首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ferralterin, an iron-sulfur protein identified earlier in chloroplasts and cyanobacteria, was purified to homogeneity from spinach leaves and Nostoc muscorum cells. When isolated from both sources, ferralterin showed a molecular weight of about 28,000 and was comprised of three subunits: one of molecular weight 12,000 and two, apparently identical, of molecular weight 7000. Based on the Lowry method of protein estimation, ferralterin contained approximately 3 g atoms each of nonheme iron and acid-labile sulfide per mole. The iron-sulfur cluster of ferralterin showed unusual redox and electron paramagnetic resonance (EPR) properties. Ferralterin was EPR silent as isolated and did not show an EPR signal on addition of reductants such as sodium dithionite or on exposure to illuminated chloroplast membranes. These reducing conditions also had no significant effect on the absorption spectrum of isolated ferralterin. The ferralterin iron-sulfur cluster was oxidized selectively by ferricyanide and showed a midpoint redox potential of +410 mV. Ferricyanide-oxidized ferralterin was characterized by a low-temperature EPR signal with g values of 2.10, 2.05, and 2.00 (spinach) and 2.09, 2.04, and 1.98 (Nostoc). When oxidized by ferricyanide, the iron-sulfur cluster could be reduced by a variety of reductants, including illuminated chloroplast membranes. The results are consistent with the conclusion that, like several other iron-sulfur enzymes (aconitase, glutamine phospho-ribosylpyrophosphate amidotransferase, hydrogenase), ferralterin achieves its catalytic effect via an active group independently of a redox change in the iron-sulfur chromophore.  相似文献   

2.
Toluene dioxygenase oxidizes toluene to (+)-cis-1(S),2(R)-dihydroxy-3-methylcyclohexa-3,5-diene. This reaction is catalyzed by a multienzyme system that is induced in cells of Pseudomonas putida F1 during growth on toluene. One of the components of toluene dioxygenase has been purified to homogeneity and shown to be an iron-sulfur protein that has been designated ferredoxinTOL. The molecular weight of ferredoxinTOL was calculated to be 15,300, and the purified protein was shown to contain 2 g of atoms each of iron- and acid-labile sulfur which appear to be organized as a single [2Fe-2S]cluster. Solutions of ferredoxinTOL were brown in color and showed absorption maxima at 277, 327, and 460 nm. A shoulder in the spectrum of the oxidized protein was discernible at 575 nm. Reduction with sodium dithionite or NADH and ferredoxinTOL reductase resulted in a decrease in visible absorbance at 460 and 575 nm, with a concomitant shift in absorption maxima to 382 and 438 nm. The redox potential of ferredoxinTOL was estimated to be -109 mV. In the oxidized state, the protein is diamagnetic. However, upon reduction it exhibited prominent electron paramagnetic resonance signals with anisotropy in g values (gx = 1.81, gy = 1.86, and gz = 2.01). Anaerobic reductive titrations revealed that ferredoxinTOL is a one-electron carrier that accepts electrons from NADH in a reaction that is mediated by a flavoprotein (ferredoxinTOL reductase). The latter is the first component in the toluene dioxygenase system. Reduced ferredoxinTOL can transfer electrons to cytochrome c or to a terminal iron-sulfur dioxygenase (ISP-TOL) which catalyzes the incorporation of molecular oxygen into toluene and related aromatic substrates.  相似文献   

3.
Secondary amine monooxygenase from Pseudomonas aminovorans grown on trimethylamine has been purified 265-fold to apparent homogeneity. The purified enzyme exhibits a specific activity of 14.7 mumol of NADPH oxidized per min per mg of protein, a native molecular weight of 210,000, and nondisulfide-linked subunits of molecular weight 42,000, 36,000, and 24,000, each of which is required for activity. The enzyme is extremely labile during purification; rapid handling and the presence of 5% ethanol are essential to enzyme stability. Storage at 77 K in the presence of NADH (1 mM) also confers considerable stability to the purified enzyme. The heme prosthetic group in the enzyme has been identified as protoporphyrin IX. The quantification of prosthetic group components reveals the presence of 1.6 mol of flavin as FMN, 2.0 mol of heme iron, 4.0 mol of acid-soluble (nonheme) iron, and 3.6 mol of free sulfide/210,000 molecular weight enzyme. Ferric and ferrous-CO secondary amine monooxygenase exhibit electronic absorption spectra that are very similar to those of analogous myoglobin derivatives and, therefore, quite distinct from parallel forms of cytochrome P-450, the most extensively studied heme iron-containing monooxygenase. Like myoglobin and, again, in contrast to P-450, this enzyme forms a very stable dioxygen complex. In fact, it is this oxygen-bound form of the enzyme that is obtained from the purification procedure. Once again, the absorption spectrum of oxygenated secondary amine monooxygenase is nearly identical to that of oxymyoglobin. The spectroscopic similarities between secondary amine monooxygenase and myoglobin suggest the presence of an endogenous histidine fifth ligand to the heme iron of the enzymes.  相似文献   

