首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tay ST  Chai HC  Na SL  Ng KP 《Mycopathologia》2005,159(3):325-329
The genotypes of 221 recent isolates of Candida albicans from various clinical specimens of 213 patients admitted to the University Malaya Medical Centre, Malaysia was determined based on the amplification of a transposable intron region in the 25 S rRNA gene. The analyses of 178 C. albicansisolated from nonsterile clinical specimens showed that they could be classified into three genotypes: genotype A (138 isolates), genotype B (38 isolates) and genotype C (2 isolates). The genotyping of 43 clinical isolates from sterile specimens showed that they belonged to genotype A (29 isolates), genotype B (10 isolates), genotype C (2 isolates) and genotype D (2 isolates). The overall distribution of C. albicans genotypes in sterile and nonsterile specimens appeared similar, with genotype A being the most predominant type. This study reported the identification of C. dubliniensis (genotype D) in 2 HIV-negative patients with systemic candidiasis, which were missed by the routine mycological procedure. The study demonstrated the genetic diversity of clinical isolates of C. albicans in Malaysia.  相似文献   

2.
Jain N  Fries BC 《Mycopathologia》2008,166(4):181-188
Microorganisms that live in fluctuating environments must constantly adapt their behavior to survive. The host constitutes an important microenvironment in opportunistic and primary fungal pathogens like Cryptococcus neoformans (C. neoformans) and Cryptococcus gattii (C. gattii). In clonal populations, adaptation may be achieved through the generation of diversity. For fungi phenotype switching constitutes a mechanism that allows them to change rapidly. Both C. neoformans and C. gattii undergo phenotypic switching, which allows them to be successful pathogens and cause persistent disease. Similar to other encapsulated microbes that exhibit phenotypic variation, phenotypic switching in Cryptococcus changes the polysaccharide capsule. Most importantly, in animal models phenotypic switching affects virulence and can change the outcome of infection. Virulence changes because C. neoformans and C. gattii switch variants elicit different inflammatory responses in the host. This altered host response can also affect the response to antifungal therapy and in some cases may even promote the selection of switch variants. This review highlights the similarity and differences between phenotypic switching in C. neoformans and C. gattii, the two dominant species that cause cryptococcosis in humans.  相似文献   

3.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae.  相似文献   

4.
We present the isolation and functional analysis of a transformer2 homologue Mdtra2 in the housefly Musca domestica. Compromising the activity of this gene by injecting dsRNA into embryos causes complete sex reversal of genotypically female individuals into fertile males, revealing an essential function of Mdtra2 in female development of the housefly. Mdtra2 is required for female-specific splicing of Musca doublesex (Mddsx) which structurally and functionally corresponds to Drosophila dsx, the bottom-most regulator in the sex-determining pathway. Since Mdtra2 is expressed in males and females, we propose that Mdtra2 serves as an essential co-factor of F, the key sex-determining switch upstream of Mddsx. We also provide evidence that Mdtra2 acts upstream as a positive regulator of F supporting genetic data which suggest that F relies on an autocatalytic activity to select and maintain the female path of development. We further show that repression of male courtship behavior by F requires Mdtra2. This function of F and Mdtra2 appears not to be mediated by Mddsx, suggesting that bifurcation of the pathway at this level is a conserved feature in the genetic architecture of Musca and Drosophila.Edited by D. Tautz  相似文献   

5.
We conducted a novel non-visual screen for cuticular wax mutants in Arabidopsis thaliana (L.) Heynh. Using gas chromatography we screened over 1,200 ethyl methane sulfonate (EMS)-mutagenized lines for alterations in the major A. thaliana wild-type stem cuticular chemicals. Five lines showed distinct differences from the wild type and were further analyzed by gas chromatography and scanning electron microscopy. The five mutants were mapped to specific chromosome locations and tested for allelism with other wax mutant loci mapping to the same region. Toward this end, the mapping of the cuticular wax (cer) mutants cer10 to cer20 was conducted to allow more efficient allelism tests with newly identified lines. From these five lines, we have identified three mutants defining novel genes that have been designated CER22, CER23, and CER24. Detailed stem and leaf chemistry has allowed us to place these novel mutants in specific steps of the cuticular wax biosynthetic pathway and to make hypotheses about the function of their gene products.Abbreviations EMS Ethyl methane sulfonate - SEM Scanning electron microscopy - SSLP Simple sequence length polymorphism - WT Wild type  相似文献   

