首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of vanadate (orthovanadate, VO4-) on water and ion transport was studied in rat jejunum. Water transport was tested by single-pass perfusion in vivo and ion fluxes by the Ussing-chamber technique in vitro. The results suggest that vanadate has two actions on ion and water transport: At low concentrations (10(-4) M) it causes Cl-, Na+ and water secretion by stimulation of adenylate cyclase; At higher concentrations (10(-3) and 10(-2) M) it decreases net absorption of Na+ and Cl- by inhibition of (Na+ + K+)-ATPase.  相似文献   

2.
Sodium metavanadate (10(-4)-10(-6) M) stimulates the activity of adenylate cyclase and decreases the activity of Na+, K+-ATRase and 5'-nucleotidase in the sarcolemma fraction of chicken skeletal muscles at the embryonal and postembryonal developmental stages. Under conditions of a combined action of vanadate and guanylic nucleotides on the adenylate cyclase activity their effects are found to be potentiated. Epinephrine in vitro removes an inhibitory influence of vanadate on Na+, K+-ATPase from the third week of twe embryonal period. The restoring effect of epinephrine is blocked by propranol--a beta-adrenoblocker.  相似文献   

3.
Since the mechanism underlying the insulin stimulation of (Na+,K+)-ATPase transport activity observed in multiple tissues has remained undetermined, we have examined (Na+,K+)-ATPase transport activity (ouabain-sensitive 86Rb+ uptake) and Na+/H+ exchange transport (amiloride-sensitive 22Na+ influx) in differentiated BC3H-1 cultured myocytes as a model of insulin action in muscle. The active uptake of 86Rb+ was sensitive to physiological insulin concentrations (1 nM), yielding a maximum increase of 60% without any change in 86Rb+ permeability. In order to determine the mechanism of insulin stimulation of (Na+,K+)-ATPase activity, we demonstrated that insulin also stimulates passive 22Na+ influx by Na+/H+ exchange transport (maximal 200% increase) and an 80% increase in intracellular Na+ concentration with an identical time course and dose-response curve as insulin-stimulated (Na+,K+)-ATPase transport activity. Incubation of the cells with high [Na+] (195 mM) significantly potentiated insulin stimulation of ouabain-inhibitable 86Rb+ uptake. The ionophore monensin, which also promotes passive Na+ entry into BC3H-1 cells, mimics the insulin stimulation of ouabain-inhibitable 86Rb+ uptake. In contrast, incubation with amiloride or low [Na+] (10 mM), both of which inhibit Na+/H+ exchange transport, abolished the insulin stimulation of (Na+,K+)-ATPase transport activity. Furthermore, each of these insulin-stimulated transport activities displayed a similar sensitivity to amiloride. These results indicate that insulin stimulates a large increase in Na+/H+ exchange transport and that the resulting Na+ influx increases the intracellular Na+ concentration, thus activating the internal Na+ transport sites of the (Na+,K+)-ATPase. This Na+ influx is, therefore, the mediator of the insulin-induced stimulation of membrane (Na+,K+)-ATPase transport activity classically observed in muscle.  相似文献   

4.
J J Hajjar  W A Rowe  T K Tomicic 《Life sciences》1988,43(21):1741-1746
Vanadate has been suggested as an intracellular regulator of (Na+ + K+)-ATPase. To test this hypothesis we examined the stimulatory and inhibitory effects of vanadate on 86--Rb efflux and influx (measurements of the activity of the Na-pump) in rat ileum under conditions of normal, reduced and increased (Na+ + K+)-ATPase activity. The half maximal stimulation of the Rb efflux and the half maximal inhibition of the Rb influx were not different in the three conditions tested. This suggests that vanadate does not have a regulatory effect on the activity of the Na-K-transport enzyme. The vanadate effect seem rather, to be nonspecific in terms of being unrelated, on a mole per mole basis, to the activity of the (Na+ + K+)-ATPase enzyme.  相似文献   

5.
(Na+,K+)-ATPase (EC 3.6.1.3) from kidney is more sensitive to inhibition by vanadate than red cell (Na+,K+)-ATPase. The difference appears to be in the apparent affinities of the two enzymes for K+ and Na+ at sites where K+ promotes and Na+ opposes vanadate binding. As a result of Na+-K+ competition at these sites, reversal of vanadate inhibition was accomplished at lower Na+ concentrations in red cell than in kidney (NA+,K+)-ATPase. It is possible that vanadate could selectively regulate Na+ transport in the kidney.  相似文献   

