首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endogenous heat shock proteins (HSPs) 70 and 25/27 are induced in renal cells by injury from energy depletion. Transfected over-expression of HSPs 70 or 27 (human analogue of HSP25), provide protection against renal cell injury from ATP deprivation. This study examines whether over-expressed HSP27 depends on induction of endogenous HSPs, in particular HSP70, to afford protection against cell injury. LLC-PK1 cells transfected with HSP27 (27OE cells) were injured by ATP depletion for 2 h and recovered for 4 h in the presence of HSF decoy, HSP70 specific siRNA (siRNA-70) and their respective controls. Injury in the presence of HSF decoy, a synthetic oligonucleotide identical to the heat shock element, the nuclear binding site of HSF, decreased HSP70 induction by 80% without affecting the over-expression of transfected HSP27. The HSP70 stress response was completely ablated in the presence of siRNA-70. Protection against injury, provided by over-expression of HSP27, was reduced by treatment with HSF decoy and abolished by treatment with siRNA-70. Immunoprecipitation studies demonstrated association of HSP27 with actin that was not affected by either treatment with HSF decoy or siRNA. Therefore, HSP27 is dependent on HSP70 to provide its maximal cytoprotective effect, but not for its interaction with actin. This study suggests that, while it has specific action on the cytoskeleton, HSP 25/27 must have coordinated activity with other HSP classes, especially HSP70, to provide the full extent of resistance to injury from energy depletion.  相似文献   

2.
Levels of the small heat-shock proteins (sHSPs) HSP27 and alphaB-crystallin during differentiation of mouse C2C12 cells were determined using specific immunoassays. Increases of these proteins were about 3-fold and 10-fold, respectively. Under the same conditions, however, the level of HSP70 in C2C12 cells barely increased, indicating selective accumulation of HSP27 and alphaB-crystallin with differentiation. While expression of mRNA for alphaB-crystallin was also markedly increased and that for HSP27 was but to a lesser extent, mRNA for HSP70 could barely be detected during differentiation. Activation of the heat-shock factor was not observed, in contrast to the case with heat-stressed undifferentiated cells. Various inhibitors of protein kinases affected the differentiation and the associated increase of sHSPs. Rapamycin, an inhibitor of p70 S6 kinase, completely inhibited the differentiation and suppressed the accumulation of HSP27 and alphaB-crystallin. SB203580, an inhibitor of p38 MAP kinase, also inhibited differentiation, but the accumulation of alphaB-crystallin was rather enhanced. PD98059, an inhibitor of MAP kinase kinase, significantly increased expression of a differentiation marker for muscle cells, creatine kinase M isozyme, as well as accumulation of alphaB-crystallin. These results suggest that accumulation of sHSPs during differentiation of C2C12 cells is regulated in a complex manner.  相似文献   

3.
We examined the effect of heat stress on localization of two sHsps, alphaB-crystallin and Hsp25, and of Hsc70, a member of a different class of heat shock proteins (Hsps), in both undifferentiated and differentiated mouse C2C12 cells. Under normal conditions, alphaB-crystallin and Hsp25 are found in the cytoplasm; only alphaB-crystallin is also found in the nucleus, distributed in a speckled pattern. Hsc70 is found to be homogeneously distributed throughout the cell. On heat stress, all these proteins translocate almost entirely into the nucleus and upon recovery relocate to the cytoplasm. Dual staining experiments using C2C12 myoblasts show that alphaB-crystallin and Hsp25, but not Hsc70, colocalize with the intranuclear lamin A/C and the splicing factor SC-35, suggesting interactions of sHsps and intranuclear lamin A/C. Interestingly, none of these proteins are found in the myotube nuclei. Upon heat stress, only Hsc70 translocates into the myotube nuclei. This differential entry of alphaB-crystallin and Hsp25 into the nuclei of myoblasts and myotubes upon heat stress may have functional role in the development and/or in the maintenance of muscle cells. Our study therefore suggests that these sHsps may be a part of the intranuclear lamin A/C network or stabilizing this specific network.  相似文献   