6.
We have investigated the floral ontogeny of Arillastrum, Allosyncarpia, Stockwellia and Eucalyptopsis (of the eucalypt group, Myrtaceae) using scanning electron microscopy and light microscopy. Several critical characters for establishing relationships between these genera and to the eucalypts have been determined. The absence of compound petaline primordia in Arillastrum, Allosyncarpia, Stockwellia and Eucalyptopsis excludes these taxa from the eucalypt clade. Post-anthesis circumscissile abscission of the hypanthium above the ovary in Stockwellia, Eucalyptopsis and Allosyncarpia is evidence that these three taxa form a monophyletic group; undifferentiated perianth parts and elongated fusiform buds are characters that unite Stockwellia and Eucalyptopsis as sister taxa. No floral characters clearly associate Arillastrum with either the eucalypt clade or the clade of Stockwellia, Eucalyptopsis and Allosyncarpia.We gratefully acknowledge Clyde Dunlop and Bob Harwood (Northern Territory Herbarium) for collecting specimens of Allosyncarpia, and Bruce Gray (Atherton) for collecting specimens of Stockwellia. The Australian National Herbarium (CANB) kindly lent herbarium specimens of Eucalyptopsis for examination. This research was supported by a University of Melbourne Research Development Grant to Andrew Drinnan.  相似文献   

7.
The aim of this study was to characterize switch phenotypes in Candida albicans biofilms. Cells of Candida albicans 192887g biofilms (24 h) were resuspended and these together with their planktonic counterparts were separately inoculated on Lee’s medium agar supplemented with arginine and zinc, at 25 °C for 9 days, for colony formation. The different switch phenotypes, as reflected by varying colony morphologies, were then examined for their (i) stability under various growth conditions, (ii) carbohydrate assimilation profiles, (iii) susceptibility to the polyene antifungal, nystatin, (iv) adhering and biofilm-forming ability, (v) filamentation, and (vi) growth rate in yeast nitrogen base medium supplemented with 100 mM glucose. Our data showed that the frequency of phenotypic switching in C. albicans biofilms was approximately 1%. Compared with the planktonic yeasts, cells derived from candidal biofilms generated one of the phenotypes less frequently (Chi-square-tests: P = 0.017). The five phenotypes derived from the biofilm growth demonstrated differing profiles for carbohydrate assimilation, adhesion, biofilm formation, filamentation, and growth rate. These findings reported here, for the first time, imply that phenotypic switching in the candidal biofilms differs from that in the planktonic growth, and affects multiple biological attributes.  相似文献   

8.
9.
Barada G  Basma R  Khalaf RA 《Mycopathologia》2008,165(3):115-125
The present study involves collecting 125 isolates labeled as C. albicans from five different Lebanese hospitals and utilizing the microsatellite genotyping test to determine the following: first, the accuracy of hospital identification by comparing microsatellite results to hospital results. Second, the frequency and genotypes of infectious strains present relative to tissue and hospital location- a possible indicator of nosocomial infection, and third, a possible relationship between lack of microsatellite heterozygosity to azole resistance. Our results showed that the error in hospital identification varied from 2 to 33%, averaging at 7%, with the highest identification error in stool. Misidentified isolates were mainly Candida tropicalis followed by C. glabrata and C. parapsilosis. Strains with similar genotypes were also found to occur within certain hospitals suggesting the possibility of nosocomial infection. Finally, a relationship between lack of heterozygosity and azole resistance was observed since nine out of 10 homozygous isolates sharing a common allele with a heterozygote strain were sensitive to all drugs tested, whereas the homozygous genotype was resistant to at least one drug.  相似文献   

10.
Three new species of Candida and a new combination in the genus Hyphopichia are proposed from phylogenetic analysis of nucleotide divergence in domains D1/D2 of the large subunit (26S) rDNA. The new taxa and their type strains are the following: Candida bentonensis sp. nov. (NRRL YB-2364, CBS 9994), Candida hispaniensis sp. nov. (NRRL Y-5580, CBS 9996), Candida pseudorhagii sp. nov. (NRRL YB-2076, CBS 9998) and Hyphopichia heimii comb. nov. (NRRL Y-7502, CBS 6139), basionym Pichia heimii Pignal. Phylogenetic analysis placed C. pseudorhagii and H. heimii in the Hyphopichia clade whereas C. bentonensis and C. hispaniensis are members of the Yarrowia clade.  相似文献   

