首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A common gene variant of human extracellular superoxide dismutase (ecSOD), in approximately 5% of humans, is associated with increased risk of ischemic heart disease. The purpose of this study was to examine vascular effects of ecSOD with effects of the ecSOD variant (ecSOD(R213G)) in rats with heart failure. Seven weeks after coronary artery ligation, we studied rats with heart failure and sham-operated rats. Adenoviral vectors expressing human ecSOD, ecSOD(R213G), or a control virus were injected intravenously. In the aorta from rats with heart failure, responses to acetylcholine (69 +/- 4% relaxation, means +/- SE) and basal levels of nitric oxide (NO) (vasoconstrictor responses to a NO synthase inhibitor) were greatly impaired, and levels of superoxide and peroxynitrite were increased. Gene transfer of ecSOD restored responses to acetylcholine (92 +/- 2% relaxation) and basal levels of NO to normal and reduced levels of superoxide [from 2.3 +/- 0.2 to 0.9 +/- 0.2 relative light units per second per millimeter squared (RLU x s(-1) x mm(-2))] and peroxynitrite (from 2.4 +/- 0.2 to 0.9 +/- 0.1 RLU x s(-1) x mm(-2)) in the aorta from rats with heart failure. Gene transfer of ecSOD(R213G) produced little or no improvement. Responses to nitroprusside were not different among the groups. Expression of endogenous mRNA for SODs (CuZnSOD, MnSOD, and ecSOD) and endothelial NOS in the aorta was not different among the groups. In contrast to ecSOD, gene transfer of ecSOD(R213G) in rats with heart failure has minimal beneficial effect on oxidative stress, endothelial function, or basal bioavailability of NO. We speculate that greatly diminished efficacy of ecSOD(R213G) in protection against oxidative stress and endothelial dysfunction may contribute to increased risk of cardiovascular disease in humans with ecSOD(R213G).  相似文献   

2.
Endotoxin [or lipopolysaccharide (LPS)] increases levels of superoxide in blood vessels and impairs vasomotor function. Angiotensin II plays an important role in the generation of superoxide in several disease states, including hypertension and heart failure. The goal of this study was to determine whether the activation of the renin-angiotensin system contributes to oxidative stress and endothelial dysfunction after endotoxin. We examined the effects of enalapril (an angiotensin-converting enzyme inhibitor) or L-158809 (an angiotensin receptor blocker) on increases of superoxide and vasomotor dysfunction in mice treated with LPS. C57BL/6 mice were treated with either enalapril (60 mg.kg(-1).day(-1)) or L-158809 (30 mg.kg(-1).day(-1)) for 4 days. After the third day, LPS (10-20 mg/kg) or vehicle was injected intraperitoneally, and one day later, vasomotor function of the aorta was examined in vitro. After precontraction with PGF(2alpha), the maximal responses to sodium nitroprusside were similar in the aorta from normal and LPS-treated mice. In contrast, the relaxation to acetylcholine was impaired after LPS (54 +/- 5% at 10(-5), mean +/- SE) compared with vessels treated with vehicle (88 +/- 1%; P < 0.05). Enalapril improved (P < 0.05) relaxation in response to acetylcholine to 81 +/- 6% after LPS. L-158809 also improved relaxation in response to acetylcholine to 77 +/- 4% after LPS. Superoxide (measured with lucigenin and hydroethidine) was increased (P < 0.05) in aorta after LPS, and levels were reduced (P < 0.05) following enalapril and L-158809. Thus, after LPS, enalapril and L-158809 reduce superoxide levels and improve relaxation to acetylcholine in the aorta. The findings suggest that activation of the renin-angiotensin system contributes importantly to oxidative stress and endothelial dysfunction after endotoxin.  相似文献   

