首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TLR4 signaling attenuates ongoing allergic inflammation   总被引:5,自引:0,他引:5  
The relationship between LPS exposure and allergic asthma is poorly understood. Epidemiologic studies in humans have found that exposure to LPS can protect, have no effect, or exacerbate allergic asthma. Similarly, LPS has had variable effects on allergic pulmonary inflammation in the mouse, depending on the model used. In the present study, we studied the effect of very low doses of LPS in models of both short-term and long-term allergen challenge. When challenged with allergen for short periods, wild-type and tlr4-deficient mice had similar responses. However, when challenged for periods of 1 wk or longer, tlr4-deficient mice developed dramatically increased airway eosinophils, serum IgE, and Th2 cytokines compared with similarly challenged, genetically matched C57BL/6 mice. The relative attenuation of allergic responses seen in C57BL/6 mice was dependent on bone marrow-derived cell-specific expression of tlr4, and was not associated with an increase in Th1 responses. The number of dendritic cells in lungs of challenged tlr4-deficient mice was significantly increased compared with those in challenged C57BL/6 mice. No differences were seen in the abilities of naive C57BL/6 and tlr4-deficient mice to develop allergen-specific tolerance after exposure to similar preparations of OVA, suggesting that tolerance and regulation of existing inflammation develop through different mechanisms. The attenuation of eosinophilic inflammation in C57BL/6 mice was abolished when these mice were challenged with OVA supplemented with additional LPS. Together, these findings show that low doses of endotoxin can have regulatory effects on allergic inflammation, particularly in the setting of ongoing allergen exposure.  相似文献   

2.
IL-22 is a Th17/Th22 cytokine that is increased in asthma. However, recent animal studies showed controversial findings in the effects of IL-22 in allergic asthma. To determine the role of IL-22 in ovalbumin-induced allergic inflammation we generated inducible lung-specific IL-22 transgenic mice. Transgenic IL-22 expression and signaling activity in the lung were determined. Ovalbumin (OVA)-induced pulmonary inflammation, immune responses, and airway hyperresponsiveness (AHR) were examined and compared between IL-22 transgenic mice and wild type controls. Following doxycycline (Dox) induction, IL-22 protein was readily detected in the large (CC10 promoter) and small (SPC promoter) airway epithelial cells. IL-22 signaling was evidenced by phosphorylated STAT3. After OVA sensitization and challenge, compared to wild type littermates, IL-22 transgenic mice showed decreased eosinophils in the bronchoalveolar lavage (BAL), and in lung tissue, decreased mucus metaplasia in the airways, and reduced AHR. Among the cytokines and chemokines examined, IL-13 levels were reduced in the BAL fluid as well as in lymphocytes from local draining lymph nodes of IL-22 transgenic mice. No effect was seen on the levels of serum total or OVA-specific IgE or IgG. These findings indicate that IL-22 has immune modulatory effects on pulmonary inflammatory responses in allergen-induced asthma.  相似文献   

3.
Chemokine-induced T lymphocyte recruitment to the lung is critical for allergic inflammation, but chemokine signaling pathways are incompletely understood. Regulator of G protein signaling (RGS)16, a GTPase accelerator (GTPase-activating protein) for Galpha subunits, attenuates signaling by chemokine receptors in T lymphocytes, suggesting a role in the regulation of lymphocyte trafficking. To explore the role of RGS16 in T lymphocyte-dependent immune responses in a whole-organism model, we generated transgenic (Tg) mice expressing RGS16 in CD4(+) and CD8(+) cells. rgs16 Tg T lymphocytes migrated to CC chemokine ligand 21 or CC chemokine ligand 12 injection sites in the peritoneum, but not to CXC chemokine ligand 12. In a Th2-dependent model of allergic pulmonary inflammation, CD4(+) lymphocytes bearing CCR3, CCR5, and CXCR4 trafficked in reduced numbers to the lung after acute inhalation challenge with allergen (OVA). In contrast, spleens of sensitized and challenged Tg mice contained increased numbers of CD4(+)CCR3(+) cells producing more Th2-type cytokines (IL-4, IL-5, and IL-13), which were associated with increased airway hyperreactivity. Migration of Tg lymphocytes to the lung parenchyma after adoptive transfer was significantly reduced compared with wild-type lymphocytes. Naive lymphocytes displayed normal CCR3 and CXCR4 expression and cytokine responses, and compartmentation in secondary lymphoid organs was normal without allergen challenge. These results suggest that RGS16 may regulate T lymphocyte activation in response to inflammatory stimuli and migration induced by CXCR4, CCR3, and CCR5, but not CCR2 or CCR7.  相似文献   