4.
Purified spinach nitrite reductase, a protein that contains siroheme, is characterized by absorption maxima in the visible region at 385 and 573 nm. On addition of the substrate nitrite, the bands shift to 360 and 570 nm. Dithionite also causes shifts in the maxima of the visible absorption region. Electron paramagnetic resonance studies show that the untreated enzyme contains a high-spin Fe3+ heme and that the addition of cyanide, an inhibitor that is competitive with nitrite, results in a spin-state change of the heme. Electron paramagnetic resonance analysis of the enzyme in the presence of dithionite or dithionite plus cyanide indicates the presence of a reduced iron-sulfur center with rhombic symmetry (g-values of 2.03, 1.94, and 1.91). In contrast, when the enzyme is treated with dithionite plus nitrite, the EPR spectrum of an NO-heme complex (g-values of 2.07 and 2.00) is observed. The presence of an iron-sulfur center has also been confirmed by chemical analyses of the nonheme iron and acid-labile sulfide in nitrite reductase. These results are discussed in terms of a mechanism for nitrite reduction that involves electron transfer between the iron-sulfur center and siroheme.  相似文献   

5.
Shokes JE  Duin EC  Bauer C  Jaun B  Hedderich R  Koch J  Scott RA 《FEBS letters》2005,579(7):1741-1744
Heterodisulfide reductase (HDR) catalyzes the formation of coenzyme M (CoM-SH) and coenzyme B (CoB-SH) by the reversible reduction of the heterodisulfide, CoM-S-S-CoB. This reaction recycles the two thiol coenzymes involved in the final step of microbial methanogenesis. Electron paramagnetic resonance (EPR) and variable-temperature magnetic circular dichroism spectroscopic experiments on oxidized HDR incubated with CoM-SH revealed a S=1/2 [4Fe-4S]3) cluster, the EPR spectrum of which is broadened in the presence of CoM-33SH [Duin, E.C., Madadi-Kahkesh, S., Hedderich, R., Clay, M.D. and Johnson, M.K. (2002) Heterodisulfide reductase from Methanothermobacter marburgensis contains an active-site [4Fe-4S] cluster that is directly involved in mediating heterodisulfide reduction. FEBS Lett. 512, 263-268; Duin, E.C., Bauer, C., Jaun, B. and Hedderich, R. (2003) Coenzyme M binds to a [4Fe-4S] cluster in the active site of heterodisulfide reductase as deduced from EPR studies with the [33S]coenzyme M-treated enzyme. FEBS Lett. 538, 81-84]. These results provide indirect evidence that the disulfide binds to the iron-sulfur cluster during reduction. We report here direct structural evidence for this interaction from Se X-ray absorption spectroscopic investigation of HDR treated with the selenium analog of coenzyme M (CoM-SeH). Se K edge extended X-ray absorption fine structure confirms a direct interaction of the Se in CoM-SeH-treated HDR with an Fe atom of the Fe-S cluster at an Fe-Se distance of 2.4A.  相似文献   

