首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An immense number of bacteria reside within the intestinal lumen. The task of appropriately identifying and responding to microbial threats lies primarily with the single layer of cells that line the intestinal tract. Intestinal epithelial cells have developed a number of strategies aimed at identifying microorganisms and eliciting the appropriate inflammatory response. The pathogen recognition mechanisms and the signaling and inflammatory events that ensue within the intestine are the focus of this review.  相似文献   

2.
Long-term interactions between Helicobacter pylori and humans significantly increase the risk for peptic ulcer disease and noncardia gastric adenocarcinoma. The vast majority of infected persons remain persistently colonized unless a targeted antibiotic regimen is employed; thus regulation of inflammation by H. pylori is governed by levels of host-bacteria equilibria that are not found during cellular interactions with acute enteric pathogens. It is important to gain insight into mechanisms that regulate immune evasion by H. pylori not only to develop more effective treatments for disease, but also because such knowledge may serve as a paradigm for the role that other chronic infectious agents play in the genesis of pathological lesions that arise from inflammatory foci.  相似文献   

3.
Epithelial cells of many mucosal organs have adapted to coexist with microbes and microbial products. In general, most studies suggest that epithelial cells benefit from interactions with commensal microorganisms present at the lumenal surface. However, potentially injurious molecules found in this microenvironment also have the capacity to elicit local inflammatory responses and even systemic disease. In this environment, the epithelium has evolved effective mechanisms to cope with microbial products and to provide appropriate responses to potential pathogens. Although our understanding of these mechanisms is clearly in its infancy, a number of recent findings provide insight into phenotypic characteristics that allow for this discrimination. Here, we briefly review some of these mechanisms, with particular attention to epithelial expression of the anti-infective molecule bactericidal/permeability-increasing protein.  相似文献   

4.
Humans have an important association with their intestinal microbial flora. The microbial flora helps to shape the mammalian innate immune system, absorbs nutrients, and plays an intricate role on intestinal development. Microbes and mammals communicate with each other through an array of hormone and hormonelike chemical compounds. These "signals," however, are hijacked by bacterial pathogens, such as enterohemorrhagic Eschrichia coli (EHEC), to activate its virulence genes, colonize the host, and start the disease process. This review explores the cell-to-cell signaling events in the gastrointestinal tract that lead EHEC to regulate its virulence genes in a coordinate manner.  相似文献   

5.
Activation of Paneth cell alpha-defensins in mouse small intestine.   总被引:5,自引:0,他引:5  
Paneth cells in small intestine crypts secrete microbicidal alpha-defensins, termed cryptdins, as components of enteric innate immunity. The bactericidal activity of cryptdins requires proteolytic activation of precursors by matrix metalloproteinase-7 (MMP-7; matrilysin) (Wilson, C. L., Ouellette, A. J., Satchell, D. P., Ayabe, T., Lopez-Boado, Y. S., Stratman, J. L., Hultgren, S. J., Matrisian, L. M., and Parks, W. C. (1999) Science 286, 113-117). Here, we report on the intracellular processing of cryptdin proforms in mouse Paneth cells. Peptide sequencing of MMP-7 digests of purified natural procryptdins identified conserved cleavage sites in the proregion between Ser(43) and Val(44) as well as at the cryptdin peptide N terminus between Ser(58) and Leu(59). Immunostaining co-localized precursor prosegments and mature cryptdin peptides to Paneth cell granules, providing evidence of their secretion. Extensive MMP-7-dependent procryptdin processing occurs in Paneth cells, as shown by Western blot analyses of intestinal crypt proteins and proteins from granule-enriched subcellular fractions. The addition of soluble prosegments to in vitro antimicrobial peptide assays inhibited the bactericidal activities of cryptdin-3 and -4 in trans, suggesting possible cytoprotective effects by prosegments prior to secretion. Levels of activated cryptdins were normal in small bowel of germ-free mice and in sterile implants of fetal mouse small intestine grown subcutaneously. Thus, the initiation of procryptdin processing by MMP-7 does not require direct bacterial exposure, and the basal MMP-7 content of germ-free Paneth cells is sufficient to process and activate alpha-defensin precursors. MMP-7-dependent procryptdin activation in vivo provides mouse Paneth cells with functional peptides for apical secretion into the small intestine lumen.  相似文献   

