首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bacterial consortium MPD-M, isolated from sediment associated with Colombian mangrove roots, was effective in the treatment of hydrocarbons in water with salinities varying from 0 to 180 g L(-1). Where the salinity of the culture medium surpassed 20 g L(-1), its effectiveness increased when the cells were immobilized on polypropylene fibers. Over the range of salinity evaluated, the immobilized cells significantly enhanced the biodegradation rate of crude oil compared with free-living cells, especially with increasing salinity in the culture medium. Contrary to that observed in free cell systems, the bacterial consortium MPD-M was highly stable in immobilized systems and it was not greatly affected by increments in salinity. Biodegradation was evident even at the highest salinity evaluated (180 g L(-1)), where biodegradation was between 4 and 7 times higher with immobilized cells compared to free cells. The biodegradation of pristane (PR) and phytane (PH) and of the aromatic fraction was also increased using cells immobilized on polypropylene fibers.  相似文献   

2.
Microbial consortia were obtained three by sequential enrichment using different oil products. Consortium F1AA was obtained on a heavily saturated fraction of a degraded crude oil; consortium TD, by enrichment on diesel and consortium AM, on a mixture of five polycyclic aromatic hydrocarbons [PAHs]. The three consortia were incubated with a crude oil in order to elucidate their metabolic capabilities and to investigate possible differences in the biodegradation of these complex hydrocarbon mixtures in relation to their origin. The efficiency of the three consortia in removing the saturated fraction was 60% (F1AA), 48% (TD) and 34% (AM), depending on the carbon sources used in the enrichment procedures. Consortia F1AA and TD removed 100% of n-alkanes and branched alkanes, whereas with consortium AM, 91% of branched alkanes remained. Efficiency on the polyaromatic fraction was 19% (AM), 11% (TD) and 7% (F1AA). The increase in aromaticity of the polyaromatic fraction during degradation of the crude oil by consortium F1AA suggested that this consortium metabolized the aromatic compounds primarily by oxidation of the alkylic chains. The 500-fold amplification of the inocula from the consortia by subculturing in rich media, necessary for use of the consortia in bioremediation experiments, showed no significant decrease in their degradation capability. Journal of Industrial Microbiology & Biotechnology (2002) 28, 252–260 DOI: 10.1038/sj/jim/7000236 Received 12 July 2001/ Accepted in revised form 11 November 2001  相似文献   

3.
In this study biodegradation of hydrocarbons in thin oil films was investigated in seawater at low temperatures, 0 and 5 °C. Heterotrophic (HM) or oil-degrading (ODM) microorganisms enriched at the two temperatures showed 16S rRNA sequence similarities to several bacteria of Arctic or Antarctic origin. Biodegradation experiments were conducted with a crude mineral oil immobilized as thin films on hydrophobic Fluortex adsorbents in nutrient-enriched or sterile seawater. Chemical and respirometric analysis of hydrocarbon depletion showed that naphthalene and other small aromatic hydrocarbons (HCs) were primarily biodegraded after dissolution to the water phase, while biodegradation of larger polyaromatic hydrocarbons (PAH) and C10–C36 n-alkanes, including n-hexadecane, was associated primarily with the oil films. Biodegradation of PAH and n-alkanes was significant at both 0 and 5°C, but was decreased for several compounds at the lower temperature. n-Hexadecane biodegradation at the two temperatures was comparable at the end of the experiments, but was delayed at 0°C. Investigations of bacterial communities in seawater and on adsorbents by PCR amplification of 16S rRNA gene fragments and DGGE analysis indicated that predominant bacteria in the seawater gradually adhered to the oil-coated adsorbents during biodegradation at both temperatures. Sequence analysis of most DGGE bands aligned to members of the phyla Proteobacteria (Gammaproteobacteria) or Bacteroidetes. Most sequences from experiments at 0°C revealed affiliations to members of Arctic or Antarctic consortia, while no such homology was detected for sequences from degradation experiment run at 5°C. In conclusion, marine microbial communities from cold seawater have potentials for oil film HC degradation at temperatures ≤5°C, and psychrotrophic or psychrophilic bacteria may play an important role during oil HC biodegradation in seawater close to freezing point.  相似文献   