3.
Reactive oxygen species (ROS), in particular, H2O2, is essential for full activation of VEGF receptor2 (VEGFR2) signaling involved in endothelial cell (EC) proliferation and migration. Extracellular superoxide dismutase (ecSOD) is a major secreted extracellular enzyme that catalyzes the dismutation of superoxide to H2O2, and anchors to EC surface through heparin-binding domain (HBD). Mice lacking ecSOD show impaired postnatal angiogenesis. However, it is unknown whether ecSOD-derived H2O2 regulates VEGF signaling. Here we show that gene transfer of ecSOD, but not ecSOD lacking HBD (ecSOD-ΔHBD), increases H2O2 levels in adductor muscle of mice, and promotes angiogenesis after hindlimb ischemia. Mice lacking ecSOD show reduction of H2O2 in non-ischemic and ischemic limbs. In vitro, overexpression of ecSOD, but not ecSOD-ΔHBD, in cultured medium in ECs enhances VEGF-induced tyrosine phosphorylation of VEGFR2 (VEGFR2-pY), which is prevented by short-term pretreatment with catalase that scavenges extracellular H2O2. Either exogenous H2O2 (<500 µM), which is diffusible, or nitric oxide donor has no effect on VEGF-induced VEGFR2-pY. These suggest that ecSOD binding to ECs via HBD is required for localized generation of extracellular H2O2 to regulate VEGFR2-pY. Mechanistically, VEGF-induced VEGFR2-pY in caveolae/lipid rafts, but non-lipid rafts, is enhanced by ecSOD, which localizes at lipid rafts via HBD. One of the targets of ROS is protein tyrosine phosphatases (PTPs). ecSOD induces oxidation and inactivation of both PTP1B and DEP1, which negatively regulates VEGFR2-pY, in caveolae/lipid rafts, but not non-lipid rafts. Disruption of caveolae/lipid rafts, or PTPs inhibitor orthovanadate, or siRNAs for PTP1B and DEP1 enhances VEGF-induced VEGFR2-pY, which prevents ecSOD-induced effect. Functionally, ecSOD promotes VEGF-stimulated EC migration and proliferation. In summary, extracellular H2O2 generated by ecSOD localized at caveolae/lipid rafts via HBD promotes VEGFR2 signaling via oxidative inactivation of PTPs in these microdomains. Thus, ecSOD is a potential therapeutic target for angiogenesis-dependent cardiovascular diseases.  相似文献   

4.
We investigated the progression of vascular dysfunction associated with the metabolic syndrome with and without hyperglycemia in lean, Zucker obese, and Zucker diabetic fatty (ZDF) rats. Responses of aorta and small coronary and mesenteric arteries were measured to endothelium-dependent and -independent vasodilators. Indices of oxidative stress were increased in serum from ZDF rats throughout the study, whereas values were increased in Zucker obese rats later in the study [thiobarbituric acid reactive substances: 0.45 +/- 0.02, 0.59 +/- 0.03 (P < 0.05), and 0.58 +/- 0.03 (P < 0.05) mug/ml in serum from 28- to 40-wk-old lean, Zucker obese, and ZDF rats, respectively]. Acetylcholine (ACh)-induced relaxation was not altered in vessels from lean animals from 8-40 wk. ACh-induced relaxation was nearly abolished in coronary arteries from 28- to 36-wk-old Zucker obese rats and by 16-36 wk in ZDF rats and was attenuated in aorta and mesenteric vessels from ZDF rats [%relaxation to 10 muM ACh: 72.2 +/- 7.1, 17.9 +/- 5.9 (P < 0.05), and 23.0 +/- 4.5 (P < 0.05) in coronary vessels; and 67.9 +/- 9.2, 50.1 +/- 5.5, and 42.3 +/- 4.7 (P < 0.05) in mesenteric vessels from 28- to 40-wk-old lean, Zucker obese, and ZDF rats, respectively]. The attenuated ACh-induced relaxation was improved when vessels were incubated with tiron, suggesting superoxide as a mechanism of endothelial dysfunction. Sodium nitroprusside-induced relaxation was not altered in aorta or coronary arteries and was potentiated in mesenteric arteries from Zucker obese rats. Our data suggest that diabetes enhances the progression of vascular dysfunction. Increases in indices of oxidative stress precede the development of dysfunction and may serve as a marker of endothelial damage.  相似文献   