6.
Luminal acidity is a physiological challenge in the foregut, and acidosis can occur throughout the gastrointestinal tract as a result of inflammation or ischemia. These conditions are surveyed by an elaborate network of acid-governed mechanisms to maintain homeostasis. Deviations from physiological values of extracellular pH are monitored by multiple acid sensors expressed by epithelial cells and sensory neurons. Acid-sensing ion channels are activated by moderate acidification, whereas transient receptor potential ion channels of the vanilloid subtype are gated by severe acidosis. Some ionotropic purinoceptor ion channels and two-pore domain background K(+) channels are also sensitive to alterations of extracellular pH.  相似文献   

7.
Host defense peptides (historically called antimicrobial peptides, AMPs) are key components in the mammalian innate immune system, and are responsible for both direct killing and immunomodulatory effects in host defense against pathogenic organisms. In order to identify novel host defense peptides by sequence analysis, we constructed the AMPer resource (http://www.cnbi2.com/cgi-bin/amp.pl) that utilizes hidden Markov models to recognize sequences of antimicrobial peptides. In the current work, we utilized the AMPer resource to search bovine expressed sequence tags from the NCBI dbEST project and the bovine genome sequence for novel host defense peptides. Of the 34 known bovine AMPs, 27 were identified with high confidence in the AMPs predicted from ESTs. A further potential 68 AMPs predicted from the EST data were found that appear to be novel giving a total estimate of 102 AMPs present in the genome. Two of these were cathelicidins and selected for experimental verification in RNA derived from bovine tissue. One predicted AMP, most similar to rabbit '15 kDa protein' AMP, was confirmed to be present in infected bovine intestinal tissue using PCR. These findings demonstrated the practical applicability of the developed bioinformatics approach and laid a foundation for future discoveries of gene-coded AMPs. No members of the alpha-defensin family were found in the bovine sequences. Since we could find no technical reasons these would be missed and no references to bovine alpha-defensins in the literature, this suggests that cattle lack this important family of host defense peptides.  相似文献   

8.
Ethanol is known to have profound actions on the gastrointestinal tract. The present study was undertaken to examine the effects of ethanol on some of the natural antioxidant defensive enzymes in the gastrointestinal tract; the activities of these enzymes in the liver and the brain were also measured for comparison with those in the gastrointestinal tract. Oral administration of absolute ethanol induced severe gastric mucosal lesions and also damage in the small intestine, however the total superoxide dismutase was unaffected in the tissues measured. The glucose-6-phosphate dehydrogenase activity was reduced only in the stomach while the total glutathione was elevated in the small intestinal mucosa. The catalase activities were activated in the stomach, small and large intestines, and brain, but not in the liver which contained the highest concentration of the enzyme. The present findings indicate that endogenous hydrogen peroxide may be an important damaging agent towards biomolecules in different organs and the removal of this by catalase represents an important defensive mechanism against ethanol toxicity.  相似文献   

9.
10.
11.
The intestinal epithelium is the largest surface area that is exposed to various pathogens in the environment, however, in contrast to the colon the number of bacteria that colonize the small intestine is extremely low. Paneth cells, one of four major epithelial cell lineages in the small intestine, reside at the base of the crypts and have apically oriented secretory granules. These granules contain high levels of antimicrobial peptides that belong to the alpha-defensin family. Paneth cells secrete these microbicidal granules that contain alpha-defensins when exposed ex vivo to bacteria or their antigens, and recent evidence reveals that antimicrobial peptides, particularly alpha-defensins, that are present in Paneth cells contribute to intestinal innate host defense.  相似文献   

12.
  1. Download : Download high-res image (128KB)
  2. Download : Download full-size image
  相似文献   

13.
Several pathogenic bacteria are able to trigger apoptosis in the host cell, but the mechanisms by which it occurs differ, and the resulting pathology can take different courses. Induction and/or blockage of programmed cell death upon infection is a result of complex interaction of bacterial proteins with cellular proteins involved in signal transduction and apoptosis. In this review we focus on pro/anti-apoptotic activities exhibited by two enteric pathogens Salmonella enterica, Yersinia spp. and gastric pathogen Helicobacter pylori. We present current knowledge on how interaction between mammalian and bacterial cell relates to the molecular pathways of apoptosis, and what is the role of apoptosis in pathogenesis.  相似文献   