4.
We studied the use of sequential batch reactors under oxygen limitation to improve and maintain consortium ability to biodegrade hydrocarbons. Air-agitated tubular reactors (2.5 L) were operated for 20 sequential 21-day cycles. Maya crude oil-paraffin mixture (13,000 mg/L) was used as the sole carbon source. The reactors were inoculated with a consortium from the rhizosphere of Cyperus laxus, a native plant that grows naturally in weathered, contaminated soil. Oxygen limitation was induced in the tubular reactor by maintaining low oxygen transfer coefficients (k(L)a < 20.6 h(-1)). The extent and biodegradation rates increased significantly up to the fourth cycle, maintaining values of about 66.33% and 460 mg x L(-1) x d(-1), respectively. Thereafter, sequential batch reactor operation exhibited a pattern with a constant general trend of biodegradation. The effect of oxygen limitation on consortium activity led to a low biomass yield and non-soluble metabolite (0.45 g SS/g hydrocarbons consumed). The average number of hydrocarbon-degrading microorganisms increased from 6.5 x 10(7) (cycles 1-3) to 2.2 x 10(8) (cycles 4-20). Five bacterial strains were identified: Achromobacter (Alcaligenes) xylosoxidans, Bacillus cereus, Bacillus subtilis, Brevibacterium luteum, and Pseudomonas pseudoalcaligenes. Asphaltene-free total petroleum hydrocarbons, extracted from a weathered, contaminated soil, were also biodegraded (97.1 mg x L(-1) x d(-1)) and mineralized (210.48 mg CO2 x L(-1) x d(-1)) by the enriched consortium without inhibition. Our results indicate that sequential batch reactors under oxygen limitation can be used to produce consortia with high and constant biodegradation ability for industrial applications of bioremediation.  相似文献   

5.
Using enrichment culture technique, two isolates that brought a significant degradation and dispersion of crude oil were obtained from contaminated sediments of the Bohai Bay, China. 16S rRNA gene sequencing and phylogenetic analysis indicated that the two bacterial strains affiliated with the genera Vibrio and Acinetobacter. Subsequently, the bacterial cells were immobilized on the surface of cotton fibers. Cotton fibers were used as crude oil sorbent as well as a biocarrier for bacteria immobilization. Among the two isolates, the marine bacteria Acinetobacter sp. HC8-3S showed a strong binding to the cotton fibers, possibly enhanced through extracellular dispersant excreted by Acinetobacter sp. HC8-3S. Both planktonic and immobilized bacteria showed relatively high biodegradation (>60%) of saturated hydrocarbons fraction of crude oil, in the pH range of 5.6–8.6. The degradation activities of planktonic and immobilized bacteria were not affected significantly when the NaCl concentration reached 70 g/L. The immobilized bacterial cells exhibited an enhanced biodegradation of crude oil. The efficiency of saturated hydrocarbons degradation by the immobilized bacterial cells increased about 30% compared to the planktonic bacterial cells.  相似文献   