4.
5.
CD4+ T cells, particularly Th2 cells, play a pivotal role in allergic airway inflammation. However, the requirements for interactions between CD4+ and CD8+ T cells in airway allergic inflammation have not been delineated. Sensitized and challenged OT-1 mice in which CD8+ T cells expressing the transgene for the OVA(257-264) peptide (SIINFEKL) failed to develop airway hyperresponsiveness (AHR), airway eosinophilia, Th2 cytokine elevation, or goblet cell metaplasia. OT-1 mice that received naive CD4+IL-4+ T cells but not CD4+IL-4- T cells before sensitization developed all of these responses to the same degree as wild-type mice. Moreover, recipients of CD4+IL-4+ T cells developed significant increases in the number of CD8+IL-13+ T cells in the lung, whereas sensitized OT-1 mice that received primed CD4+ T cells just before challenge failed to develop these responses. Sensitized CD8-deficient mice that received CD8+ T cells from OT-1 mice that received naive CD4+ T cells before sensitization increased AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged with allergen. In contrast, sensitized CD8-deficient mice receiving CD8+ T cells from OT-1 mice without CD4+ T cells developed reduced AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged. These data suggest that interactions between CD4+ and CD8+ T cells, in part through IL-4 during the sensitization phase, are essential to the development of CD8+IL-13+ T cell-dependent AHR and airway allergic inflammation.  相似文献   

6.
IL-11 is a pleiotropic cytokine that induces tissue remodeling with subepithelial fibrosis when expressed in the airway. Its effects on the Th2-dominated airway inflammation that is characteristic of asthma, however, are poorly understood. To characterize the effects of IL-11 on Th2 tissue inflammation, we compared the inflammatory responses elicited by OVA in sensitized mice in which IL-11 is overexpressed in a lung-specific fashion (CC10-IL-11) with that in transgene- wild-type littermate controls. Transgene- and CC10-IL-11 transgene+ mice had comparable levels of circulating Ag-specific IgE after sensitization. OVA challenge of sensitized transgene- mice caused airway and parenchymal eosinophilic inflammation, Th2 cell accumulation, and mucus hypersecretion with mucus metaplasia. Exaggerated levels of immunoreactive endothelial cell VCAM-1, mucin (Muc) 5ac gene expression and bronchoalveolar lavage and lung IL-4, IL-5, and IL-13 protein and mRNA were also noted. In contrast, OVA challenge in CC10-IL-11 animals elicited impressively lower levels of tissue and bronchoalveolar lavage inflammation, eosinophilia, and Th2 cell accumulation, and significantly lower levels of VCAM-1 and IL-4, IL-5, and IL-13 mRNA and protein. IL-11 did not cause a comparable decrease in mucus hypersecretion, Muc 5ac gene expression, or the level of expression of RANTES, monocyte chemoattractant protein-2, or monocyte chemoattractant protein-3. In addition, IL-11 did not augment IFN-gamma production demonstrating that the inhibitory effects of IL-11 were not due to a shift toward Th1 inflammation. These studies demonstrate that IL-11 selectively inhibits Ag-induced eosinophilia, Th2 inflammation, and VCAM-1 gene expression in pulmonary tissues.  相似文献   