5.
Diabetes mellitus is associated with many complications including retinopathy, nephropathy, neuropathy and angiopathy. Increased cardiovascular risk is accompanied with diabetes-induced endothelial dysfunction. Pharmacological agents with endothelium-protective effects may decrease cardiovascular complications. In present study sulodexide (glycosaminoglycans composed from heparin-like and dermatan fractions) was chosen to evaluate its protective properties on endothelial dysfunction in diabetes. Effect of sulodexide treatment (SLX, 100 UI/kg/day, i.p.) in 5 and 10 weeks lasting streptozotocin-induced diabetes (30 mg/kg/day, i.p. administered for three consecutive days) was investigated. Animals were divided into four groups: control (injected with saline solution), control-treated with sulodexide (SLX), diabetic (DM) and diabetic-treated with sulodexide (DM+SLX). The pre-prandial and postprandial plasma glucose levels, number of circulating endothelial cells (EC) and acetylcholine-induced relaxation of isolated aorta and mesenteric artery were evaluated. Streptozotocin elicited hyperglycemia irrespective of SLX treatment. Streptozotocin-induced diabetes enhanced the number of circulating endothelial cells compared to controls. SLX treatment decreased the number of EC in 10-week diabetes. Acetylcholine-induced relaxation of mesenteric arteries was significantly impaired in 5 and 10-week diabetes. SLX administration improved relaxation to acetylcholine in 5 and 10-week diabetes. Diabetes impaired acetylcholine-induced relaxation of rat aorta irrespective of SLX treatment. Our results demonstrate that SLX treatment lowers the number of circulating endothelial cells and improves endothelium-dependent relaxation in small arteries. These findings suggest endothelium-protective effect of sulodexide in streptozotocin-induced diabetes.  相似文献   

6.
TGR(mREN2)27 (TGR) rats develop severe hypertension and an inverted circadian blood pressure profile with peak blood pressure in the daytime rest phase. The present study investigated the in vitro responsiveness of different arteries of TGR rats during day and night. Twelve-week-old TGR rats and normotensive Sprague-Dawley (SPRD) controls, synchronized to 12h light, 12h dark (LD 12:12) (light 07:00 19:00), were killed at 09:00 (during rest) and 21:00 (during activity), and endothelium-dependent relaxation by acetylcholine and vascular contraction by angiotensin II were studied by measuring isometric force in ring segments of abdominal aorta and mesenteric and renal arteries. In SPRD rats, consistent day-night variation was found, with greater responses to angiotensin II during the daytime rest span. In TGR rats, biological time-dependent differences were found in the renal vasculature, but not in the aorta and mesenteric artery. Relaxation of SPRD rat aorta and mesenteric artery by acetylcholine was greater at 09:00, whereas in TGR rats, day-night variation was absent (mesenteric artery) or inverted (aorta). In conclusion, based on the study of two time points, daynight variation in vascular contractility of aorta and mesenteric artery is blunted in TGR rats, whereas renal artery segments showed an unchanged daynight pattern compared to SPRD controls. (Chronobiology International, 18(4), 665 681, 2001)  相似文献   

7.
TGR(mREN2)27 (TGR) rats develop severe hypertension and an inverted circadian blood pressure profile with peak blood pressure in the daytime rest phase. The present study investigated the in vitro responsiveness of different arteries of TGR rats during day and night. Twelve-week-old TGR rats and normotensive Sprague-Dawley (SPRD) controls, synchronized to 12h light, 12h dark (LD 12:12) (light 07:00 19:00), were killed at 09:00 (during rest) and 21:00 (during activity), and endothelium-dependent relaxation by acetylcholine and vascular contraction by angiotensin II were studied by measuring isometric force in ring segments of abdominal aorta and mesenteric and renal arteries. In SPRD rats, consistent day-night variation was found, with greater responses to angiotensin II during the daytime rest span. In TGR rats, biological time-dependent differences were found in the renal vasculature, but not in the aorta and mesenteric artery. Relaxation of SPRD rat aorta and mesenteric artery by acetylcholine was greater at 09:00, whereas in TGR rats, day-night variation was absent (mesenteric artery) or inverted (aorta). In conclusion, based on the study of two time points, daynight variation in vascular contractility of aorta and mesenteric artery is blunted in TGR rats, whereas renal artery segments showed an unchanged daynight pattern compared to SPRD controls. (Chronobiology International, 18(4), 665 681, 2001)  相似文献   