14.
Nonspecific binding of a number of unrelated nucleic acid probes to cells in the crypts of Lieberkuhn was observed in the small intestine of mice with the in situ hybridization technique. Hybridization signal was localized to cells which, by virtue of their histological position, represented Paneth cells. This signal could not be removed by RNAse, DNAse, or proteinase K treatment, and was not removed after high-stringency washing conditions. This report indicates that caution must be exercised in the interpretation of in situ hybridization data when looking for nucleic acid sequences in the gastrointestinal tract.  相似文献   

15.
The bactericidal activity of mouse alpha-defensins (cryptdins) requires proteolytic activation of inactive precursors by matrix metalloproteinase-7 (matrilysin, EC, MMP-7(a)). To investigate mechanisms of cryptdin-4 (Crp4) peptide interactions with membrane bilayers and to determine whether MMP-7-mediated proteolysis activates the membrane disruptive activity of Crp4, associations of Crp4 and melittin with biomimetic lipid/polydiacetylene chromatic vesicles were characterized. The peptides differ in their sensitivity to vesicle lipid composition and their depth of bilayer penetration. Crp4 undergoes strong interfacial binding onto lipid bilayers with disruption of the bilayer head group region, unlike melittin, which inserts more deeply into the hydrophobic core of the bilayer. Colorimetric and tryptophan fluorescence studies showed that Crp4 insertion is favored by negatively charged phospholipids and that zwitterionic and Escherichia coli phospholipids promote stronger interfacial binding; melittin-membrane interactions were independent of either variable. In contrast to the membrane disruptive activity of Crp4, pro-Crp4 did not perturb vesicular membranes, consistent with the lack of bactericidal activity of the precursor, and incubation of Crp4 with prosegment in trans blocked Crp4 and G1W-Crp4 membrane interactions at concentrations that inhibit Crp4 bactericidal activity. CD measurements showed that Crp4 has an expected beta-sheet structure that is not evident in the pro-Crp4 CD trace or when Crp4 is incubated with prosegment, indicating that the beta-sheet signal is attenuated by proregion interactions or possibly disrupted by the prosegment. Collectively, the results suggest that the prosegment inhibits Crp4 bactericidal activity by blocking peptide-mediated perturbation of target cell membranes, a constraint that is relieved when MMP-7 cleaves the prosegment.  相似文献   

16.
17.
18.
The discovery of dendritic cells (DCs) in skin by Paul Langerhans in 1868 identified a cell type which has since been recognized as a key link between innate and adaptive immunity. DCs originate from bone marrow and disseminate through blood to all tissues in the body, and distinct DC subpopulations have been identified in many different tissues. DC diversity is apparent throughout all mucosal surfaces of the body, but the focus of this review article is DC diversity throughout the gastro-intestinal tract (GIT). DC subpopulations have been well characterized in the oral cavity and small intestine, but DC characterization in other regions, such as the esophagus and stomach, is limited. Substantial research has focused on DC function during disease, but understanding the regulation of inflammation and the induction of acquired immune responses requires combined phenotypic and functional characterization of individual DC subpopulations. Furthermore, little is known regarding mucosal DC subpopulations in the GIT of the neonate and how these DC populations change following colonization by commensal microflora. The current review will highlight mucosal DC diversity and discuss factors that may influence mucosal DC differentiation.  相似文献   

19.
Epithelial migration, which is a fundamental component of the ulcer healing process, is characterized by complex alterations in adhesion between cells and the extracellular matrix. Growth and motility factors involved in mucosal repair of the gastrointestinal tract seem to modulate these interactions in a coordinated fashion in order to reestablish functional and structural integrity of the mucosa. These findings may have important clinical implications for the treatment of ulcerative conditions of the gastrointestinal tract and lead to the development of specific drugs that promote mucosal healing by exploiting natural mechanisms of cell migration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号