6.
Ionized forms of vanadium are known to exert diverse biological activities. Of particular interest in the inhibitory action of the vanadium ion on (Na+ + K+)-ATPase. This report describes another action of the vanadium ion on the rabbit colonic epithelium. Micromolar quantities of vanadate, applied to the serosal side of the isolated rabbit colonic epithelium, result in a stimulation of electrogenic chloride secretion by this epithelium. Sodium transport is unaffected by the vanadium ion in the concentrations used in this study. It is proposed that the vanadyl ion activates adenylate cyclase and thereby initiates subsequent secretory events.  相似文献   

7.
Vanadate alters intestinal transport and may have a role in regulating cell function. To determine whether it influences calcium absorption, we tested the effects of acute and chronic vanadate administration on calcium absorption using single-pass perfusion of jejunal and ileal segments of the in vivo rat intestine. Acute vanadate administration increased the lumen-to-mucosa and net fluxes of calcium in both the jejunum and ileum. The increase was largely due to an enhancement of the saturable fluxes of calcium and was observed at 10(-4) M concentration of vanadate, but not at higher or lower concentrations of the oxyanion, except at the highest concentration used, 10(-2) M, where calcium absorption was inhibited. Chronic vanadate administration caused, on the other hand, no changes in calcium absorption. We have demonstrated previously that rat intestinal (Na+ + K+)-ATPase is inhibited by vanadate, an effect that could raise cell sodium and increase the efflux of sodium across the brush border membrane. The results suggest that the vanadate enhancement of calcium absorption may be related to an increased entry of calcium into the mucosa, possibly as a result of an augmented exchange through the Na+/Ca+ antiport system. Alternatively, vanadate may influence access to a calcium channel in the mucosal membrane of the intestinal epithelium, leading to the observed increase in absorption.  相似文献   

8.
Luminal brush border and contraluminal basal-lateral segments of the plasma membrane from the same kidney cortex were prepared. The brush border membrane preparation was enriched in trehalase and gamma-glutamyltranspeptidase, whereas the basal-lateral membrane preparation was enriched in (Na+ + K+1)-ATPase. However, the specific activity of (Na+ + K+)-ATPase in brush border membranes also increased relative to that in the crude plasma membrane fraction, suggesting that (Na+ + K+)-ATPase may be an intrinsic constituent of the renal brush border membrane in addition to being prevalent in the basal-lateral membrane. Adenylate cyclase had the same distribution pattern as (Na+ + K+)-ATPase, i.e. higher specific activity in basal-lateral membranes and present in brush border membranes. Adenylate cyclase in both membrane preparations was stimulated by parathyroid hormone, calcitonin, epinephrine, prostaglandins and 5'-guanylylimidodiphosphate. When the agonists were used in combination enhancements were additive. In contrast to the distribution of adenylate cyclase, guanylate cyclase was found in the cytosol and in basal-lateral membranes with a maximal specific activity (NaN3 plus Triton X-100) 10-fold that in brush border membranes. ATP enhanced guanylate cyclase activity only in basal-lateral membranes. It is proposed that guanylate cyclase, in addition to (Na+ + K+)-ATPase, be used as an enzyme "marker" for the renal basal-lateral membrane.  相似文献   

9.
Na+-ATPase activity is extremely sensitive to inhibition by vanadate at low Na+ concentrations where Na+ occupies only high-affinity activation sites. Na+ occupies low-affinity activation sites to reverse inhibition of Na+-ATPase and (Na+, K+)-ATPase activities by vanadate. This effect of Na+ is competitive with respect to both vanadate and Mg2+. The apparent affinity of the enzyme for vanadate is markedly increased by K+. The principal effect of K+ may be to displace Na+ from the low-affinity sites at which it activates Na+-ATPase activity.  相似文献   