6.
Absorption and EPR spectroscopic properties of purified dimethyl sulfoxide (Me2SO) reductase from Rhodobacter sphaeroides f. sp. denitrificans have been examined. The absence of prosthetic groups other than the molybdenum center in the enzyme has made it possible to study its absorption properties. The enzyme displays multiple absorbance peaks in both the oxidized and the dithionite-reduced forms. The oxidized enzyme has absorbance peaks at 280, 350, 470, 550, and 720 nm while the dithionite-reduced enzyme has peaks at 280, 374, and 645 nm with a shoulder at 430 nm. A comparison of the absorbance spectrum of oxidized Me2SO reductase with that of the molybdenum fragment of rat liver sulfite oxidase shows that the 350 and 470 peaks are common to both proteins. EPR studies of the Mo(V) form of Me2SO reductase show a rhombic signal with g1 = 1.988, g2 = 1.977, g3 = 1.961, and g(ave) = 1.975. The signal shows evidence of coupling to an exchangeable proton with A1 = 1.05, A2 = 1.13, A3 = 0.98, and Aave = 1.05 millitesla. These parameters are similar to those of other Mo enzymes, however, the epr signal of this enzyme differs from those of other Mo hydroxylases in showing only a slight sensitivity to pH and no detectable anion effect. EPR potentiometric titrations of Me2SO reductase gave midpoint potentials of +144 mV for the Mo(VI)/Mo(V) couple and +160 mV for the Mo(V)/Mo(IV) couple at room temperature and +141 mV for the Mo(VI)/Mo(V) couple and +200 mV for the Mo(V)/Mo(IV) couple at 173 K.  相似文献   

7.
NADH-cytochrome c reductase, a component of benzoate 1,2-dioxygenase system, was purified to homogeneity, as judged by sodium dodecyl sulfate disc gel electrophoresis and ultracentrifugation, from benzoate-induced cells of Pseudomonas arvilla. The molecular weight of the enzyme was determined to be 38,300 by sedimentation equilibrium analysis, 37,000 by Sephadex G-100 gel filtration, and 37,500 by sodium dodecyl sulfate disc gel electrophoresis, respectively, indicating that the enzyme consisted of a single polypeptide chain. The sedimentation coefficient was calculated to be 3.3 S. The Stokes radius for the enzyme was calculated to be 27 A. The isoelectric point of the enzyme was estimated to be pH 4.2. The enzyme contained 1 mol of FAD, 2 mol of iron, and 2 mol of labile sulfide/mol of enzyme. It exhibited absorption spectrum with maxima at 273, 340, 402, and 467 nm. Amino acid analysis of the enzyme revealed that it was devoid of tryptophan. The enzyme contained 9 mol of cysteine/mol of enzyme but no disulfide linkage. The turnover number of the enzyme for the NADH-dependent reduction of cytochrome c was 17,100 at 24 degrees C. Although NADPH also acted as an electron donor, NADH was highly superior to NADPH. Ferricyanide and 2,6-dichlorophenolindophenol served as electron acceptors. Certain other properties of the enzyme are also presented.  相似文献   

8.
Pseudomonas sp. strain CBS 3 possesses a two-component enzyme system which converts 4-chlorophenylacetate to 3,4-dihydroxyphenylacetate by the incorporation of 2 atoms of molecular oxygen. Component A of this enzyme system was purified to homogeneity by a 5-step procedure. After the last purification step the enzyme was homogeneous in analytical and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular weight of the native protein was determined to be 140,000 by Sephadex G-200 and 144,000 by analytical ultracentrifugation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that component A consists of three identical subunits with a molecular weight determined to range between 46,000 and 52,000. The isoelectric point was estimated to be 5.0. Component A shows an intensive red-brown color, and in the oxidized state it exhibits a visible absorption spectrum with a maximum at 458 nm and a shoulder at 560 nm. By reduction with sodium dithionite a new peak with a maximum at 518-520 nm is observed. The enzyme contains iron (1.6-1.8 mol/subunit) and acid-labile sulfide (1.6-1.9 mol/subunit) which suggests that component A is an iron-sulfur protein.  相似文献   

9.
A b-type cytochrome and NADH-ferricyanide (FC) reductase were solubilized from Ascaris muscle microsomes by detergents and purified by column chromatography. The purified b-type cytochrome displayed absorption bands at 560 (alpha-peak), 525 (beta-peak), and 424 nm (gamma-peak), with a marked shoulder at 555 nm in the reduced from, 415 nm (gamma-peak) in the oxidized form. This absorption spectrum was different from that of rat liver microsomal cytochrome b5. The molecular weight was estimated to be about 100,000 by SDS-polyacrylamide gel electrophoresis, and the absorption spectrum of alkaline pyridine ferrohemochrome suggested that the prosthetic group of this cytochrome is protoheme. The molecular weight of the purified NADH-FC reductase was estimated to be about 55,000 by SDS-polyacrylamide gel electrophoresis. The purified reductase required NADH as a specific electron donor. The reductase efficiently reduced some redox dyes with NADH, but the reduction of cytochrome c was much slower. The purified reductase, like the membrane-bound reductase, was not inhibited by thiol reagents.  相似文献   