4.
Heat shock proteins (HSPs), induced by a variety of stresses, are known to protect against cellular injury. Recent studies have demonstrated that prior beta-adrenergic stimulation as well as thermal or culture stress induces HSP70 expression and protects against cerulein-induced pancreatitis. The goal of our current studies was to determine whether or not a non-thermal, chemical stressor like sodium arsenite also upregulates HSP70 expression in the pancreas and prevents secretagogue-induced trypsinogen and NF-kappaB activation. We examined the effects of sodium arsenite preadministration on the parameters of cerulein-induced pancreatitis in rats and then monitored the effects of preincubating pancreatic acini with sodium arsenite in vitro. Our results showed that sodium arsenite pretreatment induced HSP70 expression both in vitro and in vivo and significantly ameliorated the severity of cerulein-induced pancreatitis, as evidenced by the markedly reduced degree of hyperamylasemia, pancreatic edema, and acinar cell necrosis. Sodium arsenite pretreatment not only inhibited trypsinogen activation and the subcellular redistribution of cathepsin B, but also prevented NF-kappaB translocation to the nucleus by inhibiting the IkappaBalpha degradation both in vivo and in vitro. We also examined the effect of sodium arsenite pretreatment in a more severe model of pancreatitis induced by L-arginine and found a similarly protective effect. Based on our observations we conclude that, like thermal stress, chemical stressors such as sodium arsenite also induce HSP70 expression in the pancreas and protect against acute pancreatitis. Thus, non-thermal pharmacologically induced stress can help prevent or treat pancreatitis.  相似文献   

5.
Mycobacterium tuberculosis heat shock protein 16.3 (MTB HSP 16.3) accumulates as the dominant protein in the latent stationary phase of tuberculosis infection. MTB HSP 16.3 displays several characteristics of small heat shock proteins (sHsps): its expression is increased in response to stress, it protects against protein aggregation in vitro, and it contains the core 'alpha-crystallin' domain found in all sHsps. In this study we characterized the chaperone activity of recombinant MTB HSP 16.3 in several different assays and compared the results to those obtained with recombinant human alphaB-crystallin, a well characterized member of the sHsp family. Recombinant MTB HSP 16.3 was expressed in Escherichia coli and purified to apparent homogeneity. Similar to alphaB-crystallin, MTB HSP16.3 suppressed citrate synthase aggregation and in the presence of 3.5 mm ATP the chaperone activity was enhanced by twofold. ATP stabilized MTB HSP 16.3 against proteolysis by chymotrypsin, and no effect was observed with ATPgammaS, a nonhydrolyzable analog of ATP. Increased expression of MTB HSP 16.3 resulted in protection against thermal killing in E. coli at 48 degrees C. While the sequence similarity between human alphaB-crystallin and MTB HSP 16.3 is only 18%, these results suggest that the functional similarities between these proteins containing the core 'alpha-crystallin' domain are much closer.  相似文献   

6.
The stress response of eukaryotic cells is characterized by changes in the metabolism of responding cells, most notably by increased synthesis of a group of proteins known as heat shock (HSP) proteins In this paper the effect of prostaglandin A1 (PGA1), arsenite and aspirin in Aedes albopictus cells was investigated. In cells treated with PGA1 (10 microg/ml) we observed the induction of several polypeptides with molecular masses of 87, 80, 70, 57, 29 and 23 kDa. Immunoblot analysis revealed that arsenite induces a marked synthesis of HSP70, and aspirin administered during the hyperthermic treatment caused a small increase of HSP70 synthesized.  相似文献   