10.
The effects of deoxycholate, taurocholate and cholate on transport and mucosal ATPase activity have been investigated in the rat jejunum in vivo using closed-loop and perfusion techniques. In the closed-loops, 5 mM deoxycholate selectively inactivated (Na+ + K+)-ATPase, and net secretion of Na+ induced by 2.5 mM deoxycholate was due to reduced lumen to plasma flux of the ion; deoxycholate (2.5 mM) produced marked inhibition of 3-0-methylglucose transport. Luminal disappearance rates of deoxycholate (60.5 plus or minus 2.9% per g wet st of gut) greatly exceeded those of taurocholate (4.3 plus or minus 1.0). In the perfusion studies 1 mM deoxycholate induced net secretion of water, Na+ and C1-, and inhibited active glucose transport; concomitantly "total" ATPase, (Na+ + K+)-ATPase, and Mg-2+-ATPase were inhibited. At higher concentrations (5 mM) deoxycholate stimulated Mg-2+-ATPase activity. Taurocholate and cholate at 1mM had no effect on transport of (Na+ + K+)-ATPase. Mucosal lactase, sucrase and maltase activities were not affected by 1 mM deoxycholate, taurocholate or cholate. These results suggest that deoxycholate inhibits sodium-coupled glucose transport by inhibition of (Na+ + K+)-ATPase at the lateral and basal membranes of the epithelial cell, rather than from an effect at the brush-border membrane level.  相似文献   

11.
Inhibition of red cell Ca2+-ATPase by vanadate   总被引:3,自引:0,他引:3  
1. The Mg2+- plus Ca2+-dependent ATPase (Ca2+-ATPase) in human red cell membranes is susceptible to inhibition by low concentrations of vanadate. 2. Several natural activators of Ca2+-ATPase (Mg2+, K+, Na+ and calmodulin) modify inhibition by increasing the apparent affinity of the enzyme for vanadate. 3. Among the ligands tests, K+, in combination with Mg2+, had the most pronounced effect on inhibition by vanadate. 4. Under conditions optimal for inhibition of Ca2+-ATPase, the K 1/2 for vanadate was 1.5 microM and inhibition was nearly complete at saturating vanadate concentrations. 5. There are similarities between the kinetics of inhibition of red cell Ca2+-ATPase and (Na+ + K+)-ATPase prepared from a variety of sources; however, (Na+ + K+)-ATPase is approx. 3 times more sensitive to inhibition by vanadate.  相似文献   

12.
Ca2+-stimulated, Mg2+-dependent ATPase in bovine thyroid plasma membranes   总被引:1,自引:0,他引:1  
An isolated plasma membrane fraction from bovine thyroid glands contained a Ca2+-stimulated, Mg2+-dependent adenosine triphosphatase ((Ca2+ + Mg2+)-ATPase) activity which was purified in parallel to (Na+ + K+)-ATPase and adenylate cyclase. The (Ca2+ + Mg2+)-ATPase activity was maximally stimulated by approx. 200 microM added calcium in the presence of approx. 200 microM EGTA (69.7 +/- 5.2 nmol/mg protein per min). In EGTA-washed membranes, the enzyme was stimulated by calmodulin and inhibited by trifluoperazine.  相似文献   

13.
A procedure for the isolation of plasma-membrane-enriched fractions from bovine 'pars intermedia' and neurohypophysis is described. Various fractions are isolated by differential centrifugation and discontinuous sucrose density gradients. The plasma-membrane-enriched fractions have a density in sucrose of 1.14 and 1.16 and the yields are 1.8 mg and 1.5 mg per gram of tissue for the pars intermedia and neural lobe, respectively. The fractions are characterized by electron microscopy and enzymatic assays. The plasma membrane fractions are mainly vesicular in nature and are free of nuclei, mitochondria, and microsomes when examined by electron microscopy. 5'-Nucleotidase (EC 3.1.3.5) and Mg2+-(Na+ + K+)-ATPase (EC 3.6.1.3) activities are concentrated in the plasma-membrane-enriched fraction. Also, adenylate cyclase (EC 4.61.1) shows a 5 to 10-fold purification in the isolated membrane fraction. NaF (10mM) gives a two to three-fold stimulation of enzymatic activity in all fractions studied The yields of adenylate cyclase, 5'-nucleotidase, and Mg2+-(Na+ +K+)-ATPase are about 6% in the membrane fraction.  相似文献   

14.
A preparation of cardiac sarcolemmal membranes is described. These membranes exhibit 9-24-fold purification of (Na+ + K+)-ATPase, potassium-stimulated nitrophenolphosphatase, 5'-nucleotidase, adenylate cyclase, sialic acid content, and beta-receptor number. Sarcolemmal membranes have two classes of binding sites for the calcium entry blocker, bepridil, 70 X 10(12) high-affinity sites/mg, Kd 25-40 nM; and 30 X 10(15) low-affinity sites/mg, Kd 54-70 microM. Binding of bepridil to these sites appears responsible for inhibition of isoprenaline-stimulated and activation of fluoride-stimulated adenylate cyclase. Since basal adenylate cyclase activity is not influenced, bepridil must act not at the catalytic site, but by altering the interactions between beta-receptor and catalytic and regulatory components of adenylate cyclase.  相似文献   