7.
The role of Th2/CD4 T cells, which secrete IL-4, IL-5, and IL-13, in allergic disease is well established; however, the role of CD8(+) T cells (allergen-induced airway hyperresponsiveness (AHR) and inflammation) is less clear. This study was conducted to define the role of Ag-primed CD8(+) T cells in the development of these allergen-induced responses. CD8-deficient (CD8(-/-)) mice and wild-type mice were sensitized to OVA by i.p. injection and then challenged with OVA via the airways. Compared with wild-type mice, CD8(-/-) mice developed significantly lower airway responsiveness to inhaled methacholine and lung eosinophilia, and exhibited decreased IL-13 production both in vivo, in the bronchoalveolar lavage (BAL) fluid, and in vitro, following Ag stimulation of peribronchial lymph node (PBLN) cells in culture. Reconstitution of sensitized and challenged CD8(-/-) mice with allergen-sensitized CD8(+) T cells fully restored the development of AHR, BAL eosinophilia, and IL-13 levels in BAL and in culture supernatants from PBLN cells. In contrast, transfer of naive CD8(+) T cells or allergen-sensitized CD8(+) T cells from IL-13-deficient donor mice failed to do so. Intracellular cytokine staining of lung as well as PBLN T cells revealed that CD8(+) T cells were a source of IL-13. These data suggest that Ag-primed CD8(+) T cells are required for the full development of AHR and airway inflammation, which appears to be associated with IL-13 production from these primed T cells.  相似文献   

8.
Allergic asthma is an inflammatory disease of the airways characterized by eosinophilic inflammation and airway hyper-reactivity. Cytokines and chemokines specific for Th2-type inflammation predominate in asthma and in animal models of this disease. The role of Th1-type inflammatory mediators in asthma remains controversial. IFN-gamma-inducible protein 10 (IP-10; CXCL10) is an IFN-gamma-inducible chemokine that preferentially attracts activated Th1 lymphocytes. IP-10 is up-regulated in the airways of asthmatics, but its function in asthma is unclear. To investigate the role of IP-10 in allergic airway disease, we examined the expression of IP-10 in a murine model of asthma and the effects of overexpression and deletion of IP-10 in this model using IP-10-transgenic and IP-10-deficient mice. Our experiments demonstrate that IP-10 is up-regulated in the lung after allergen challenge. Mice that overexpress IP-10 in the lung exhibited significantly increased airway hyperreactivity, eosinophilia, IL-4 levels, and CD8(+) lymphocyte recruitment compared with wild-type controls. In addition, there was an increase in the percentage of IL-4-secreting T lymphocytes in the lungs of IP-10-transgenic mice. In contrast, mice deficient in IP-10 demonstrated the opposite results compared with wild-type controls, with a significant reduction in these measures of Th2-type allergic airway inflammation. Our results demonstrate that IP-10, a Th1-type chemokine, is up-regulated in allergic pulmonary inflammation and that this contributes to the airway hyperreactivity and Th2-type inflammation seen in this model of asthma.  相似文献   

9.
We have reported that a 24 kDa protein (22U homologous; As22U) of Anisakis simplex larvae could elicit several Th2-related chemokine gene expressions in the intestinal epithelial cell line which means that As22U may play a role as an allergen. In order to determine the contribution of As22U to allergic reactions, we treated mice with 6 times intra-nasal application of recombinant As22U (rAs22U). In the group challenged with rAs22U and ovalbumin (OVA), the number of eosinophils in the bronchial alveolar lavage fluid (BALF) was significantly increased, as compared to the group receiving only OVA. In addition, mice treated with rAs22U and OVA showed significantly increased airway hyperresponsiveness. Thus, severe inflammation around the airway and immune cell recruitment was observed in mice treated with rAs22U plus OVA. The levels of IL-4, IL-5, and IL-13 cytokines in the BALF increased significantly after treatment with rAs22U and OVA. Similarly, the levels of anti-OVA specific IgE and IgG1 increased in mice treated with rAs22U and OVA, compared to those treated only with OVA. The Gro-α (CXCL1) gene expression in mouse lung epithelial cells increased instantly after treatment with rAs22U, and allergy-specific chemokines eotaxin (CCL11) and thymus-and-activation-regulated-chemokine (CCL17) gene expressions significantly increased at 6 hr after treatment. In conclusion, rAs22U may induce airway allergic inflammation, as the result of enhanced Th2 and Th17 responses.  相似文献   