7.
Physiological hydrostatic pressure protects endothelial monolayer integrity   总被引:1,自引:0,他引:1  
Endothelial monolayer integrity is required to maintain endothelial barrier functions and has found to be impaired in several disorders like inflammatory edema, allergic shock, or artherosclerosis. Under physiologic conditions in vivo, endothelial cells are exposed to mechanical forces such as hydrostatic pressure, shear stress, and cyclic stretch. However, insight into the effects of hydrostatic pressure on endothelial cell biology is very limited at present. Therefore, in this study, we tested the hypothesis that physiological hydrostatic pressure protects endothelial monolayer integrity in vitro. We investigated the protective efficacy of hydrostatic pressure in microvascular myocardial endothelial (MyEnd) cells and macrovascular pulmonary artery endothelial cells (PAECs) by the application of selected pharmacological agents known to alter monolayer integrity in the absence or presence of hydrostatic pressure. In both endothelial cell lines, extracellular Ca(2+) depletion by EGTA was followed by a loss of vascular-endothelial cadherin (VE-caherin) immunostaining at cell junctions. However, hydrostatic pressure (15 cmH(2)O) blocked this effect of EGTA. Similarly, cytochalasin D-induced actin depolymerization and intercellular gap formation and cell detachment in response to the Ca(2+)/calmodulin antagonist trifluperazine (TFP) as well as thrombin-induced cell dissociation were also reduced by hydrostatic pressure. Moreover, hydrostatic pressure significantly reduced the loss of VE-cadherin-mediated adhesion in response to EGTA, cytochalasin D, and TFP in MyEnd cells as determined by laser tweezer trapping using VE-cadherin-coated microbeads. In caveolin-1-deficient MyEnd cells, which lack caveolae, hydrostatic pressure did not protect monolayer integrity compromised by EGTA, indicating that caveolae-dependent mechanisms are involved in hydrostatic pressure sensing and signaling.  相似文献   

8.
Microvascular endothelial monolayers from mouse myocardium (MyEnd) cultured for up to 5 days postconfluency became increasingly resistant to various barrier-compromising stimuli such as low extracellular Ca2+ and treatment with the Ca2+ ionophore A23187 and with the actin depolymerising compound cytochalasin D. In contrast, microvascular endothelial monolayers from mouse lung microvessels (PulmEnd) remained sensitive to these conditions during the entire culture period which corresponds to the well-known in vivo sensitivity of the lung microvasculature to Ca2+ depletion and cytochalasin D treatment. One molecular difference between pulmonary and myocardial endothelial cells was found to be transglutaminase 1 (TGase1) which is strongly expressed in myocardial endothelial cells but is absent from pulmonary endothelial cells. Resistance of MyEnd cells to barrier-breaking conditions correlated strongly with translocation of TGase1 to intercellular junctions. Simultaneous inhibition of intracellular and extracellular TGase activity by monodansylcadaverine (MDC) strongly weakened barrier properties of MyEnd monolayers, whereas inhibition of extracellular TGases by the membrane-impermeable active site-directed TGase inhibitor R281 did not reduce barrier properties. Weakening of barrier properties could be also induced in MyEnd cells by downregulation of TGase1 expression using RNAi-based gene silencing. These findings suggest that crosslinking activity of intracellular TGase1 at intercellular junctions may play a role in controlling barrier properties of endothelial monolayers.  相似文献   

9.
Since both heat and sodium arsenite induce thermotolerance, we investigated the differences in synthesis and redistribution of stress proteins induced by these agents in Chinese hamster ovary cells. Five major heat shock proteins (HSPs; Mr 110, 87, 70, 28, and 8.5 kDa) were preferentially synthesized after heat for 10 min at 45.5 degrees C, whereas four major HSPs (Mr 110, 87, 70, and 28 kDa) and one stress protein (33.3 kDa) were preferentially synthesized after treatment with 100 microM sodium arsenite (ARS) for 1 hr. Two HSP families (HSP70a,b,c, and HSP28a,b,c) preferentially relocalized in the nucleus after heat shock. In contrast, only HSP70b redistributed into the nucleus after ARS treatment. Furthermore, the kinetics of synthesis of each member of HSP70 and HSP28 families and their redistribution were different after these treatments. The maximum rates of synthesis of HSP70 and HSP28 families, except HSP28c, were 6-9 hr after heat shock, whereas those of HSP70b and HSP28b,c were 0-2 hr after ARS treatment. In addition, the maximum rates of redistribution of HSP70 and HSP28 families occurred 3-6 hr after heat shock, whereas that of HSP70b occurred immediately after ARS treatment. The degree of redistribution of HSP70b after ARS treatment was significantly less than that after heat treatment. These results suggest that heat treatment but not sodium arsenite treatment stimulates the entry of HSP70 and HSP28 families into the nucleus.  相似文献   

