首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Secondary structure and topology of human interleukin 4 in solution   总被引:7,自引:0,他引:7  
Human interleukin 4 (IL-4) has been studied by 2D and 3D NMR techniques using uniformly 15N-labeled recombinant protein. Assignment of resonances for all but 3 of the 130 residues of the recombinant protein has been achieved, enabling the secondary structure of the protein to be defined. This consists of four major alpha-helical regions and one short section of double-stranded antiparallel beta-sheet. Analysis of distance and angle restraints derived from NMR experiments has enabled the overall molecular topology to be determined. This is related to that found for other four-helix proteins but has several distinctive features including cross-linking of helices by means of three disulfide bonds and a short section of beta-sheet. The structural analysis gives support to the hypothesis that many helical cytokines have a common fold and provides a basis for understanding the biological function of IL-4.  相似文献   

2.
Recombinant 15N-, 13C-labeled human granulocyte colony-stimulating factor (rh-metG-CSF) has been studied by 2D and 3D NMR using uniformly labeled protein as well as residue-specific 15N-labeled samples. Assignment of the 1H, 15N backbone, and 60% 1H sidechain resonances has enabled the determination of the secondary structure of the protein. The secondary structure is dominated by alpha-helical regions with four stretches of helices between residues 11-41, 71-95, 102-124 and 144-170.  相似文献   

3.
A uniformly 15N-labeled recombinant light-chain variable (VL) domain from the anti-digoxin antibody 26-10 has been investigated by heteronuclear two-dimensional (2D) and three-dimensional (3D) NMR spectroscopy. Complementary homonuclear 2D NMR studies of the unlabeled VL domain were also performed. Sequence-specific assignments for 97% of the main-chain and 70% of the side-chain proton resonances have been obtained. Patterns of nuclear Overhauser effects observed in 2D NOESY, 3D NOESY-HSQC, and 3D NOESY-TOCSY-HSQC spectra afford a detailed characterization of the VL domain secondary structure in solution. The observed secondary structure--a nine-stranded antiparallel beta-barrel--corresponds to that observed crystallographically for VL domains involved in quaternary associations. The locations of slowly exchanging amide protons have been discerned from a 2D TOCSY spectrum recorded after dissolving the protein in 2H2O. Strands B, C, E, and F are found to be particularly stable. The possible consequences of these results for domain-domain interactions are discussed.  相似文献   

4.
5.
The cytokine interleukin-15 (IL-15) signals through the formation of a quaternary receptor complex composed of an IL-15-specific alpha receptor, together with beta and gammac receptors that are shared with interleukin-2 (IL-2). The initiating step in the formation of this signaling complex is the interaction between IL-15 and IL-15Ralpha, which is a single sushi domain bearing strong structural homology to one of the two sushi domains of IL-2Ralpha. The crystal structure of the IL2-Ralpha/IL-2 complex has been determined, however little is known about the analogous IL-15Ralpha/IL-15 binding interaction. Here we show that recombinant IL-15 can be overexpressed as a stable complex in the presence of its high affinity receptor, IL-15Ralpha. We find that this complex is 10-fold more active than IL-15 alone in stimulating proliferation and survival of memory phenotype CD8 T cells. To probe the ligand/receptor interface, we used solution NMR to map chemical shifts on 15N-labeled IL-15Ralpha in complex with unlabeled IL-15. Our results predict that the binding surface on IL-15Ralpha involves strands C and D, similar to IL-2Ralpha. The interface, as predicted here, leaves open the possibility of trans-presentation of IL-15 by IL-15Ralpha on an opposing cell.  相似文献   

