent to electrofocusing in a pH gradient. Differences were observed depending on the enzyme being extracted from the total mitochondrial fraction, from the supernatant of the homogenate or from purified peroxisomes. Catalase solubilized from the total mitochondrial fraction exhibits an apparent isoelectric point lower than that of catalase derived from the supernatant. Catalase released from purified peroxisomes shows a behavior similar to that of the supernatant catalase. It has been concluded that, in a total mitochondrial fraction, a factor is present that alters the electric charge of the catalase molecule during or after the extraction of the enzyme. This factor is probably associated with lysosomes existing together with peroxisomes and mitochondria in a total mitochondrial fraction. As a matter of fact, the addition of an extract of purified lysosomes to purified peroxisomes or to supernatant will cause a shift towards a more acid pH of catalase distribution subsequent to electrofocalization.  相似文献   

15.
The aim of this work was to determine the subcellular location of mammalian 2,4-dienoyl-CoA reductase, a key enzyme for degradation of polyunsaturated fatty acids by beta-oxidation. The enzyme was purified according to Kimura et al. (J Biochem 96:1463, 1984), and antibodies were raised in rabbits. Monospecific antibodies were obtained via purification on an affinity column. Immunoblotting of isolated rat liver mitochondria and peroxisomes with the monospecific reductase antibody showed that the antigen was located only in mitochondria. Immunocytochemical experiments with liver tissue, using the protein A-gold labeling technique, confirmed this result. The similarity of their characteristics suggests that the purified reductases described in the literature are the same isoenzyme. Consequently, since the rat enzyme was localized here to the mitochondria, purification and characterization of peroxisomal mammalian reductases remain to be achieved in the future. In addition, a significant induction also of mitochondrial reductase by clofibrate was observed in the immunoblotting experiments.  相似文献   

16.
Nine distinct monoclonal antibodies raised against purified rat liver cytochrome P-450c react with six different epitopes on the antigen, and one of these epitopes is shared by cytochrome P-450d. None of these monoclonal antibodies recognize seven other purified rat liver isozymes (cytochromes P-450a, b, and e-i) or other proteins in the cytochrome P-450 region of "Western blots" of liver microsomes. Each of the monoclonal antibodies was used to probe "Western blots" of liver microsomes from untreated, or 3-methylcholanthrene-, or isosafrole-treated animals to determine if laboratory animals other than rats possess isozymes immunochemically related to cytochromes P-450c and P-450d. Two protein-staining bands immunorelated to cytochromes P-450c and P-450d were observed in all animals treated with 3-methylcholanthrene (rabbit, hamster, guinea pig, and C57BL/6J mouse) except the DBA/2J mouse, where no polypeptide immunorelated to cytochrome P-450c was detected. The conservation of the number of rat cytochrome P-450c epitopes among these species varied from as few as two (guinea pig) to as many as five epitopes (C57BL/6J mouse and rabbit). The relative mobility in sodium dodecyl sulfate-gels of polypeptides immunorelated to cytochromes P-450c and P-450d was similar in all species examined except the guinea pig, where the polypeptide related to cytochrome P-450c had a smaller Mr than cytochrome P-450d. With the use of both monoclonal and polyclonal antibodies, we were able to establish that purified rabbit cytochromes P-450 LM4 and P-450 LM6 are immunorelated to rat cytochromes P-450d and P-450c, respectively.  相似文献   

17.
Cytochrome P-450 containing enzymes, known to be present in the endoplasmic reticulum and mitochondria, catalyze the oxidation of various compounds. In this study we have used highly purified peroxisomes (>95%) to provide evidence by analytical cell fractionation, enzyme activity, Western blot, and immunocytochemical analysis that cytochrome P-450 2E1 (Cyp 2E1) is present in peroxisomes. Similar specific activities of aniline hydroxylase, a Cyp 2E1-dependent enzyme, in purified peroxisomes (0.72 ± 0.03 nmol/min/mg protein) and microsomes (0.58 ± 0.03 nmol/min/mg protein) supports the conclusion that peroxisomes contain significant amount of Cyp 2E1. This peroxisomal Cyp 2E1 was also induced in acetone-treated rat liver. The status of microsomal and peroxisomal Cyp 2E1 was also examined following ischemia/reperfusion-induced oxidative stress. Ischemia alone had no effect; however, reperfusion following ischemia resulted in decrease in Cyp 2E1 both in microsomes and peroxisomes. This demonstration of cytochrome P-450 2E1 in peroxisomes and its downregulation during ischemia/reperfusion describes a new role for this organelle in cytochrome P-450 related cellular metabolism and in oxidative stress induced disease conditions.  相似文献   

18.
NADPH-cytochrome P450 reductase was purified to apparent homogeneity and cytochrome P450 partially purified from whole rat brain. Purified reductase from brain was identical to liver P450 reductase by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot techniques. Kinetic studies using cerebral P450 reductase reveal Km values in close agreement with those determined with enzyme purified from rat liver. Moreover, the brain P450 reductase was able to function successfully in a reconstituted microsomal system with partially purified brain cytochrome P450 and with purified hepatic P450c (P450IA1) as measured by 7-ethoxycoumarin and 7-ethoxyresorufin O-deethylation. Our results indicate that the reductase and P450 components may interact to form a competent drug metabolism system in brain tissue.  相似文献   

19.
The subcellular site of oxidation of [1-14C]phytanic acid to 14CO2 was investigated in human and monkey liver. In both species, this activity was associated with fractions enriched in mitochondria. Fractions enriched in peroxisomes had no detectable phytanic acid oxidase activity. The mitochondrial inhibitors antimycin A and rotenone significantly decreased 14CO2 production in mitochondria-rich fractions from human and monkey liver. These inhibitors also blocked phytanic acid oxidation in cultured human skin fibroblasts. These data suggest that alpha-oxidation of phytanic acid is a mitochondrial rather than a peroxisomal process in primates.  相似文献   

20.
《Free radical research》2013,47(5):401-405
Superoxide dismutase activity was measured in liver and lung from 3 and 24 month-old rats. Both total SOD and Mn-SOD activity decreased significantly in the liver of old rats. Recent results from our laboratory have indicated that during aging, the activity of Cu/Zn-SOD decreases in rat liver and that there is an accumulation of altered protein. It was also shown that the old Cu/Zn-SOD had one histidine fewer than the young one. In the present study, the immunoprecipitation experiments showed that the amount of immunoprecipitable Mn-SOD from liver of old rats was greater than from young ones, but when amino acid residues were measured in purified young and old Mn-SOD from liver, no change was observed. In lung, no significant age-related differences in total SOD, Cu/Zn-SOD and Mn-SOD activity were found, nor was there accumulation of altered protein during aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号