10.
Using the differential PCR display method to select cDNA fragments that are differentially expressed after hepatic stellate cell (HSC) activation, we have isolated from activated HSCs a cDNA that corresponds to rat alphaB-crystallin. Northern blots confirmed expression of alphaB-crystallin in culture-activated HSCs but not in quiescent HSCs. Western blot analysis and immunocytochemical staining confirmed expression of alphaB-crystallin protein in activated but not quiescent HSCs. alphaB-crystallin is induced as early as 6 h after plating HSCs on plastic and continues to be expressed for 14 days in culture. Expression of alphaB-crystallin was also induced in vivo in activated HSCs from experimental cholestatic liver fibrosis. Confocal microscopy demonstrated a cytoplasmic distribution of alphaB-crystallin in a cytoskeletal pattern. Heat shock treatment resulted in an immediate perinuclear redistribution that in time returned to a normal cytoskeletal distribution. The expression pattern of alphaB-crystallin was similar to that of HSP25, another small heat shock protein, but differed from the classic heat shock protein HSP70. Therefore, alphaB-crystallin represents an early marker for HSC activation.  相似文献   

11.
The expression of heat shock proteins (HSPs) is known to be increased via activation of heat shock factor 1 (HSF1), and excess expression of HSPs exerts feedback inhibition of HSF1. However, the molecular mechanism to modulate such relationships between HSPs and HSF1 is not clear. In the present study, we show that stable transfection of either Hsp25 or inducible Hsp70 (Hsp70i) increased expression of endogenous HSPs such as HSP25 and HSP70i through HSF1 activation. However, these phenomena were abolished when the dominant negative Hsf1 mutant was transfected to HSP25 or HSP70i overexpressed cells. Moreover, the increased HSF1 activity by either HSP25 or HSP70i was found to result from dephosphorylation of HSF1 on serine 307 that increased the stability of HSF1. Either HSP25 or HSP70i inhibited ERK1/2 phosphorylation because of increased MKP1 phosphorylation by direct interaction of these HSPs with MKP1. Treatment of HOS and NCI-H358 cells, which showed high expressions of endogenous HSF1, with small interfering RNA (siRNA) of either HSP27 (siHSP27)or HSP70i (siHSP70i) inhibited both HSP27 and HSP70i proteins; this was because of increased ERK1/2 phosphorylation and serine phosphorylation of HSF1. The results, therefore, suggested that when the HSF1 protein level was high in cancer cells, excess expression of HSP27 or HSP70i strongly facilitates the expression of HSP proteins through HSF1 activation, resulting in severe radio- or chemoresistance.  相似文献   

12.
Seven members of the small heat shock protein (sHSP) family are exceptional with respect to their constitutive high abundance in muscle tissue. It has been suggested that sHSPs displaying chaperone-like properties may stabilize myofibrillar proteins during stress conditions and prevent them from loss of function. In the present study five sHSPs (alphaB-crystallin, MKBP, HSP25, HSP20, and cvHSP) were investigated with respect to similarities and differences of their expression in heart and skeletal muscle under normal and ischemic conditions. In ischemic heart and skeletal muscle these five sHSPs translocated from cytosol to the Z-/I-area of myofibrils. Myofibrillar binding of all sHSPs was very tight and resisted for the most part extraction with 1 M NaSCN or 1 M urea. MKBP and HSP20 became extracted by 1 M NaSCN to a significant extent indicating that these two sHSPs may bind partially to actin-associated proteins which were completely extracted by this treatment. Ultrastructural localization of alphaB-crystallin showed diffuse distribution of immunogold label throughout the entire I-band in skeletal muscle fibers whereas in cardiomyocytes alphaB-crystallin was preferentially located at the N-line position of the I-band. These observations indicate different myofibrillar binding sites of alphaB-crystallin in cardiomyocytes versus skeletal muscle fibers. Further differences of the properties of sHSPs could be observed regarding fiber type distribution of sHSPs. Thus sHSPs form a complex stress-response system in striated muscle tissue with some common as well as some distinct functions in different muscle types.  相似文献   