10.
The investigations presented in this paper were performed on two enzyme systems from Pseudomonas putida: (a) 4-methoxybenzoate monooxygenase, consisting of a NADH: putidamonooxin oxidoreductase and putidamonooxin, the oxygen-activating component, and (b) benzene 1,2-dioxygenase, a three-component enzyme system with an NADH: ferredoxin oxidoreductase, functioning together with a plant-type ferredoxin as electron-transport chain, and an oxygen-activating component similar to putidamonooxin in its active sites. The influence of temperature, ionic strength, and pH on the activities of 4-methoxybenzoate monooxygenase and of NADH: putidamonooxin oxidoreductase were investigated. The studies revealed that the activity of 4-methoxybenzoate monooxygenase is determined by the behaviour of the reductase. Spectroscopic measurements showed that the interaction between the two components of 4-methoxybenzoate monooxygenase influences the optical-absorption behaviour of one or both components. As a criterion for the affinity between the two components of 4-methoxybenzoate monooxygenase, the Km value of the reductase for putidamonooxin was determined and found to be 31 +/- 11 microM. Antibodies against both components of 4-methoxybenzoate monooxygenase were obtained from rabbits. The antibodies against putidamonooxin inhibited the O-demethylation reaction (up to 80%) and also the reduction of putidamonooxin by the reductase (up to 40%). The antibodies against putidamonooxin did not interact with the oxygen-activating component of benzene 1,2-dioxygenase. The electron-transport chains of 4-methoxybenzoate monooxygenase and benzene 1,2-dioxygenase could not be replaced by one another without a complete loss of enzyme activity.  相似文献   

11.
1. In respiratory nitrate reductase I of Klebsiella aerogenes, 0.24 atom of molybdenum, eight iron-sulfur groups and four tightly bound, non-heme iron atoms per molecule of enzyme (Mr 260 000) are found. 2. EPR spectra at 83 degrees K of oxidized and reduced nitrate reductase I show complex lines at g = 2.02 and g = 1.98, which are more intense in the reduced than in the oxidized enzyme. The resonances, the shape and intensity of which are rather temperature insensitive, are attributed to two species of paramagnetic molybdenum. In dithionite-reduced enzyme all these lines are saturated at the same microwave power of 15 mW. This is not the case in oxidized enzyme, where the resonance at g = 2.02 is hard to saturate. Addition of nitrate to dithionite-reduced reductase I decreases the intensity of the EPR lines to about that of oxidized enzyme. The participation of molybdenum in the electron transfer process has been discussed. 3. At 18 degrees K the oxidized enzyme exhibits an axial-symmetrical signal with g parallel = 2.10 and g = 2.03, and a signal with unknown symmetry at g = 2.015. Upon reduction by dithionite, a ferredoxin type of signal is observed with g values at 2.05, 1.95 and 1.88, while the g = 2.015 signal disappears. Reoxidation by nitrate causes a concomitant disappearance of the ferredoxin type of signal and reappearance of the g = 2.015 signal; hence iron-sulfur centres participate in the transfer of electrons to nitrate. 4. Nitrate reductase II, containing only two (Mr 117 000 and 57 000) of the three subunits found in nitrate reductase I and lacking the tightly bound iron, does not exhibit the axial-symmetrical signal (g = 2.10 and 2.03). Thus, it suggested that this signal in nitrate reductase I stems from an iron centre in the low-molecular weight subunit (Mr 52 000). 5. Inhibition studies confirm the participation of metals in the transfer of electrons from reduced benzylviologen to nitrate and show that the binding sites for these substrates are different.  相似文献   