10.
Recent evidence suggests that asthma leads to inflammation and remodeling not only in the airways but also in pulmonary vessels and parenchyma. In addition, some studies demonstrated that aerobic training decreases chronic allergic inflammation in the airways; however, its effects on the pulmonary vessels and parenchyma have not been previously evaluated. Our objective was to test the hypothesis that aerobic conditioning reduces inflammation and remodeling in pulmonary vessels and parenchyma in a model of chronic allergic lung inflammation. Balb/c mice were sensitized at days 0, 14, 28, and 42 and challenged with ovalbumin (OVA) from day 21 to day 50. Aerobic training started on day 21 and continued until day 50. Pulmonary vessel and parenchyma inflammation and remodeling were evaluated by quantitative analysis of eosinophils and mononuclear cells and by collagen and elastin contents and smooth muscle thickness. Immunohistochemistry was performed to quantify the density of positive cells to interleukin (IL)-2, IL-4, IL-5, interferon-gamma, IL-10, monocyte chemotatic protein (MCP)-1, nuclear factor (NF)-kappaB p65, and insulin-like growth factor (IGF)-I. OVA exposure induced pulmonary blood vessels and parenchyma inflammation as well as increased expression of IL-4, IL-5, MCP-1, NF-kappaB p65, and IGF-I by inflammatory cells were reduced by aerobic conditioning. OVA exposure also induced an increase in smooth muscle thickness and elastic and collagen contents in pulmonary vessels, which were reduced by aerobic conditioning. Aerobic conditioning increased the expression of IL-10 in sensitized mice. We conclude that aerobic conditioning decreases pulmonary vascular and parenchymal inflammation and remodeling in this experimental model of chronic allergic lung inflammation in mice.  相似文献   

11.
Interaction between CD154 (CD40 ligand) on activated T lymphocytes and its receptor CD40 has been shown to be critically involved in the generation of cell-mediated as well as humoral immunity. CD40 triggering activates dendritic cells (DC), enhances their cytokine production, up-regulates the expression of costimulatory molecules, and induces their maturation. It is unknown how stimulation of CD40 during sensitization to an airborne allergen may affect the outcome of allergic airway inflammation. We took advantage of a mouse model of allergic asthma and a stimulatory mAb to CD40 (FGK45) to study the effects of CD40-mediated DC activation on sensitization to OVA and subsequent development of OVA-induced airway inflammation. Agonistic anti-CD40 mAb (FGK45) injected during sensitization with OVA abrogated the development of allergic airway inflammation upon repeated airway challenges with OVA. Inhibition of bronchial eosinophilia corresponded with reduced Th2 cytokine production and was independent of IL-12, as evidenced by a similar down-regulatory effect of anti-CD40 mAb in IL-12 p40-deficient mice. In addition, FGK45 equally down-regulated allergic airway inflammation in IL-10-deficient mice, indicating an IL-10-independent mechanism of action of FGK45. In conclusion, our results show that CD40 signaling during sensitization shifts the immune response away from Th2 cytokine production and suppresses allergic airway inflammation in an IL-12- and IL-10-independent way, presumably resulting from enhanced DC activation during sensitization.  相似文献   

12.
Allergic asthma is characterized by infiltration of eosinophils, elevated Th2 cytokine levels, airway hyperresponsiveness, and IgE. In addition to eosinophils, mast cells, and basophils, a variety of cytokines are also involved in the development of allergic asthma. The pivotal role of eosinophils in the progression of the disease has been a subject of controversy. To determine the role of eosinophils in the progression of airway inflammation, we sensitized and challenged BALB/c wild-type (WT) mice and eosinophil-deficient ΔdblGATA mice with ovalbumin (OVA) and analyzed different aspects of inflammation. We observed increased eosinophil levels and a Th2-dominant response in OVA-challenged WT mice. In contrast, eosinophil-deficient ΔdblGATA mice displayed an increased proportion of mast cells and a Th17-biased response following OVA inhalation. Notably, the levels of IL-33, an important cytokine responsible for Th2 immune deviation, were not different between WT and eosinophil-deficient mice. We also demonstrated that mast cells induced Th17-differentiation via IL-33/ST2 stimulation in vitro. These results indicate that eosinophils are not essential for the development of allergic asthma and that mast cells can skew the immune reaction predominantly toward Th17 responses via IL-33 stimulation.  相似文献   