13.
It is well established that liver ischemia-reperfusion induces the expression of heat shock protein (HSP) 70. However, the biological function of HSP70 in this injury is unclear. In this study, we sought to determine the role of HSP70 in hepatic ischemia-reperfusion injury in mice. Male mice were subjected to 90 min of partial hepatic ischemia followed by up to 8 h of reperfusion. HSP70 was rapidly upregulated after reperfusion. To explore the function of HSP70, sodium arsenite (8 mg/kg iv) was injected before surgery. We found that this dose induced HSP70 expression within 6 h of treatment. Induction of HSP70 with arsenite resulted in a >50% reduction in liver injury as determined by serum transaminases and histology. In addition, arsenite similarly reduced liver neutrophil recruitment and liver nuclear factor-kappaB activation, and attenuated serum levels of tumor necrosis factor-alpha and macrophage inflammatory protein-2, but increased levels of interleukin (IL)-6. In HSP70 knockout mice, arsenite did not protect against liver injury but did reduce liver neutrophil accumulation. Arsenite-induced reductions in neutrophil accumulation in HSP70 knockout mice were found to be mediated by IL-6. To determine whether extracellular HSP70 contributed to the injury, recombinant HSP70 was injected before surgery. Intravenous injection of 10 microg of recombinant HSP70 had no effect on liver injury after ischemia-reperfusion. The data suggest that intracellular HSP70 is directly hepatoprotective during ischemia-reperfusion injury and that extracellular HSP70 is not a significant contributor to the injury response in this model. Targeted induction of HSP70 may represent a potential therapeutic option for postischemic liver injury.  相似文献   

14.
Heat shock proteins (HSPs) are shown to be strong immunoadjuvants, eliciting both innate and adaptive immune responses against cancers. HSP110 is related in sequence to HSP70 and is approximately 4-fold more efficient in binding to and stabilizing denatured protein substrates compared with HSP70. In the present study we evaluated the ability of a heat shock complex of HSP110 with the intracellular domain (ICD) of human HER-2/neu to elicit effective antitumor immune responses and to inhibit spontaneous mammary tumors in FVB-neu (FVBN202) transgenic mice. The HSP110-ICD complex was capable of breaking tolerance against the rat neu protein and inhibiting spontaneous mammary tumor development. This vaccine induced ICD-specific IFN-gamma and IL-4 production. Depletion studies revealed that CD8(+) T cells were involved in protection against challenge with mouse mammary tumors, whereas CD4(+) T cells revealed partial protection. Increased IgG2a Ab titer in the sera of tumor-free animals after vaccination and elevated CD4(+) CD25(+) regulatory T cells in the PBL of tumor-bearing animals suggested that IFN-gamma-producing Th1 cells may be responsible for partial protection of CD4(+) T cells against the mammary tumor challenge, whereas CD4(+)CD25(+) regulatory T cells (Th2 cells) may suppress the antitumor immune responses. Together, these results suggest that HSP110-ICD complex can elicit effective IFN-gamma-producing T cells against spontaneous mammary tumors and that up-regulation of CD4(+) CD25(+) regulatory T cells may prevent complete eradication of the tumor following immunotherapy.  相似文献   

15.
The interaction of small heat shock proteins (sHSPs) with the actin cytoskeleton has been described and some members of this family, e.g. chicken and murine HSP25 (HSP27), inhibit the polymerization of actin in vitro. To analyse the molecular basis of this interaction, we synthesized a set of overlapping peptides covering the complete sequence of murine HSP25 and tested the effect of these peptides on actin polymerization in vitro by fluorescence spectroscopy and electron microscopy. Two peptides comprising the sequences W43 to R57 (peptide 6) and I92 to N106 (peptide 11) of HSP25 were found to be potent inhibitors of actin polymerization. Phosphorylation of N-terminally extended peptide 11 at serine residues known to be phosphorylated in vivo resulted in decline of their inhibitory activity. Interestingly, peptides derived from the homologous peptide 11 sequence of murine alphaB-crystallin showed the same behaviour. The results suggest that both HSP25 and alphaB-crystallin have the potential to inhibit actin polymerization and that this activity is regulated by phosphorylation.  相似文献   