6.
The complete sequence-specific assignment of the 15N and 1H backbone resonances of the NMR spectrum of recombinant human interleukin 1 beta (153 residues, Mr = 17,400) has been obtained by using primarily 15N-1H heteronuclear three-dimensional (3D) NMR techniques in combination with 15N-1H heteronuclear and 1H homonuclear two-dimensional NMR. The fingerprint region of the spectrum was analyzed by using a combination of 3D heteronuclear 1H Hartmann-Hahn 15N-1H multiple quantum coherence (3D HOHAHA-HMQC) and 3D heteronuclear 1H nuclear Overhauser 15N-1H multiple quantum coherence (3D NOESY-HMQC) spectroscopies. We show that the problems of amide NH and C alpha H chemical shift degeneracy that are prevalent for proteins of this size are readily overcome by using the 3D heteronuclear NMR technique. A doubling of some peaks in the spectrum was found to be due to N-terminal heterogeneity of the 15N-labeled protein, corresponding to a mixture of wild-type and des-Ala-1-interleukin 1 beta. The complete list of 15N and 1H assignments is given for all the amide NH and C alpha H resonances of all non-proline residues, as well as the 1H assignments for some of the amino acid side chains. This first example of the sequence-specific assignment of a protein using heteronuclear 3D NMR provides a basis for further conformational and dynamic studies of interleukin 1 beta.  相似文献   

7.
Sarcolipin (SLN), a 31 amino acid integral membrane protein, regulates SERCA1a and SERCA2a, two isoforms of the sarco(endo)plasmic Ca-ATPase, by lowering their apparent Ca(2+) affinity and thereby enabling muscle relaxation. SLN is expressed in both fast-twitch and slow-twitch muscle fibers with significant expression levels also found in the cardiac muscle. SLN shares approximately 30% identity with the transmembrane domain of phospholamban (PLN), and recent solution NMR studies carried out in detergent micelles indicate that the two polypeptides bind to SERCA in a similar manner. Previous 1D solid-state NMR experiments on selectively (15)N-labeled sites showed that SLN crosses the lipid bilayer with an orientation nearly parallel to the bilayer normal. With a view toward the characterization of SLN structure and its interactions with both lipids and SERCA, herein we report our initial structural and topological assignments of SLN in mechanically oriented DOPC/DOPE lipid bilayers as mapped by 2D (15)N PISEMA experiments. The PISEMA spectra obtained on uniformly (15)N-labeled protein as well as (15)N-Leu, (15)N-Ile and (15)N-Val map the secondary structure of SLN and, simultaneously, reveal that SLN exists in two distinct topologies. Both the major and the minor populations assume an orientation with the helix axis tilted by approximately 23 degrees with respect to the lipid bilayer normal, but vary in the rotation angle about the helix axis by approximately 5 degrees . The existence of the multiple populations in model membranes may be a significant requirement for SLN interaction with SERCA.  相似文献   

8.
利用自编的脉冲程序,采用预饱和和自旋锁定对水峰进行双重抑制的方法,得到了^15N标记蛋白GAL4(62)的2D^1H-^15NHSQC、HSQC-NOESY、HSQC-TOCSY谱,并对这几个谱在蛋白质^1H谱的归属中所到的作用作了讨论。  相似文献   

9.
The secondary structure of the tenth type III module from human fibronectin has been determined using NMR. This type of module appears many times in a wide variety of proteins. The type III module described here contains an Arg-Gly-Asp sequence known to be involved in cell-cell adhesion. The module was expressed in yeast and characterized by amino acid sequencing and mass spectrometry. 2D and 3D NMR spectroscopy of 15N-labeled protein was used to perform sequence-specific assignment of the spectrum. The secondary structure was defined by patterns of nuclear Overhauser effects, 3JNH-alpha CH spin-spin coupling constants, and amide proton solvent exchange rates. The molecule consists of seven beta-strands in two antiparallel beta-sheets with an immunoglobulin-like fold similar to that predicted for homologous modules in the cytokine receptor super family [Bazan, J. F. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 6934-6938]. The Arg-Gly-Asp sequence is located on a loop between the beta-strands F and G.  相似文献   