6.
There are many PAH-degrading bacteria in mangrove sediments and in order to explore their degradation potential, surface sediment samples were collected from a mangrove area in Fugong, Longhai, Fujian Province of China. A total of 53 strains of PAH-degrading bacteria were isolated from the mangrove sediments, consisting of 14 strains of phenanthrene (Phe), 13 strains of pyrene (Pyr), 13 strains of benzo[a]pyrene (Bap) and 13 strains of mixed PAH (Phe + Pyr + Bap)-degrading bacteria. All of the individual colonies were identified by 16S rDNA sequencing. Based on the information of bacterial PCR-DGGE profiles obtained during enrichment batch culture, Phe, Pyr, Bap and mixed PAH-degrading consortia consisted of F1, F2, F3, F4 and F15 strains, B1, B3, B6, B7 and B13 strains, P1, P2, P3, P5 and P7 strains, M1, M2, M4, M12 and M13 strains, respectively. In addition, the degradation ability of these consortia was also determined. The results showed that both Phe and mixed PAH-degrading consortia had the highest ability to degrade the Phe in a liquid medium, with more than 91% being degraded in 3 days. But the biodegradation percentages of Pyr by Pyr-degrading consortium and Bap by Bap-degrading consortium were relatively lower than that of the Phe-degrading consortium. These results suggested that a higher degradation of PAHs depended on both the bacterial consortium present and the type of PAH compound. Moreover, using the bacterial community structure analysis method, where the consortia consist of different PAH-degrading bacteria, the information from the PCR-DGGE profiles could be used in the bioremediation of PAHs in the future.  相似文献   

7.
Degradation of crude oil by an arctic microbial consortium   总被引:2,自引:0,他引:2  
The ability of a psychrotolerant microbial consortium to degrade crude oil at low temperatures was investigated. The enriched arctic microbial community was also tested for its ability to utilize various hydrocarbons, such as long-chain alkanes (n-C24 to n-C34), pristane, (methyl-)naphthalenes, and xylenes, as sole carbon and energy sources. Except for o-xylene and methylnaphthalenes, all tested compounds were metabolized under conditions that are typical for contaminated marine liquid sites, namely at pH 6–9 and at 4–27°C. By applying molecular biological techniques (16S rDNA sequencing, DGGE) nine strains could be identified in the consortium. Five of these strains could be isolated in pure cultures. The involved strains were closely related to the following genera: Pseudoalteromonas (two species), Pseudomonas (two species), Shewanella (two species), Marinobacter (one species), Psychrobacter (one species), and Agreia (one species). Interestingly, the five isolated strains in different combinations were unable to degrade crude oil or its components significantly, indicating the importance of the four unculturable microorganisms in the degradation of single or of complex mixtures of hydrocarbons. The obtained mixed culture showed obvious advantages including stability of the consortium, wide range adaptability for crude oil degradation, and strong degradation ability of crude oil.  相似文献   

8.
Wide biosurfactant application on biorremediation is limited by its high production cost. The search for cheaper biossurfactant production alternatives has guided our study. The use of selective media containing sucrose (10 g x L(-1)) and Arabian Light oil (2 g x L(-1)) as carbon sources showed to be effective to screen and maintain biosurfactant-producing consortia isolated from mangrove hydrocarbon-contaminated sediment. The biosurfactant production was assayed by kerosene, gasoline and Arabian Light Emulsification activity and the bacterial growth curve was determined by bacterial quantification. The parameters analyzed for biosurfactant production were the growth curve, salinity concentration, flask shape and oxygenation. All bacteria consortia screened were able to emulsify the petroleum derivatives tested. Biosurfactant production increased according to the incubation time; however the type of emulsification (non-aqueous phase or aqueous phase) did not change with time but with the compound tested. The methodology was able to isolate biosurfactant-producing consortia from superficial mangrove sediment contaminated by petroleum hydrocarbons and was recommended for selection of biosurfactant producing bacteria in tropical countries with low financial resources.  相似文献   