16.
17.
18.
Rat H9c2 myoblasts were preconditioned by heat or metabolic stress followed by recovery under normal conditions. Cells were then subjected to severe ATP depletion, and stress-associated proteotoxicity was assessed on 1) the increase in a Triton X-100-insoluble component of total cellular protein and 2) the rate of inactivation and insolubilization of transfected luciferase with cytoplasmic or nuclear localization. Both heat and metabolic preconditioning elevated the intracellular heat shock protein 70 (HSP70) level and reduced cell death after sustained ATP depletion without affecting the rate and extent of ATP decrease. Each preconditioning attenuated the stress-induced insolubility among total cellular protein as well as the inactivation and insolubilization of cytoplasmic and nuclear luciferase. Transient overexpression of human HSP70 in cells also attenuated both the cytotoxic and proteotoxic effects of ATP depletion. Quercetin, a blocker of stress-responsive HSP expression, abolished the effects of stressful preconditioning but did not influence the effects of overexpressed HSP70. Analyses of the cellular fractions revealed that both the stress-preconditioned and HSP70-overexpressing cells retain the soluble pool of HSP70 longer during ATP depletion. Larger amounts of other proteins coimmunoprecipitated with excess HSP70 compared with control cells deprived of ATP. This is the first demonstration of positive correlation between chaperone activity within cells and their viability in the context of ischemia-like stress.  相似文献   

19.
Whole-body hyperthermia (WBH) promotes cardiac protection against ischemia/reperfusion injury, in part by up-regulation of heat shock proteins (HSP). Whether heat stress also promotes up-regulation of angiogenic factors or induces endothelial cell proliferation is unknown. We studied the effects of heat stress on up-regulation of vascular endothelial growth factor (VEGF) and growth of new blood vessels following WBH. Anesthetized rats were subjected to WBH at 42 degrees C for 15 min. The control (n=23) and heated (n=55) groups were allowed to recover for 4, 12, 24, 48, or 72 h prior to harvesting the heart for Western Blot and immunohistochemical assessment of VEGF, HSP70, and platelet endothelial cell adhesion molecular-1 (PECAM-1). A significant increase in VEGF and HSP70 expression was observed as early as 4 h post-heating. The Western Blot analysis revealed a close temporal correlation between up-regulation of HSP70 and VEGF. Maximum VEGF and HSP70 expression occurred at 12 and 24 h post-heating in the left and right ventricles, respectively. The right ventricle showed the greatest expression of both VEGF and HSP70. Immunostaining revealed that VEGF was focally increased in the endothelial cells of capillaries, small arteries, and in interstitium. At 48 and 72 h post-heating, multiple areas of extensive capillary proliferation occurred in the epicardial region of the right ventricle. These observations were verified by quantitative analysis of the density of blood vessels as determined by PECAM-1 staining. Our experiments show that sublethal heat stress can lead to upregulation of both VEGF and HSP70 in cardiac tissue and promote focal endothelial proliferation in the heart.  相似文献   

20.
The use of transgenic mice to study cytoprotection by the stress proteins   总被引:1,自引:0,他引:1  
Heat shock or stress proteins (HSPs) have been shown to be able to confer cytoprotection in a diversity of cell types and organisms. We were interested in assessing if HSPs, in particular HSP70, were protective against pathophysiological stresses such as myocardial ischemia. Our approach was to generate a transgenic mouse line that would constitutively express high levels of an inducible rat HSP70 isoform in the heart. The hearts of the transgenic mice were then used in an isolated perfused mouse heart model to assess whether increased expression of HSP70 alone was protective against ischemia-reperfusion injury. Our study showed that there was a significant improvement in contractile recovery, less cellular damage, and a reduction in infarct size in the hearts of transgenic mice as compared to non-transgenic mice following global ischemia in our isolated perfused mouse heart model. Additional studies have since shown that increased expression of HSP70 as well as other stress proteins in transgenic mice protects against different forms of pathological stresses. We present here the methods we used to generate HSP70 transgenic mice and assess their increased tolerance to ischemia-reperfusion injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号