12.
Properties of soluble high potential type iron-sulfur protein (HiPIP) from beef heart mitochondria were compared to those of aconitase from pig heart. The two proteins when purified to homogeneity by the criteria of sodium dodecyl sulfate (SDS)-polyacrylamide electrophoresis show identical light absorption characteristics. EPR signals of the HiPIP type centered at g = 2.01 when oxidized, isoelectric points at pH 8.5 to 8.6, are inseparable by SDS-polyacrylamide electrophoresis, and exhibit aconitase activity when activated by reducing agents in the presence of ferrous iron. The requirement for activation goes parallel to the intensity of the signal from the oxidized iron-sulfur cluster, i.e. the cluster is reduced in the active enzyme. We conclude that the soluble mitochondrial HiPIP is identical with aconitase. The relationships of iron to labile sulfide, molecular weight and unpaired spins in the EPR signal, and implications of our findings for the role of iron in aconitase are discussed.  相似文献   

13.
The cytoplasmic membrane-bound hydrogenase of the facultative anaerobe, Proteus mirabilis, has been solubilized and purified to homogeneity. The purified enzyme exhibited a maximal specific activity of about 780 mumol H2 oxidized/min per mg protein (benzyl viologen reduction). The hydrogenase has a molecular weight of 205 000 and is composed of two subunits with a molecular weight of 63 000 and two of 33 000. The absorption spectrum of the enzyme was characteristic of non-heme iron proteins. The millimolar extinction coefficients at 400 and 280 nm are 106 and 390, respectively. The hydrogenase has about 24 iron atoms and 24 acid-labile sulfide atoms/molecule. Amino acid analyses revealed the presence of 39 half-cystine residues/molecule and a preponderance of acidic amino acids. The hydrogenase in its oxidized form exhibits an EPR signal of the HiPIP-type with g values at 2.025 and 2.018. Upon reduction with either dithionite or H2 the signal disappears; no other signals were detectable.  相似文献   

14.
A FAD-containing monooxygenase isolated from pig liver microsomes migrates as a single band upon electrophoresis in polyacrylamide gels in the presence of dodecyl sulfate. The minimum molecular weight based on mass of amino acids per mole of flavin is 64,000. However, the catalytically active enzyme exists as aggregating units of the monomer. Neither oxygen nor organic substrates perturbed the spectrum of the oxidized flavoprotein and their binding to this form of the enzyme could not be detected. Anaerobically NADPH bleaches the flavoprotein, and in the presence of both NADPH and oxygen a remarkably stable intermediate form of the enzyme, with an absorption band at 375 nm, is observed. The spectrum of the intermediate resembles that of a peroxyflavin. The monooxygenase catalyzes NADPH- and oxygen-dependent oxygenations of nucleophilic nitrogen- or sulfur-containing compounds. Kinetic studies carried out with a model organic nitrogen substrate (trimethylamine) and a sulfur substrate (methimazole) gave similar patterns. The kinetic data are consistent with an ordered Ter-Bi mechanism with an irreversible step between the second and third substrate where NADPH is added first, followed by oxygen, and the oxidizable organic substrate is added last. If NADPH is the first substrate added, then NADP+ must be the last product released since NADP+ is competitive with NADPH.  相似文献   

15.
A peroxidase was purified from Halobacterium halobium L-33 to an electrophoretically homogeneous state and some of its properties were studied. The enzyme showed an absorption peak at 406 nm in the oxidized form and peaks at 440, 558, and 591 nm in the reduced form. The difference spectrum, reduced + CO minus reduced, of the enzyme showed peaks at 425, 538, and 577 nm and troughs at 444, 562, and 596 nm. These spectral properties were apparently similar to those of "cytochrome a1" except for the occurrence of the peak at 558 nm in the reduced form. The molecular weight of the enzyme was 110,000 and the enzyme possessed one unit of protoheme in the molecule. The activity to oxidize guaiacol in the presence of H2O2 of the peroxidase was about one-twentieth of that of horseradish peroxidase. The enzyme also showed a catalase-activity one-fourth as active as that of liver catalase. The reactions catalyzed by the enzyme were strongly inhibited by KCN.  相似文献   