9.
张子川  杨平  仝川 《生态学报》2015,35(24):8075-8084
海平面上升导致河口区盐水入侵现象日益明显,深刻影响着河口潮汐淡水、微咸水湿地生物地球化学循环。采集闽江河口区淡水、微咸水短叶茳芏潮汐沼泽湿地表层土样,室内添加盐度为5,10,15,21 g/L的人造海水、Na Cl溶液及盐度为0的去离子水,通过室内泥浆厌氧培养试验,对比研究海水和Na Cl溶液对淡水、微咸水沼泽湿地土壤甲烷产生潜力的影响。与对照相比,1—12 d培养期内4个盐度的海水处理均显著抑制河口淡水、微咸水沼泽湿地甲烷产生潜力,抑制率在93%以上,盐度10—21 g/L的3个海水处理对于河口淡水、微咸水沼泽湿地甲烷产生潜力的抑制效应无显著差异。Na Cl溶液只有在盐度达到15和21 g/L才显著抑制淡水、微咸水沼泽湿地甲烷产生潜力,且抑制率最多为80.9%,盐度为5、10 g/L的Na Cl溶液对淡水、微咸水沼泽湿地甲烷产生潜力的抑制作用不显著,抑制率多小于30%。伴随着盐水入侵而发生的硫酸盐还原作用及离子胁迫作用对河口淡水、微咸水沼泽湿地甲烷产生具有显著的抑制效应。  相似文献   

10.
Hydrocarbon-utilizing microorganisms were enumerated from Alaskan continental shelf areas by using plate counts and a new most-probable-number procedure based on mineralization of 14C-labeled hydrocarbons. Hydrocarbon utilizers were ubiquitously distributed, with no significant overall concentration differences between sampling regions or between surface water and sediment samples. There were, however, significant seasonal differences in numbers of hydrocarbon utilizers. Distribution of hydrocarbon utilizers within Cook Inlet was positively correlated with occurrence of hydrocarbons in the environment. Hydrocarbon biodegradation potentials were measured by using 14C-radiolabeled hydrocarbon-spiked crude oil. There was no significant correlation between numbers of hydrocarbon utilizers and hydrocarbon biodegradation potentials. The biodegradation potentials showed large seasonal variations in the Beaufort Sea, probably due to seasonal depletion of available nutrients. Non-nutrient-limited biodegradation potentials followed the order hexadecane > naphthalene pristane > benzanthracene. In Cook Inlet, biodegradation potentials for hexadecane and naphthalene were dependent on availability of inorganic nutrients. Biodegradation potentials for pristane and benzanthracene were restricted, probably by resistance to attack by available enzymes in the indigenous population.  相似文献   

11.
Two extreme halophilic Haloferax strains and one strain each of Halobacterium and Halococcus were isolated from a hypersaline coastal area of the Arabian Gulf on a mineral salt medium with crude oil vapor as a sole source of carbon and energy. These archaea needed at least 1 M NaCl for growth in culture, and grew best in the presence of 4 M NaCl or more. Optimum growth temperatures lied between 40 and 45oC. The four archaea were resistant to the antibiotics chloramphenicol, cycloheximide, nalidixic acid, penicillin, streptomycin and tetracycline. The strains could grow on a wide scope of aliphatic and aromatic (both mono-and polynuclear) hydrocarbons, as sole sources of carbon and energy. Quantitative measurements revealed that these extreme halophilic prokaryotes could biodegrade crude oil (13–47%, depending on the strain and medium salinity), n-octadecane (28–67%) and phenanthrene (13–30%) in culture after 3 weeks of incubation. The rates of biodegradation by all strains were enhanced with increasing NaCl concentration in the medium. Optimal concentration was 3 M NaCl, but even with 4 M NaCl the hydrocarbon-biodegradation rates were higher than with 1 and 2 M NaCl. It was concluded that these archaea could contribute to self-cleaning and bioremediation of oil-polluted hypersaline environments.  相似文献   

12.
The impact of two-step inoculation of indigenous strains and their synergistic effect in the scaling-up of petroleum hydrocarbons biodegradation from a mineral-based medium (MBM) to a two-phase composting process were investigated. After isolating the strains KA3 and KA4 from heavy oily sludge (HOS), their emulsification index (E24), bacterial adhesion to hydrocarbon (BATH), and oil degradation efficiency were evaluated in the MBM. Then, they were inoculated twice into the composting bioreactors lasted for the primary 8 weeks as the first phase (FP) and subsequent 8 weeks as the second phase (SP). The results indicated that the consortium of the two strains degraded 16-61% of crude oil (1-5% concentration) in the MBM. In the composting reactors, removals of 20 g kg−1 initial concentration of total petroleum hydrocarbons (TPH) were found to be 63.95, 61.00, and 89.35% for the strains KA3, KA4, and their consortium, respectively. The computed biodegradation constants indicated the synergistic effect of the two strains and the effectiveness of the second-step inoculation. The study demonstrated the successful scaling-up of HOS biodegradation from MBM to the two-phase composting process through two-step inoculation of the isolated strains.  相似文献   