10.
The homodimeric form of a recombinant cytokine interleukin-6 (IL-6(D)) is known to antagonize IL-6 signaling. In this study, spatially proximal residues between IL-6 chains in IL-6(D) were identified using a method for specific recognition of intermolecular cross-linked peptides. Our strategy involved mixing 1:1 (15)N-labeled and unlabeled ((14)N) protein to form a mixture of isotopically labeled and unlabeled homodimers, which was chemically cross-linked. This cross-linked IL-6(D) was subjected to proteolysis by trypsin and the generated peptides were analyzed by electrospray ionization time-of-flight mass spectrometry (MS). Molecular ions from cross-linked peptides of intermolecular origin are labeled with [(15)N/(15)N] + [(15)N/(14)N] + [(14)N/(15)N] + [(14)N/(14)N] yielding readily identified triplet/quadruplet MS peaks. All other peptide species are labeled with [(15)N] + [(14)N] yielding doublet peaks. Intermolecular cross-linked peptides were identified by MS, and cross-linked residues were identified. This intermolecular cross-link detection method, which we have designated "mixed isotope cross-linking" MIX may have more general application to protein-protein interaction studies. The pattern of proximal residues found was consistent with IL-6(D) having a domain-swapped fold similar to IL-10 and interferon-gamma. This fold implies that IL-6(D)-mediated antagonism of IL-6 signaling is caused by obstruction of cooperative gp130 binding on IL-6(D), rather than direct blocking of gp-130-binding sites on IL-6(D).  相似文献   

11.
The power of heteronuclear NMR spectroscopy to study macromoleculesand their complexes has been amply demonstrated over the last decade. Theobstacle to routinely applying these techniques to the study of DNA has beenthe synthesis of 13C,15N-labeled DNA. Here wepresent a simple and efficient method to generate isotope-labeled DNA forNMR studies that is as easy as that for isotope labeling of RNA. The methodwas used to synthesize a uniformly13 C,15N-labeled 32-nucleotide DNA that binds tohuman basic fibroblast growth factor with high affinity and specificity.Isotope-edited experiments were applied to the13 C,15N-labeled DNA bound to unlabeled protein,and the 13 C,15N-labeled DNA was also examined incomplex with 15N-labeled protein. The NMR experiments showthat the DNA adopts a well-defined stable structure when bound to theprotein, and illustrate the potential of13 C,15N-labeled DNA for structural studies ofDNA–protein complexes.  相似文献   

12.
利用自编的脉冲程序,采用预饱和和自旋锁定对水峰进行双重抑制的方法,得到了 15N标记蛋白GAL4(62)的2D 1H-15N HSQC、HSQC-NOESY、HSQC-TOCSY谱,并对这几个谱在蛋白质 1H谱的归属中所起的作用进行了讨论.  相似文献   