16.
Nitrous oxide reductase (N2OR) is the terminal enzyme involved in denitrification by microbes. No three-dimensional structural information has been published for this enzyme. We have isolated and characterised N2OR from Alcaligenes xylosoxidans (AxN2OR) as a homodimer of M(r) 134,000 containing seven to eight copper atoms per dimer. Comparison of sequence and compositional data with other N2ORs suggests that AxN2OR is typical and can be expected to have similar domain folding and subunit structure to other members of this family of enzymes. We present synchrotron X-ray-scattering data, analysed using a model-independent method for shape restoration, which gave a approximately 20 A resolution structure of the enzyme in solution, providing a glimpse of the structure of any N2OR and shedding light on the molecular architecture of the molecule. The specific activity of AxN2OR was approximately 6 mumol of N2O reduced.min-1. (mg of protein)-1; N2OR activity showed both base and temperature activation. The visible spectrum exhibited an absorption maximum at 550 nm with a shoulder at 635 nm. On oxidation with K3Fe(CN)6, the absorption maximum shifted to 540 nm and a new shoulder at 480 nm appeared. Reduction under anaerobic conditions resulted in the formation of an inactive blue form of the enzyme with a broad absorption maximum at 650 nm. As isolated, the enzyme shows an almost featureless EPR spectrum, which changes on oxidation to give an almost completely resolved seven-line hyperfine signal in the gII region, g = 2.18, with AII = 40 G, consistent with the enzyme being partially reduced as isolated. Both the optical and EPR spectra of the oxidized enzyme are characteristic of the presence of a CuA centre.  相似文献   

17.
A dissimilatory bisulfite reductase has been purified from a thermophilic sulfate-reducing bacterium Desulfovibrio thermophilus (DSM 1276) and studied by EPR and optical spectroscopic techniques. The visible spectrum of the purified bisulfite reductase exhibits absorption maxima at 578.5, 392.5 and 281 nm with a weak band around 700 nm. Photoreduction of the native enzyme causes a decrease in absorption at 578.5 nm and a concomitant increase in absorption at 607 nm. When reduced, the enzyme reacts with cyanide, sulfite, sulfide and carbon monoxide to give stable complexes. The EPR spectrum of the native D. thermophilus bisulfite reductase shows the presence of a high-spin ferric signal with g values at 7.26, 4.78 and 1.92. Upon photoreduction the high-spin ferric heme signal disappeared and a typical 'g = 1.94' signal of [4Fe-4S] type cluster appeared. Chemical analyses show that the enzyme contains four sirohemes and eight [4Fe-4S] centers per mol of protein. The molecular mass determined by gel filtration was found to be 175 kDa. On SDS-gel electrophoresis the enzyme presents a main band of 44 to 48 kDa. These results suggest that the bisulfite reductase contains probably one siroheme and two [4Fe-4S] centers per monomer. The dissimilatory bisulfite reductase from D. thermophilus presents some homologous properties with desulfofuscidin, the bisulfite reductase isolated from Thermodesulfobacterium commune (Hatchikian, E.C. and Zeikus, J.G. (1983) J. Bacteriol. 153, 1211-1220).  相似文献   

18.
Bisulfite reductase (desulfoviridin) and an assimilatory sulfite reductase have been purified from extracts of Desulfovibrio vulgaris. The bisulfite reductase has absorption maxima at 628, 580, 408, 390, and 279 nm, and a molecular weight of 226,000 by sedimentation equilibrium, and was judged to be free of other proteins by disk electrophoresis and ultracentrifugation. On gels, purified bisulfite reductase exhibited two green bands which coincided with activity and protein. The enzyme appears to be a tetramer but was shown to have two different types of subunits having molecular weights of 42,000 and 50,000. The chromophore did not form an alkaline ferrohemochromogen, was not reduced with dithionite or borohydride, and did not form a spectrally visible complex with CO. The assimilatory sulfite reductase has absorption maxima at 590, 545, 405 and 275 nm and a molecular weight of 26,800, and appears to consist of a single polypeptide chain as it is not dissociated into subunits by sodium dodecyl sulfate. By disk electrophoresis, purified sulfite reductase exhibited a single greenish-brown band which coincided with activity and protein. The sole product of the reduction was sulfide, and the chromophore was reduced by borohydride in the presence of sulfite. Carbon monoxide reacted with the reduced chromophore but it did not form a typical pyridine ferrohemochromogen. Thiosulfate, trithionate, and tetrathionate were not reduced by either enzyme preparation. In the presence of 8 M urea, the spectrum of bisulfite reductase resembles that of the sulfite reductase, thus suggesting a chemical relationship between the two chromophores.  相似文献   