13.
The bacteria involved in the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in deep sea subsurface environments are largely unknown. In order to reveal their biodiversity, sediments from 2.2 m under the bottom surface at a water depth of 3542 m were sampled on the Middle Atlantic Ridge with a gravity column sampler. The sediments were promptly enriched with either crude oil or a mixture of PAHs (naphthalene, phenanthrene and pyrene) as the sole carbon source, and further enriched with the PAH mixture mentioned above in the lab. The resulting consortia were named C2CO and C2PPN respectively. Their bacterial composition was analysed with plate cultivation, PCR-DGGE and 16S rDNA library analysis. On plates, isolates belonging to Pseudoalteromonas , Halomonas , Marinobacter , Thalassospira and Tistrella dominated the culturable populations. With PCR-DGGE, five major bands closely related to Cycloclasticus , Alteromonas , Thalassospira , Alcanivorax and Rhodospirillaceae were detected in consortium C2CO, while only one major band of Cycloclasticus was detected in consortium C2PPN. In addition, the dynamics of community structure in response to aromatic substrate alterations were examined. As a result, three ribotypes of Cycloclasticus were detected by 16S rDNA library analysis, one which played a key role in phenanthrene degradation; two Alteromonas bacteria dominated the naphthalene reselected consortium. Although bacteria of the two genera grew as the main members of the communities, none of them were isolated, probably owing to their poor cultivability. These results confirm that bacteria of Cycloclasticus are important obligate PAH degraders in marine environments, and coexist with other degrading bacteria that inhabit the deep subsurface sediment of the Atlantic. This supports the view that PAH accumulation and bioattenuation occur in remote areas consistently and continuously.  相似文献   

14.
Aims:  To isolate and characterize an efficient hydrocarbon-degrading bacterium under hypersaline conditions, from a Tunisian off-shore oil field.
Methods and Results:  Production water collected from 'Sercina' petroleum reservoir, located near the Kerkennah island, Tunisia, was used for the screening of halotolerant or halophilic bacteria able to degrade crude oil. Bacterial strain C2SS100 was isolated after enrichment on crude oil, in the presence of 100 g l−1 NaCl and at 37°C. This strain was aerobic, Gram-negative, rod-shaped, motile, oxidase + and catalase +. Phenotypic characters and phylogenetic analysis based on the 16S rRNA gene of the isolate C2SS100 showed that it was related to members of the Halomonas genus. The degradation of several compounds present in crude oil was confirmed by GC–MS analysis. The use of refined petroleum products such as diesel fuel and lubricating oil as sole carbon source, under the same conditions of temperature and salinity, showed that significant amounts of these heterogenic compounds could be degraded. Strain C2SS100 was able to degrade hexadecane (C16). During growth on hexadecane, cells surface hydrophobicity and emulsifying activity increased indicating the production of biosurfactant by strain C2SS100.
Conclusions:  A halotolerant bacterial strain Halomonas sp. C2SS100 was isolated from production water of an oil field, after enrichment on crude oil. This strain is able to degrade hydrocarbons efficiently. The mode of hydrocarbon uptake is realized by the production of a biosurfactant which enhances the solubility of hydrocarbons and renders them more accessible for biodegradation.
Significance and Impact of the Study:  The biodegradation potential of the Halomonas sp. strain C2SS100 gives it an advantage for possibly application on bioremediation of water, hydrocarbon-contaminated sites under high-salinity level.  相似文献   