13.
Interleukin-1 (IL-1) proteins, such as IL-1 beta, play a key role in immune and inflammatory responses. Interaction of these cytokines with the IL-1 receptor induces a variety of biological changes in neurologic, metabolic, hematologic, and endocrinologic systems. Interleukin-1 receptor antagonist protein (IRAP) is a naturally occurring inhibitor of the interleukin-1 receptor. The 153-residue protein binds to the receptor with an affinity similar to that of IL-1 beta but does not elicit any physiological responses. As a first step toward understanding IRAP's mode of action, we have used multidimensional, heteronuclear NMR spectroscopy to determine the antagonist's solution secondary structure and global fold. Using a combination of 3D 1H-15N NOESY-HMQC and TOCSY-HMQC and 3D 1H-15N-13C HNCA and HN(CO)CA experiments on uniformly 15N- or doubly 13C/15N-enriched IRAP, we have made resonance assignments for more than 90% of the main-chain atoms. Analysis of short- and long-range NOE's indicates that IRAP is predominantly beta-sheet, with the same overall topology as IL-1 beta but with different regions of the primary sequence comprising the beta-strands. Two short helical segments also were identified. The 14% sequence identity between IL-1 beta and IRAP increases to 25% when differences in the locations of secondary structure elements in the primary sequences are taken into account. Still, numerous differences in side chains, which ultimately play a major role in receptor interaction, exist.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Multidimensional heteronuclear NMR has been applied to the structural analysis of myotrophin, a novel protein identified from spontaneously hypertensive rat hearts and hypertrophic human hearts. Myotrophin has been shown to stimulate protein synthesis in myocytes and likely plays an important role in the initiation of cardiac hypertrophy, a major cause of mortality in humans. Recent cDNA cloning revealed that myotrophin has 11B amino acids containing 2.5 contiguous ANK repeats, a motif known to be involved in a wide range of macromolecular recognition. A series of two- and three-dimensional heteronuclear bond correlation NMR experiments have been performed on uniformly 15N-labeled or uniformly 15N/13C-labeled protein to obtain the 1H, 15N, and 13C chemical shift assignments. The secondary structure of myotrophin has been determined by a combination of NOEs, NH exchange data, 3JHN alpha coupling constants, and chemical shifts of 1H alpha, 13C alpha, and 13 C beta. The protein has been found to consist of seven helices, all connected by turns or loops. Six of the seven helices (all but the C-terminal helix) form three separate helix-turn-helix motifs. The two full ANK repeats in myotrophin are characteristic of multiple turns followed by a helix-turn-helix motif. A hairpin-like turn involving L32-R36 in ANK repeat #1 exhibits slow conformational averaging on the NMR time scale and appears dynamically different from the corresponding region (D65-169) of ANK repeat #2.  相似文献   

15.
Over the next few years, various genome projects will sequence many new genes and yield many new gene products. Many of these products will have no known function and little, if any, sequence homology to existing proteins. There is reason to believe that a rapid determination of a protein fold, even at low resolution, can aid in the identification of function and expedite the determination of structure at higher resolution. Recently devised NMR methods of measuring residual dipolar couplings provide one route to the determination of a fold. They do this by allowing the alignment of previously identified secondary structural elements with respect to each other. When combined with constraints involving loops connecting elements or other short-range experimental distance information, a fold is produced. We illustrate this approach to protein fold determination on (15)N-labeled Eschericia coli acyl carrier protein using a limited set of (15)N-(1)H and (1)H-(1)H dipolar couplings. We also illustrate an approach using a more extended set of heteronuclear couplings on a related protein, (13)C, (15)N-labeled NodF protein from Rhizobium leguminosarum.  相似文献   

16.
Interleukin 2 isolated from Escherichia coli cells expressing the human interleukin gene has been characterized. The observed properties of the protein have been compared with those properties which can be deduced from the DNA sequence alone and the published properties of natural human interleukin 2. The purified E. coli-derived interleukin 2 is a monomeric protein of Mr 15 000 with a sedimentation velocity of 1.86S. The amino acid composition of the protein and isoelectric point (7.7) are consistent with that part of the translated DNA sequence of the gene corresponding to the mature protein. A single disulphide bridge was identified between Cys-58 and Cys-105. C.d. suggested that interleukin 2 is predominantly alpha-helical in secondary structure. The E. coli-derived protein differed from natural interleukin 2 in the presence of N-terminal methionine and also in the absence of a carbohydrate moiety. Removal of the coding region for the first three amino acids of the natural interleukin 2 protein sequence (Ala-Pro-Thr) by site-specific mutagenesis resulted in a protein with N-terminal serine. The possibility that the specificity of the E. coli ribosomal methionine aminopeptidase may not recognize the sequence NH2-Met-Xaa-Pro is discussed (where Xaa is any amino acid residue).  相似文献   