8.
Insulin resistance (IR) is frequently associated with endothelial dysfunction and has been proposed to play a major role in cardiovascular disease (CVD). On the other hand, amylin has long been related to IR. However the role of amylin in the vascular dysfunction associated to IR is not well addressed. Therefore, the aim of the study was to assess the effect of acute treatment with amylin on endothelium-dependent vasodilation of isolated mesenteric arteries from control (CR) and insulin resistant (IRR) rats and to evaluate the possible mechanisms involved. Five week-old male Wistar rats received 20% D-fructose dissolved in drinking water for 8 weeks and were compared with age-matched CR. Plasmatic levels of glucose, insulin and amylin were measured. Mesenteric microvessels were dissected and mounted in wire myographs to evaluate endothelium-dependent vasodilation to acetylcholine. IRR displayed a significant increase in plasmatic levels of glucose, insulin and amylin and reduced endothelium-dependent relaxation when compared to CR. Acute treatment of mesenteric arteries with r-amylin (40 pM) deteriorated endothelium-dependent responses in CR. Amylin-induced reduction of endothelial responses was unaffected by the H2O2 scavenger, catalase, but was prevented by the extracellular superoxide scavenger, superoxide dismutase (SOD) or the NADPH oxidase inhibitor (VAS2870). By opposite, amylin failed to further inhibit the impaired relaxation in mesenteric arteries of IRR. SOD, or VAS2870, but not catalase, ameliorated the impairment of endothelium-dependent relaxation in IRR. At concentrations present in insulin resistance conditions, amylin impairs endothelium-dependent vasodilation in mircrovessels from rats with preserved vascular function and low levels of endogenous amylin. In IRR with established endothelial dysfunction and elevated levels of amylin, additional exposure to this peptide has no effect on endothelial vasodilation. Increased superoxide generation through NADPH oxidase activity may be a common link involved in the endothelial dysfunction associated to insulin resistance and to amylin exposure in CR.  相似文献   

9.
Aging is an independent risk factor for cardiovascular disease, but mechanisms leading to vascular dysfunction have not been fully elucidated. Recent studies suggest that oxidative stress may increase in blood vessels during aging. Levels of superoxide are influenced by the activity of SODs. The goal of this study was to examine the effect of extracellular superoxide dismutase (ECSOD) on superoxide levels and vascular function in an animal model of aging. Aortas from young (4-8 mo old) and old (29-31 mo old) Fischer 344 rats were examined in vitro. Relaxation of aorta to ACh was impaired in old rats compared with young rats; e.g., 3 muM ACh produced 57 +/- 4% (mean +/- SE) and 84 +/- 2% relaxation in old and young rats, respectively (P < 0.0001). Three days after gene transfer of adenovirus expressing human ECSOD (AdECSOD), the response to ACh was not affected in young rats but was improved in old rats. There was no difference in relaxation to the endothelium-independent dilator sodium nitroprusside between young, aged, and AdECSOD-treated old rats. Superoxide levels (lucigenin-enhanced chemiluminescence) were significantly increased in aged rats compared with young rats. After gene transfer of ECSOD to aged rats, superoxide levels in aorta were similar in old and young rats. Gene transfer of an ECSOD with the heparin-binding domain deleted had no effect on vascular function or superoxide levels in old rats. These results suggest that 1) vascular dysfunction associated with aging is mediated in part by increased levels of superoxide, 2) gene transfer of ECSOD reduces vascular superoxide and dysfunction in old rats, and 3) beneficial effects of ECSOD in old rats require the heparin-binding domain of ECSOD.  相似文献   