19.
The reaction process of adrenodoxin reductase with NADPH and NADH were investigated. The appearance of new intermediate with a broad absorption band at around 520 nm has been detected by rapid-scan stopped-flow spectrophotometry. Although the formation of this intermediate is more rapid with NADPH than with NADH, the rates of the subsequent decay to the fully reduced state are almost identical (Kobs values were 20.5 and 16.0s-1). These results indicate that the new intermediate is the complex formed between the oxidized enzyme and reduced pyridine nucleotide (enzyme-substrate complex), and that subsequent decay of the intermidiate is caused by a two-electron transfer process from the reduced pyridine nucleotide to the enzyme flavin. On the other hand, spectral and kinetic properties in the steady state of the reoxidation reaction of the enzyme reduced with NADPH and NADH were somewhat different. The rate of reoxidation of the enzyme under aerobic conditions from the reduced state to the oxidized state was 6.5 times faster when a 10-fold molar excess of NADH was used than when NADPH of the same concentration was used. This result is consistent with the fact that the NADH-dependent oxidase activity was 6.4 times greater than that dependent on NADPH. During reoxidation of the reduced enzyme under aerobic conditions in the presence of an excess of NADPH or NADH, the EPR spectra indicated the formation of the flavin semiquinone radical species. Similarly, the formation of semiquinone was observed in the absorption spectrum with either NADPH or NADH under the same conditions as in the EPR measurement. The intensity of the semiquinone signal on EPR was considerably smaller with NADH than with NADPH. These results suggest that NADP+ complex with the enzyme semiquinone protects the radical from oxidation by oxygen to a greater extent than NAD+, and consequently the semiquinone is easier to detect with NADPH than with NADH.  相似文献   

20.
In an earlier investigation (Shanmugam, K. T., Buchanan, B. B., and Arnon, D. I. (1972) Biochim. Biophys. Acta 256, 477-486) the extraction of ferredoxin from Rhodospirillum rubrum cells with the aid of a detergent (Triton X-100) and acetone revealed the existence of two types of ferredoxin (I and II) and led to the conclusion that both are membrane-bound. In the present investigation, ferredoxin and acid-labile sulfur analyses of photosynthetic membranes (chromatophores) and soluble protein extracts of the photosynthetic bacteria R. rubrum and Rhodopseudomonas spheroides showed that ferredoxins I and II are primarily components of the soluble protein fraction. After their removal, washed R. rubrum chromatophores were found to contain a considerable amount of tightly bound iron-sulfur protein(s), as evidenced by acid-labile sulfur and electron paramagnetic resonance analyses. Thus, like all other photosynthetic cells examined to date, R. rubrum cells contain both soluble ferredoxins and iron-sulfur proteins tightly bound to photosynthetic membranes. The molecular weights of ferredoxins I and II from photosynthetically grown R. rubrum cells were found to be 8,800 and 14,500, respectively. Using these molecular weights, the molar extinction coefficients at 390 nm for ferredoxins I and II were determined to be 30.3 and 17.2 mM-1 CM-1, respectively. Ferredoxin I contains 8 non-heme iron and 8 acid-labile sulfur atoms per molecule; ferredoxin II contains 4 non-heme iron and 4 acid-labile sulfur atoms per molecule. Ferredoxin I was found only in photosynthetically grown cells whereas ferredoxin II was present in both light- and dark-grown cells. Ferredoxin II from both light- and dark-grown cells has the same molecular weight (14,500) and absorption spectrum and has 4 iron and 4 acid-labile sulfur atoms per molecule. Low temperature electron paramagnetic resonance spectra of oxidized and photoreduced ferredoxins I and II from R. rubrum were recorded. The EPR spectrum of oxidized ferredoxin II exhibited a single resonance line at g = 2.012. Oxidized ferredoxin I, however, exhibited a spectrum that may arise from the superimposition of two resonance lines near g = 2.012. Photoreduced ferredoxin II displayed a rhombic EPR spectrum with a g value of 1.94. Photoreduced ferredoxin I exhibited a similar EPR spectrum at a temperature of 16 K, but when the temperature was lowered to 4.5 K the spectrum of ferredoxin I changed. This temperature-dependent spectrum may result from a weak spin-spin interaction between two iron-sulfur clusters. These results are consistent with the conclusion that R. rubrum ferredoxins I and II are, respectively, 8 iron/8 sulfur and 4 iron/4sulfur proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号