17.
This paper describes the NMR screening of 141 small (<15 kDa) recombinant Thermotoga maritima proteins for globular folding. The experimental data shows that approximately 25% of the screened proteins are folded under our screening conditions, which makes this procedure an important step for selecting those proteins that are suitable for structure determination. A comparison of screening based either on 1D 1H NMR with unlabeled proteins or on 2D [1H,15N]-COSY with uniformly 15N-labeled proteins is presented, and a comprehensive analysis of the 1D 1H NMR screening data is described. As an illustration of the utility of these methods to structural proteomics, the NMR structure determination of TM1492 (ribosomal protein L29) is presented. This 66-residue protein consists of a N-terminal 3(10)-helix and two long alpha-helices connected by a tight turn centered about glycine 35, where conserved leucine and isoleucine residues in the two alpha-helices form a small hydrophobic core.  相似文献   

18.
-Lytic protease, a bacterial serine protease of 198 aminoacids (19800 Da), has been used as a model system for studies of catalyticmechanism, structure–function relationships, and more recently forstudies of pro region-assisted protein folding. We have assigned thebackbones of the enzyme alone, and of its complex with the tetrahedraltransition state mimic N-tert-butyloxycarbonyl-Ala-Pro-boroVal, usingdouble- and triple-resonance 3D NMR spectroscopy on uniformly15N- and 13C/15N-labeled protein.Changes in backbone chemical shifts between the uncomplexed and inhibitedform of the protein are correlated with distance from the inhibitor, thedisplacement of backbone nitrogens, and change in hydrogen bond strengthupon inhibitor binding (derived from previously solved crystal structures).A comparison of the solution secondary structure of the uninhibited enzymewith that of the X-ray structure reveals no significant differences.Significant line broadening, indicating intermediate chemical exchange, wasobserved in many of the active site amides (including three broadened toinvisibility), and in a majority of cases the broadening was reversed uponaddition of the inhibitor. Implications and possible mechanisms of this linebroadening are discussed.  相似文献   

19.
Human macrophage migration inhibitory factor is a 114 amino acid protein that belongs to the family of immunologic cytokines. Assignments of 1H, 15N, and 13C resonances have enabled the determination of the secondary structure of the protein, which consists of two alpha-helices (residues 18-31 and 89-72) and a central four-stranded beta-sheet. In the beta-sheet, two parallel beta-sheets are connected in an antiparallel sense. From the total of three cysteines present in the primary structure of MIF, none was found to form disulfide bridges. 1H-15N heteronuclear T1, T2, and steady-state NOE measurements indicate that the backbone of MIF exists in a rigid structure of limited conformational flexibility (on the nanosecond to picosecond time scale). Several residues located in the loop regions and at the N termini of two helices exhibit internal motions on the 1-3 ns time scale. The capacity to bind glutathione was investigated by titration of a uniform 15N-labeled sample and led us to conclude that MIF has, at best, very low affinity for glutathione.  相似文献   

20.
NKR-P1A is a homodimeric type II transmembrane protein of the C-type lectin family found on natural killer (NK) cells and NK-like T cells and is an activator of cytotoxicity. Toward structure determination by NMR, the recombinant carbohydrate-recognition domain (CRD) of NKR-P1A has been expressed in high-yield in Escherichia coli and folded in vitro. The purified protein behaves as a monomer in size-exclusion chromatography and is bound by the conformation-sensitive antibody, 3.2.3, indicating a folded structure. A polypeptide tag at the N-terminus is selectively cleaved from the CRD after limited trypsin digestion in further support of a compact folded structure. The disulfide bonds have been identified by peptide mapping and electrospray mass spectrometry. These are characteristic of a long form CRD. The 1D NMR spectrum of the unlabeled CRD and the 2D HSQC spectrum of the (15)N-labeled CRD are those of a folded protein. Chemical shifts of H(alpha) and NH protons indicate a considerable amount of beta-strand structure. Successful folding in the absence of Ca(2+), coupled with the lack of chemical shift changes upon addition of Ca(2+), suggests that the NKR-P1A-CRD may not be a Ca(2+)-binding protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号