15.
Aims: To study the bacterial diversity associated with hydrocarbon biodegradation potentiality and biosurfactant production of Tunisian oilfields bacteria. Methods and Results: Eight Tunisian hydrocarbonoclastic oilfields bacteria have been isolated and selected for further characterization studies. Phylogenetic analysis revealed that three thermophilic strains belonged to the genera Geobacillus, Bacillus and Brevibacillus, and that five mesophilic strains belonged to the genera Pseudomonas, Lysinibacillus, Achromobacter and Halomonas. The bacterial strains were cultivated on crude oil as sole carbon and energy sources, in the presence of different NaCl concentrations (1, 5 and 10%, w/v), and at 37 or 55°C. The hydrocarbon biodegradation potential of each strain was quantified by GC–MS. Strain C450R, phylogenetically related to the species Pseudomonas aeruginosa, showed the maximum crude oil degradation potentiality. During the growth of strain C450R on crude oil (2%, v/v), the emulsifying activity (E24) and glycoside content increased and reached values of 77 and 1·33 g l?1, respectively. In addition, the surface tension (ST) decreased from 68 to 35·1 mN m?1, suggesting the production of a rhamnolipid biosurfactant. Crude biosurfactant had been partially purified and characterized. It showed interest stability against temperature and salinity increasing and important emulsifying activity against oils and hydrocarbons. Conclusions: The results of this study showed the presence of diverse aerobic bacteria in Tunisian oilfields including mesophilic, thermophilic and halotolerant strains with interesting aliphatic hydrocarbon degradation potentiality, mainly for the most biosurfactant produced strains. Significance and Impact of the Study: It may be suggested that the bacterial isolates are suitable candidates for practical field application for effective in situ bioremediation of hydrocarbon‐contaminated sites.  相似文献   

16.
Bioremediation is gaining favorable attention as a more economical and environmentally friendly technique for the remediation of crude oil hydrocarbons. This makes the search for crude oil–degrading microbes very crucial. In this study, the isolation and identification of actinobacteria in soil samples from a selected crude oil spill site were carried out. Eighteen isolates from different soil depths (20–120 cm) were screened for their ability to grow on crude oil–based medium (COBM). Actinomyces naeslundii, Actinomyces viscosus, Actinomyces israelii, Actinomyces meyeri, and Nocardia formicae from a 20 cm soil depth exhibited higher growth profiles on COBM than on glucose-based medium (GBM). A. viscosus and A. isrealii exhibited 5- and 3-fold increase in growth over GBM and were selected for biodegradation studies. Growth kinetics and residual crude oil were used to measure the degradation efficiency of A. viscosus and A. israeli over varying crude oil concentrations. Surprisingly, A. viscosus and A. isrealii achieved 98% degradation of 10 g/L crude oil in 12 days and 97% degradation of 30, 50, and 75 g/L in 16 and 18 days, respectively. Specific activity of total peroxidase was assayed over the biodegradation period. Peroxidase activity increased with degradation efficiency of A. viscosus and A. isrealii, suggesting that peroxidases play a key role in the crude oil biodegradation process. The unique tolerance exhibited by A. viscosus and A. israelii to crude oil and high crude oil degradation efficiencies indicate their promising potential for bioremediation applications.  相似文献   

17.
The long‐term growth process of two microbial consortia effective in the aerobic cometabolic biodegradation of a mixture of 6‐chlorinated aliphatic hydrocarbons (CAHs), the effectiveness of these consortia as inocula for the bio‐augmentation of different types of microcosms and the development of a double‐substrate, high‐performing consortium is presented. The propane‐utilizing consortium generally proved to be the most effective one, being able to biodegrade vinyl chloride, cis‐ and trans‐1,2‐dichloroethylene, trichloroethylene, 1,1,2‐trichloroethane and 1,1,2,2‐tetrachloroethane at all the CAH concentrations tested (0–4 μM). Both consortia maintained unaltered CAH degradation capacities over a 300‐day growth period in the absence of the CAHs and were effective in inducing the rapid onset of CAH depletion upon inoculation in slurry microcosms set up with five types of aquifer materials. A consortium supplied with both methane and propane combined the best degradation capacities of the two single‐substrate consortia, and maintained stable performances for 150 days under slurry conditions. The degree of conversion of the organic Cl to chloride ions was equal to 90 %.  相似文献   