10.
Physical activity induces favourable changes of arterial gene expression and protein activity, although little is known about its effect in venous tissue. Although our understanding of the initiating molecular signals is still incomplete, increased expression of endothelial nitric oxide synthase (eNOS) is considered a key event. This study sought to investigate the effects of two different training protocols on the expression of eNOS and extracellular superoxide dismutase (ecSOD) in venous and lung tissue and to evaluate the underlying molecular mechanisms. C57Bl/6 mice underwent voluntary exercise or forced physical activity. Changes of vascular mRNA and protein levels and activity of eNOS, ecSOD and catalase were determined in aorta, heart, lung and vena cava. Both training protocols similarly increased relative heart weight and resulted in up-regulation of aortic and myocardial eNOS. In striking contrast, eNOS expression in vena cava and lung remained unchanged. Likewise, exercise up-regulated ecSOD in the aorta and in left ventricular tissue but remained unchanged in lung tissue. Catalase expression in lung tissue and vena cava of exercised mice exceeded that in aorta by 6.9- and 10-fold, respectively, suggesting a lack of stimulatory effects of hydrogen peroxide. In accordance, treatment of mice with the catalase inhibitor aminotriazole for 6 weeks resulted in significant up-regulation of eNOS and ecSOD in vena cava. These data suggest that physiological venous catalase activity prevents exercise-induced up-regulation of eNOS and ecSOD. Furthermore, therapeutic inhibition of vascular catalase might improve pulmonary rehabilitation.  相似文献   

11.
We tested whether consumption of a high-fat, high-sucrose (HFS) diet can affect endothelium-dependent relaxation, whether this precedes the development of diet-induced hypertension previously noted in this model, and whether it is mediated, in part, by changes in nitric oxide synthase (NOS) and/or NOS regulatory proteins. Female Fischer rats were fed either a HFS diet or standard low-fat, complex-carbohydrate chow starting at 2 mo of age for 7 mo. Vasoconstrictive response to KCl and phenylephrine was similar in both groups. Vasorelaxation to acetylcholine was significantly impaired in the HFS animals, and there were no differences in relaxation to sodium nitroprusside, suggesting that the endothelial dysfunction is due, at least in part, to nitric oxide deficiency. HFS consumption decreased protein expression of endothelial NOS in aorta, renal, and heart tissues, neuronal NOS in kidney, heart, aorta, and brain, and inducible NOS in heart and aorta. Caveolin-1 and soluble guanylate cyclase protein expression did not change, but AKT protein expression decreased in heart and aorta and increased in kidney tissue. Consumption of HFS diet raised brain carbonyl content and plasma hydrogen peroxide concentration and diminished plasma total antioxidant capacity. Because blood pressure, which is known to eventually rise in this model, was not as yet significantly elevated, the present data suggest that endothelial dysfunction precedes the onset of diet-induced hypertension. The lack of a quantitative change in caveolin-1 and soluble guanylate cyclase protein content indicates that alteration in these proteins is not responsible for the endothelial dysfunction. Thus nitric oxide deficiency combined with antioxidant/oxidant imbalance, appears to be a primary factor in the development of endothelial dysfunction in this model.  相似文献   

12.
Increased production of oxygen free radicals is an important mechanism of endothelial dysfunction in diabetes mellitus. Our goal was to test whether adenovirus (Ad)-mediated gene transfer of copper/zinc (CuZn) or manganese superoxide dismutase (Mn SOD) improves relaxation of diabetic vessels. The aortas from 9 alloxan-induced diabetic mellitus (DM) and 16 control rabbits were used. Control and DM rings were transduced ex vivo with Ad vectors encoding Mn SOD (AdMn SOD), CuZn SOD (AdCuZn SOD), beta-galactosidase (Ad(beta)gal), or diluents. In the absence of gene transfer, SOD activity was significantly increased in DM aortas. Transgene expression in DM AdCuZn SOD and DM AdMn SOD-transduced vessels was confirmed by Western blot analysis and by increased SOD activity (DM AdCuZn SOD, 76.2 +/- 9.3; DM AdMn SOD, 65.2 +/- 4.8; P < 0.05 vs. DM Ad(beta)gal; 50.9 +/- 4.4 U/mg protein). Superoxide production was increased in DM Ad(beta)gal-transduced aorta and relaxations to acetylcholine were impaired in these vessels. Gene transfer of CuZn SOD and Mn SOD corrected both of these defects. Thus Ad-mediated gene transfer CuZn and Mn SOD to the diabetic aorta improves endothelium-dependent relaxation.  相似文献   