15.
The electrophysiologic properties and the negative inotropic effect of verapamil are most likely due to the inhibition of calcium movement across the sarcolemmal membrane. A possible biochemical basis for this inhibition of calcium movement was studied in a membrane fraction rich in (Na+ + K+)-ATPase (EC 3.6.1.3) and adenylate cyclase (EC 4.6.1.1) activity and which demonstrated Ca2+-ATPase (EC 3.6.1.3) activity. Since each of these enzymes has the potential for influencing transsarcolemmal calcium movements, the effect of verapamil on their activities was studied in this membrane fraction isolated from rat and guinea pig hearts. Ca2+-ATPase activity in the rat was 37.7 mumol Pi/mg per hour compared with 13.8 +/- 2.9 in the guinea pig (p less than 0.01). Corresponding values for (Na+ + k+)-atpase activites were 7.9 +/- 0.9 mumol Pi/mg per hour versus 10.2 +/- 1.4. Adenylate cyclase activity in the rat was 240 +/- 8 pmol/mg per minute compared with 299 +/- 27. It was found that verapamil in concentrations of 0.01-100 mg/litre (2.1 X 10(-8) to 2.1 X 10(-4) M) had no effect on the activity of the above enzymes in either species and it was concluded that a biochemical basis for the effect of verapamil on calcium flux has yet to be defined.  相似文献   

16.
Gastric vesicles enriched in (H+,K+)-ATPase were prepared from hog fundic mucosa and studied for their ability to transport K+ using 86Rb+ as tracer. In the absence of ATP, the vesicles elicited a rapid uptake of 86Rb+ (t 1/2 = 45 +/- 9 s at 30 degrees C) which accounted for both transport and binding. Transport was osmotically sensitive and was the fastest phase. It was not limited by anion permeability (C1- was equivalent to SO2-4) but rather by availability of either H+ or K+ as intravesicular countercation suggesting a Rb+-K+ or a Rb+-H+ exchange. Selectivity was K+ greater than Rb+ greater than Cs+ much greater than Na+,Li+. The capacity of vesicles which catalyzed the fast transport of K+ was 83 +/- 4% of maximal vesicular capacity of the fraction. Addition of ATP decreased both rate and extent of 86Rb+ uptake (by 62 and 43%, respectively with 1 mM ATP) with an apparent Ki of 30 microM. Such an effect was not seen on 22Na+ transport. ATP inhibition of transport did not require the presence of Mg2+, and inhibition was also produced by ADP even in the presence of myokinase inhibitor. On the other hand, 86Rb+ uptake was as strongly inhibited by 200 microM vanadate in the presence of Mg2+. Efflux studies suggested that ATP inhibition was originally due to a decrease of vesicular influx with little or no modification of efflux. Since ATP, ADP, and vanadate are known modulators of the (H+,K+)-ATPase, we propose that, in the absence of ATP, (H+,K+)-ATPase passively exchanges K+ for K+ or H+ and that ATP, ADP, and vanadate regulate this exchange.  相似文献   

17.
Regulation of rat brain (Na+ +K+)-ATPase activity by cyclic AMP   总被引:3,自引:0,他引:3  
The interaction between the (Na+ +K+)-ATPase and the adenylate cyclase enzyme systems was examined. Cyclic AMP, but not 5'-AMP, cyclic GMP or 5'-GMP, could inhibit the (Na+ +K+)-ATPase enzyme present in crude rat brain plasma membranes. On the other hand, the cyclic AMP inhibition could not be observed with purified preparations of (Na+ +K+)-ATPase enzyme. Rat brain synaptosomal membranes were prepared and treated with either NaCl or cyclic AMP plus NaCl as described by Corbin, J., Sugden, P., Lincoln, T. and Keely, S. ((1977) J. Biol. Chem. 252, 3854-3861). This resulted in the dissociation and removal of the catalytic subunit of a membrane-bound cyclic AMP-dependent protein kinase. The decrease in cyclic AMP-dependent protein kinase activity was accompanied by an increase in (Na+ +K+)-ATPase activity. Exposure of synaptosomal membranes containing the cyclic AMP-dependent protein kinase holoenzyme to a specific cyclic AMP-dependent protein kinase inhibitor resulted in an increase in (Na+ +K+)-ATPase enzyme activity. Synaptosomal membranes lacking the catalytic subunit of the cyclic-AMP-dependent protein kinase did not show this effect. Reconstitution of the solubilized membrane-bound cyclic AMP-dependent protein kinase, in the presence of a neuronal membrane substrate protein for the activated protein kinase, with a purified preparation of (Na+ +K+)-ATPase, resulted in a decrease in overall (Na+ +K+)-ATPase activity in the presence of cyclic AMP. Reconstitution of the protein kinase alone or the substrate protein alone, with the (Na+ +K+)-ATPase has no effect on (Na+ +K+)-ATPase activity in the absence or presence of cyclic AMP. Preliminary experiments indicate that, when the activated protein kinase and the substrate protein were reconstituted with the (Na+ +K+)-ATPase enzyme, there appeared to be a decrease in the Na+-dependent phosphorylation of the Na+-ATPase enzyme, while the K+-dependent dephosphorylation of the (Na+ +K+)-ATPase was unaffected.  相似文献   