13.
The innate immune molecule surfactant protein-D (SP-D) plays an important regulatory role in the allergic airway response. In this study, we demonstrate that mice sensitized and challenged with either Aspergillus fumigatus (Af) or OVA have increased SP-D levels in their lung. SP-D mRNA and protein levels in the lung also increased in response to either rIL-4 or rIL-13 treatment. Type II alveolar epithelial cell expression of IL-4Rs in mice sensitized and challenged with Af, and in vitro induction of SP-D mRNA and protein by IL-4 and IL-13, but not IFN-gamma, suggested a direct role of IL-4R-mediated events. The regulatory function of IL-4 and IL-13 was further supported in STAT-6-deficient mice as well as in IL-4/IL-13 double knockout mice that failed to increase SP-D production upon allergen challenge. Interestingly, addition of rSP-D significantly inhibited Af-driven Th2 cell activation in vitro whereas mice lacking SP-D had increased numbers of CD4(+) cells with elevated IL-13 and thymus- and activation-regulated chemokine levels in the lung and showed exaggerated production of IgE and IgG1 following allergic sensitization. We propose that allergen exposure induces elevation in SP-D protein levels in an IL-4/IL-13-dependent manner, which in turn, prevents further activation of sensitized T cells. This negative feedback regulatory circuit could be essential in protecting the airways from inflammatory damage after allergen inhalation.  相似文献   

14.
Multidrug resistance-associated protein 1 (MRP1) is a cysteinyl leukotriene (CysLT) export pump expressed on mast cells. CysLTs are crucial mediators in allergic airway disease. However, biological significance of MRP1 in allergic airway inflammation has not yet been elucidated. In this study, we sensitized wild-type control mice (mrp1(+/+)) and MRP1-deficient mice (mrp1(-/-)) to ovalbumin (OVA) and challenged them with OVA by aerosol. Airway inflammation and goblet cell hyperplasia after OVA exposure were reduced in mrp1(-/-) mice compared with mrp1(+/+) mice. Furthermore, CysLT levels in bronchoalveolar lavage fluid (BALF) from OVA-exposed mrp1(-/-) mice were significantly lower than those from OVA-exposed mrp1(+/+) mice. Levels of OVA-specific IgE, IL-4, and IL-13 in BALF were also decreased in OVA-exposed mrp1(-/-) mice. IgE-mediated release of CysLTs from murine bone marrow-derived mast cells was markedly impaired by MRP1 deficiency. Our results indicate that MRP1 plays an important role in the development of allergic airway inflammation through regulation of IgE-mediated CysLT export from mast cells.  相似文献   

15.
In certain models of allergic airway disease, mast cells facilitate the development of inflammation and airway hyper-responsiveness (AHR). To define the role of the high affinity IgE receptor (FcepsilonRI) in the development of AHR, mice with a disruption of the alpha subunit of the high affinity IgE receptor (FcepsilonRI(-/-)) were exposed on 10 consecutive days to nebulized OVA. Forty-eight hours after the last nebulization, airway responsiveness was monitored by the contractile response of tracheal smooth muscle to electrical field stimulation (EFS). After the 10-day OVA challenge protocol, wild-type mice demonstrated increased responsiveness to EFS, whereas similarly challenged FcepsilonRI(-/-) mice showed a low response to EFS, similar to nonexposed animals. Further, allergen-challenged FcepsilonRI(-/-) mice showed less airway inflammation, goblet cell hyperplasia, and lower levels of IL-13 in lung homogenates compared with the controls. IL-13-deficient mice failed to develop an increased response to EFS or goblet cell hyperplasia after the 10-day OVA challenge. We transferred bone marrow-derived mast cells from wild-type mice to FcepsilonRI(-/-) mice 1 day before initiating the challenge protocol. After the 10-day OVA challenge, recipient FcepsilonRI(-/-) mice demonstrated EFS-induced responses similar to those of challenged wild-type mice. Transferred mast cells could be detected in tracheal preparations. These results show that FcepsilonRI is important for the development of AHR after an aerosolized allergen sensitization protocol and that this effect is mediated through FcepsilonRI on mast cells and production of IL-13 in the lung.  相似文献   