13.
Lipopolysaccharide (LPS) impairs vascular function, in part by generation of reactive oxygen species. One goal of this study was to determine whether gene transfer of extracellular SOD (ECSOD) improves vascular responsiveness in LPS-treated rats. A second goal was to determine whether effects of ECSOD are dependent on the heparin-binding domain of the enzyme, which facilitates binding of ECSOD to the outside of cells. Adenoviruses containing ECSOD (AdECSOD), ECSOD with deletion of its heparin-binding domain (AdECSOD-HBD), or a control virus (AdLacZ) were injected intravenously into rats. Three days later, vehicle or LPS (10 mg/kg ip) was injected. After 24 h, vascular reactivity was examined in aortic rings in vitro. Maximum relaxation to acetylcholine was 95 +/- 1% (means +/- SE) after AdlacZ plus vehicle and 77 +/- 3% after AdlacZ plus LPS (P < 0.05). Responses to calcium ionophore A-23187 and submaximal concentrations of nitroprusside also were impaired by LPS. Gene transfer of ECSOD, but not AdECSOD-HBD, improved (P < 0.05) relaxation to acetylcholine and A-23187 after LPS. Maximum relaxation to acetylcholine was 88 +/- 3% after LPS plus AdECSOD. Superoxide was increased in aorta after LPS, and the levels were reduced after AdECSOD but not AdECSOD-HBD. LPS-induced adhesion of leukocytes to aortic endothelium was reduced by AdECSOD but not by AdECSOD-HBD. We conclude that after gene transfer in vivo, binding of ECSOD to arteries effectively decreases the numbers of adherent leukocytes and levels of superoxide and improves impaired endothelium-dependent relaxation produced by LPS.  相似文献   

14.
We used the partial protection exerted by suitable dosages of nicotinamide against the beta-cytotoxic effect of streptozotocin (STZ) to create an experimental diabetic syndrome in adult rats that appears closer to type II diabetes mellitus than other available animal models. The dosage of 230 mg/kg of nicotinamide given intraperitoneally 15 min before STZ administration (65 mg/kg i.v.) yielded animals with hyperglycemia (187.8 +/- 17.8 vs. 103.8 +/- 2.8 mg/dL in controls; P < 0.001) and preservation of plasma insulin levels. This study assessed the relationship between endothelial dysfunction and agonist-induced contractile responses in such rats. In the thoracic aorta, the acetylcholine (ACh) induced relaxation was significantly reduced and the noradrenaline (NA) induced contractile response was significantly increased in diabetic rats compared with age-matched control rats. In the superior mesenteric artery, the ACh-induced relaxation was similar in magnitude between diabetic and age-matched control rats; however, the ACh-induced endothelium-derived hyperpolarizing factor (EDHF) type relaxation was significantly weaker in diabetic rats than in the controls. The phenylephrine (PE) induced contractile response was not different between the two groups. The plasma concentration of NOx (NO2- + NO3-) was significantly lower in diabetic rats than in control rats. We conclude that vasomotor activities in conduit arteries are impaired in this type II diabetes model.  相似文献   