18.
The subcellular distribution of adenyl cyclase was investigated in small intestinal epithelial cells. Enterocytes were isolated, disrupted and the resulting membranes fractionated by differential and sucrose gradient centrifugation. Separation of luminal (brush border) and contra-luminal (basolateral) plasma membrane was achieved on a discontinuous sucrose gradient. The activity of adenyl cyclase was followed during fractionation in relation to other enzymes, notably those considered as markers for luminal and contraluminal plasma membrane. The luminal membrane was identified by the membrane-bound enzymes sucrase and alkaline phosphatase and the basolateral region by (Na+ + K+)-ATPase. Enrichment of the former two enzymes in purified luminal plasma membrane was 8-fold over cells and that of (Na+ + K+)-ATPase in purified bisolateral plasma membranes was 13-fold. F--activated adenyl cyclase co-purified with (Na+ + K+)-ATPase, suggesting a common localization on the plasma membrane. The distribution of K+-stimulated phosphatase and 5'-nucleotidase also followed (Na+ + K+)-ATPase during fractionation.  相似文献   

19.
Little is known concerning the effects of Na+-coupled solute transport on (Na+,K+)-ATPase mediated cation pumping in the intact cell. We investigated the effect of amino acid transport and growth factor addition on the short term regulation of (Na+,K+)-ATPase cation transport in HeLa cells. The level of pump activity in the presence of amino acids or growth factors was compared to the level measured in phosphate buffered saline. These rates were further related to the maximal pump capacity, operationally defined as ouabain inhibitable 86Rb+ influx in the presence of 15 microM monensin. Of the growth factors tested, only insulin was found to moderately (22%) increase (Na+,K+)-ATPase cation transport. The major determinant of pump activity was found to be the transport of amino acids. Minimal essential medium (MEM) amino acids increased ouabain inhibitable 86Rb+ influx to a level close to that obtained with monensin, indicating that the (Na+,K+)-ATPase is operating near maximal capacity during amino acid transport. This situation may apply to tissue culture conditions and consequently measurements of (Na+,K+)-ATPase activity in buffer solutions alone may yield little information about cation pumping under culture conditions. This finding applies especially to cells having high rates of amino acid transport. Furthermore, rates of amino acid transport may be directly or indirectly involved in the long-term regulation of the number of (Na+,K+)-ATPase molecules in the plasma membrane.  相似文献   

20.
In the present paper we studied the effect of urodilatin and atrial natriuretic peptide (ANP) on the proximal tubule Na+-ATPase and (Na+K+)ATPase activities. Urodilatin and ANP inhibit the Na+-ATPase activity but not the (Na+K+)ATPase activity. Maximal effect was observed at a concentration of 10(-11) M for both peptides. In this condition, the enzyme activity decreases from 10.8 +/- 1.6 (control) to 5.7 +/- 0.9 or 6.1 +/- 0.7 nmol Pi mg(-1) min(-1) in the presence of urodilatin or ANP, respectively. This effect was completely reversed by 10(-6) M LY83583, a guanylyl cyclase inhibitor, and mimicked by 10 nM cGMP. Furthermore, both ANP and urodilatin increase cGMP production by 33% and 49%, respectively. This is the first demonstration that it was shown that urodilatin and ANP directly modulate primary active sodium transport in the proximal tubule. The data obtained indicate that this effect is mediated by the activation of the NPR-A/guanylate cyclase/cGMP pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号