16.
17.
Enhanced Th2 cell-mediated allergic inflammation in Tyk2-deficient mice   总被引:3,自引:0,他引:3  
Allergic inflammation is mediated by Th2 cell-derived cytokines, including IL-4, IL-5, and IL-13, and down-regulated by IFN-gamma and IL-12. Tyk2 is a member of the Janus family of protein tyrosine kinases and is activated by a variety of cytokines: IFN-alphabeta, IL-6, IL-10, IL-12, and IL-13. In this study, we investigated the role of Tyk2 in the regulation of Ag-induced Th cell differentiation and Ag-induced allergic inflammation in the airways using Tyk2-deficient (Tyk2(-/-)) mice. When splenocytes were stimulated with antigenic peptide, IL-12-mediated Th1 cell differentiation was decreased, but IL-4-mediated Th2 cell differentiation was increased in Tyk2(-/-) mice. In vivo, Ag-specific IgE and IgG1 production was increased, but Ag-specific IgG2a production was decreased in Tyk2(-/-) mice as compared with those in control mice. In addition, Ag-induced eosinophil and CD4(+) T cell recruitment, as well as the production of Th2 cytokines in the airways, was increased in Tyk2(-/-) mice. Adoptive transfer experiments revealed that CD4(+) T cells were responsible for the enhanced Ag-induced eosinophil recruitment in Tyk2(-/-) mice. In contrast, although the level of IL-13 was increased in the airways of Tyk2(-/-) mice after Ag inhalation, the number of goblet cells, as well as Muc5ac mRNA expression, was decreased in Tyk2(-/-) mice. Together, these results indicate that Tyk2 plays a bilateral role in the regulation of allergic inflammation in the airways: Tyk2 plays a role in the down-regulation of Th2 cell-mediated Ab production and eosinophil recruitment in the airways by regulating Th1/Th2 balance toward Th1-type, while Tyk2 is necessary for the induction of IL-13-mediated goblet cell hyperplasia in the airways.  相似文献   

18.
Although many studies have shown that pulmonary surfactant protein (SP)-A functions in innate immunity, fewer studies have addressed its role in adaptive immunity and allergic hypersensitivity. We hypothesized that SP-A modulates the phenotype and prevalence of dendritic cells (DCs) and CD4(+) T cells to inhibit Th2-associated inflammatory indices associated with allergen-induced inflammation. In an OVA model of allergic hypersensitivity, SP-A(-/-) mice had greater eosinophilia, Th2-associated cytokine levels, and IgE levels compared with wild-type counterparts. Although both OVA-exposed groups had similar proportions of CD86(+) DCs and Foxp3(+) T regulatory cells, the SP-A(-/-) mice had elevated proportions of CD4(+) activated and effector memory T cells in their lungs compared with wild-type mice. Ex vivo recall stimulation of CD4(+) T cell pools demonstrated that cells from the SP-A(-/-) OVA mice had the greatest proliferative and IL-4-producing capacity, and this capability was attenuated with exogenous SP-A treatment. Additionally, tracking proliferation in vivo demonstrated that CD4(+) activated and effector memory T cells expanded to the greatest extent in the lungs of SP-A(-/-) OVA mice. Taken together, our data suggested that SP-A influences the prevalence, types, and functions of CD4(+) T cells in the lungs during allergic inflammation and that SP deficiency modifies the severity of inflammation in allergic hypersensitivity conditions like asthma.  相似文献   

19.
20.
T cells and T cell derived cytokines are involved in the complex pathogenesis of asthma. The role of the cytokine IL-18 however, is not clearly defined so far. On the one hand side IL-18 induces Th1-type cytokines and thereby might counter-regulate Th2-mediated allergic asthma. On the other hand IL-18 also bears pro-inflammatory effects possibly enhancing experimental asthma. In order to elucidate the role of IL-18 in allergic pulmonary inflammation typical symptoms were compared after induction of experimental asthma in IL-18−/− and in wild type mice. Asthma was induced using ovalbumin (OVA) as allergen for sensitization and challenge. Sham sensitized and OVA challenged mice served as controls. Bronchoalveolar lavage-fluid cytology, leukocyte infiltration in lung tissues, serum levels of OVA-specific IgE and cytokines, and lung function were analyzed. Clear differences could be observed between control and asthmatic mice, both in wild type and IL-18−/− animals. Surprisingly, no differences were found between asthmatic wild type and IL-18−/− mice. Thus, in contrast to conflicting data in the literature IL-18 did not suppress or enhance the pulmonary allergic immune response in a murine experimental model of asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号