15.
We tested the hypotheses that 1) systemic IL-10, after adenoviral gene transfer, protects arteries from impaired relaxation produced by LPS; 2) local expression of IL-10 within the arterial wall protects against vasomotor dysfunction after LPS; and 3) IL-10 protects against vascular dysfunction mediated by inducible NO synthase (iNOS) after LPS. In IL-10-deficient (IL-10-/-) and wild-type (WT, IL-10+/+) mice, LPS in vivo impaired relaxation of arteries to acetylcholine and gene transfer of IL-10 improved responses to acetylcholine. Superoxide levels were elevated in arteries after LPS, and increased levels of superoxide were prevented by gene transfer of IL-10. In arteries incubated with a low concentration of LPS in vitro to eliminate systemic effects of LPS and IL-10 from nonvascular sources, responses to acetylcholine were impaired in IL-10-deficient mice and impairment was largely prevented by gene transfer in vitro of IL-10. In arteries from WT mice in vitro, the low concentration of LPS did not impair responses to acetylcholine. Thus IL-10 within the vessel wall protects against LPS-induced dysfunction. In IL-10-deficient mice, aminoguanidine, which inhibits iNOS, protected against vasomotor dysfunction after LPS. In arteries from iNOS-deficient mice, LPS did not impair responses to acetylcholine. These findings suggest that both systemic and local effects of IL-10 provide important protection of arteries against an inflammatory stimulus and that IL-10 decreases iNOS-mediated impairment of vasorelaxation after LPS.  相似文献   

16.
Caveolae represent an important structural element involved in endothelial signal-transduction. The present study was designed to investigate the role of caveolae in endothelium-dependent relaxation of different vascular beds. Caveolae were disrupted by cholesterol depletion with filipin (4x10(-6) g L(-1)) or methyl-beta-cyclodextrin (MCD; 1x10(-3) mol L(-1)) and the effect on endothelium-dependent relaxation was studied in rat aorta, small renal arteries and mesenteric arteries in the absence and presence of L-NMMA. The contribution of NO and EDHF, respectively, to total relaxation in response to acetylcholine (ACh) gradually changed from aorta (71.2+/-6.1% and 28.8+/-6.1%), to renal arteries (48.6+/-6.4% and 51.4+/-6.4%) and to mesenteric arteries (9.1+/-4.0% and 90.9+/-4.1%). Electron microscopy confirmed filipin to decrease the number of endothelial caveolae in all vessels studied. Incubation with filipin inhibited endothelium-dependent relaxation induced by cumulative doses of ACh (3x10(-9)-10(-4) mol L(-1)) in all three vascular beds. In aorta, treatment with either filipin or MCD only inhibited the NO component, whereas in renal artery both NO and EDHF formation were affected. In contrast, in mesenteric arteries, filipin treatment only reduced EDHF formation. Disruption of endothelial caveolae is associated with the impairment of both NO and EDHF in acetylcholine-induced relaxation.  相似文献   

17.
The purpose of this study was to determine the radical species which mediates the toxic effects of exogenous oxygenderived free radicals on endothelial function of chronic diabetic rat aorta. Endothelium-dependent relaxation to acetylcholine was impaired in diabetic vessels. Exposure to the exogenous free radical generating system of xanthine plus xanthine oxidase selectively impaired endothelium-dependent relaxation to acetylcholine in control and diabetic aorta with relaxations essentially abolished in diabetic aorta. The loss of relaxation to acetylcholine in diabetic aorta was prevented or attenuated by pretreatment with catalase, dimethylthiourea or desferrioxamine, but not by mannitol or superoxide dismutase. These results suggest that hydroxyl radicals play an important role in the endothelial injury produced by oxygen-derived free radicals in chronic diabetic rat aorta. Furthermore, the site of the injury is likely due to intracellular generation of hydroxyl radicals.  相似文献   

18.
Exercise training has reversible beneficial effects on cardiovascular diseases, e.g. hypertension, which may result from a decrease in systemic vascular resistance. The purpose of this study was to investigate possible mechanisms associated with the changes in vascular reactivity in large and small arteries with vasoconstrictors and vasodilators in rats after exercise. Wistar-Kyoto rats were trained for 8 weeks (Ex group) on a treadmill and compared with sedentary counterparts (Sed group). After the measurement of blood pressure and heart rate at 8 weeks, rat mesenteric arteries and thoracic aortas were excised and prepared as rings for this study. In addition, special care was taken not to damage the endothelium of the preparations. Our results showed that exercise training for 8 weeks (1) not only prevented an increase in blood pressure but also caused a fall in heart rate, (2) attenuated the contractions induced by both prostaglandin F(2alpha) (PGF(2alpha)) and high K(+) in the mesenteric artery, but reduced the PGF(2alpha)-induced contraction in the aorta only, (3) enhanced the relaxation elicited by acetylcholine (ACh) in both mesenteric arteries and aortas, and (4) increased nitrate [an indicator of nitric oxide (NO) formation] in plasma. The enhancement of ACh-induced relaxation in the mesenteric arteries in the Ex group was suppressed by pretreatment with N(omega) -nitro-L-arginine methyl ester (L-NAME), tetraethylammonium (TEA; a nonselective inhibitor of K(+) channels) or charybdotoxin [CTX; a selective inhibitor of large-conductance calcium-activated K(+) (BK(Ca)) channels], whereas in the aorta that response was attenuated by TEA or CTX and almost completely abolished by L-NAME. However, with a combination of L-NAME plus CTX in the mesenteric artery, ACh-induced relaxation was completely abolished in the Sed group, but not in the Ex group. These results suggest that in addition to NO, activation of BK(Ca) channels in the vascular beds, at least in part, also contributes to vasodilatation in animals with exercise training.  相似文献   