18.
The purpose of the present study was to investigate possible methods to enhance the rate of biodegradation of oil sludge from crude oil tank bottom, thus reducing the time usually required for bioremediation. Enhancement of biodegradation was achieved through bioaugmentation and biostimulation. About 10% and 20% sludge contaminated sterile and non-sterile soil samples were treated with bacterial consortium (BC), rhamnolipid biosurfactant (RL) and nitrogen, phosphorus and potassium (NPK) solution. Maximum n-alkane degradation occurred in the 10% sludge contaminated soil samples. The effects of treatment carried out with the non-sterile soil samples were more pronounced than in the sterile soils. Maximum degradation was achieved after the 56th day of treatment. n-Alkanes in the range of nC8-nC11 were degraded completely followed by nC12-nC21, nC22-nC31 and nC32-nC40 with percentage degradations of 100%, 83-98%, 80-85% and 57-73% respectively. Statistical analysis using analysis of variance and Duncan's multiple range test revealed that the level of amendments, incubation time and combination of amendments significantly influenced bacterial growth, protein concentration and surface tension at a 1% probability level. All tested additives BC, NPK and RL had significant positive effects on the bioremediation of n-alkane in petroleum sludge.  相似文献   

19.
In this work, crude oil biodegradation has been optimized in a solid‐liquid two phase partitioning bioreactor (TPPB) by applying a response surface methodology based d ‐optimal design. Three key factors including phase ratio, substrate concentration in solid organic phase, and sodium chloride concentration in aqueous phase were taken as independent variables, while the efficiency of the biodegradation of absorbed crude oil on polymer beads was considered to be the dependent variable. Commercial thermoplastic polyurethane (Desmopan®) was used as the solid phase in the TPPB. The designed experiments were carried out batch wise using a mixed acclimatized bacterial consortium. Optimum combinations of key factors with a statistically significant cubic model were used to maximize biodegradation in the TPPB. The validity of the model was successfully verified by the good agreement between the model‐predicted and experimental results. When applying the optimum parameters, gas chromatography‐mass spectrometry showed a significant reduction in n‐alkanes and low molecular weight polycyclic aromatic hydrocarbons. This consequently highlights the practical applicability of TPPB in crude oil biodegradation. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:797–805, 2014  相似文献   

20.
This paper describes the potential of oil-utilizing bacteria associated with live fish from the Arabian Gulf for hydrocarbon attenuation in seawater polluted with oil. Maintaining local live fish (grey mullet and tilapia) in seawater artificially polluted with crude oil or individual hydrocarbons for 3 w led to dramatic attenuation of those compounds. The same result was obtained when instead of live fish, the bacterial consortia scraped off from the fish surfaces were used. Almost similar hydrocarbon attenuation results were obtained irrespective of whether the system was fertilized with NH4NO3 or not. Parallel counting of oil-utilizing bacteria associated with fish on a nitrogen-containing and a nitrogen free-medium gave almost similar numbers, indicating that most of the hydrocarbon-utilizing bacteria could fix atmospheric nitrogen. The predominant hydrocarbon-utilizing bacteria isolated from fish grew well in nitrogen-free medium and gave positive nitrogenase test as revealed by their potential for acetylene reduction to ethylene. Molecular fingerprinting showed that crude oil-polluted seawater samples incubated for 3 w contained two new 16S rDNA bands probably corresponding to hydrocarbon-utilizing bacteria. It was concluded that fish individuals accommodate rich bacterial consortia with the combined potential for hydrocarbon-utilization and nitrogen-fixation, which makes them efficient in cleaning hydrocarbon pollutants in water without need for nitrogen fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号