19.
Toll like receptor (TLR)4 is a pattern recognition receptor expressed in endothelial and other cells, responsible for the sensing of endotoxin and host derived ligands. Our group has shown previously that the absence of TLR4 is associated with reduced endothelial dependent vasodilator responses and left heart hypertrophy in animal models. However, the mechanism behind reduced endothelial cell function in TLR4−/− mice is not known.We have used en face confocal imaging of mesenteric arteries from mice deficient in the TLR4 receptor stained with dihydroethidium (DHE) to measure superoxide production. Using the isometric wire myograph, mesenteric artery vasodilator responses to acetylcholine and MnCl2 (a superoxide dismutase mimetic) were measured. Mesenteric arteries from TLR4−/− mice had a reduced endothelial dependent relaxant response and increased superoxide levels when stimulated with acetylcholine. Increased levels of superoxide, as detected by DHE staining, were seen in vessels from TLR4−/− mice, which were reduced to control levels in the presence of MnCl2.Our observations suggest that loss of TLR4 increases superoxide generation which reduces the biological activity of endothelial derived nitric oxide and thereby explains the endothelial dysfunction and associated cardiovascular phenotype in TLR4−/− mice. These data implicate a novel cardio-protective role for TLR4 in vascular homeostasis.  相似文献   

20.
Jack AM  Keegan A  Cotter MA  Cameron NE 《Life sciences》2002,71(16):1863-1877
Diabetes causes endothelial dysfunction, with deleterious effects on nitric oxide (NO) mediated vasodilatation. However, in many vessels other local vasodilators such as endothelium-derived hyperpolarizing factor (EDHF), prostacyclin, epoxides or endocannabinoids are also important. Several of these factors may be derived from omega-6 essential fatty acids via arachidonate metabolism. Diabetes inhibits this pathway, a defect that may be bypassed by diets enriched with omega-6 gamma-linolenic acid-containing oils such as evening primrose oil (EPO). The aim was to examine the effects of preventive EPO treatment on endothelium-dependent and neurally mediated vasorelaxation. Diabetes was induced by streptozotocin in rats; duration was 8 weeks. Vascular responses were examined in vitro on thoracic aorta, corpus cavernosum and perfused mesenteric bed preparations. Diabetes caused 25% and 35% deficits, respectively, in aorta and corpus cavernosum NO-mediated endothelium-dependent relaxation to acetylcholine that were largely unaffected by EPO treatment. Moreover, a 44% reduction in maximum corpus cavernosum vasorelaxation to nitrergic nerve stimulation was not prevented by EPO. However, for the mesenteric vascular bed, a 29% diminution of responses to acetylcholine, mediated by both NO and EDHF, was 84% attenuated by EPO treatment. When the EDHF component was isolated during NO synthase inhibition, a 76% diabetic deficit was noted. This was completely prevented by EPO treatment, which also caused supernormal EDHF responses in nondiabetic rats. EPO treatment prevented the development of deficits in endothelium-dependent relaxation in diabetic rats. Effects were particularly marked on the resistance vessel EDHF system, which may have potential therapeutic relevance for diabetic microvascular complications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号