11.
The Drosophila melanogaster broad locus is essential for normal metamorphic development. Broad encodes three genetically distinct functions (rbp, br, and 2Bc) and a family of four zinc-finger DNA-binding proteins (Z1-Z4). The Z1, Z2, and Z3 protein isoforms are primarily associated with the rbp, br, and 2Bc genetic functions respectively. The Z4 protein isoform also provides some rbp genetic function, however an essential function for the Z4 isoform in metamorphosis has not been identified. To determine the degree of conservation of Z4 function between the tobacco hornworm Manduca sexta and Drosophila we generated transgenic Drosophila expressing the Manduca broad Z4 isoform and used this transgene to rescue rbp mutant lethality during Drosophila metamorphosis. We find that the Manduca Z4 protein has significant biological activity in Drosophila with respect to rescue of rbp-associated lethality. There was also some overlap in effects on cuticle gene expression between the Manduca Z4 and Drosophila Z1 isoforms that was not shared with the Drosophila Z4 isoform. Our findings show that Z4 function has been conserved over the 260-million-year period since the divergence of Diptera and Lepidoptera, and are consistent with the hypothesis that the Drosophila Z4 and Manduca Z4 isoforms have essential roles in metamorphosis.Edited by M. Akam  相似文献   

12.
Recent studies of glucose (Glc) sensing and signaling have revealed that Glc acts as a critical signaling molecule in higher plants. Several Glc sensing-defective Arabidopsis mutants have been characterized in detail, and the corresponding genes encoding Glc-signaling proteins have been isolated. However, the full complexity of Glc signaling in higher plants is not yet fully understood. Here, we report the identification and characterization of a new Glc-insensitive mutant, gaolaozhuangren2 (glz2), which was isolated from transposon mutagenesis experiments in Arabidopsis. In addition to its insensitivity to Glc, the glz2 plant exhibits several developmental defects such as short stature with reduced apical dominance, short roots, small and dark-green leaves, late flowering and female sterility. Treatment with 4% Glc blocked expression of the OE33 gene in wild-type plants, whereas expression of this gene was unchanged in the glz2 mutant plants. Taken together, our results suggest that the GLZ2 gene is required for normal glucose response and development of Arabidopsis.Mingjie Chen and Xiaoxiang Xia contributed equally to this work.  相似文献   

13.
A pea rust fungus, Uromyces viciae-fabae, has been classified into two varieties, var. viciae-fabae and var. orobi, based on differences in urediniospore wall thickness and putative host specificity in Japan. In principal component analyses, morphological features of urediniospores and teliospores of 94 rust specimens from Vicia, Lathyrus, and Pisum did not show definite host-specific morphological groups. In molecular analyses, 23 Uromyces specimens from Vicia, Lathyrus, and Pisum formed a single genetic clade based on D1/D2 and ITS regions. Four isolates of U. viciae-fabae from V. cracca and V. unijuga could infect and sporulate on P. sativum. These results suggest that U. viciae-fabae populations on different host plants are not biologically differentiated into groups that can be recognized as varieties.Contribution no. 184, Laboratory of Plant Parasitic Mycology, Institute of Agriculture and Forestry, University of Tsukuba, Japan  相似文献   

14.
Floral development in three species each of Leptospermum and Kunzea, and one species of Agonis, is described and compared. Differences in the number of stamens and their arrangement in the flower at anthesis are determined by the growth dynamics of the bud. In Leptospermum, early expansion of the bud is predominantly in the axial direction and causes the stamen primordia to be initiated in antepetalous chevrons. In Kunzea, early expansion occurs predominantly in the lateral direction and successive iterations of stamen primordia are inserted alternately at more or less the same level. In both genera, further expansion in the lateral plane spreads the stamens into a ring around the hypanthium. Agonis flexuosa is similar to Leptospermum. Other variable factors include the timing at which stamen initiation commences (earlier in Leptospermum than Kunzea), the duration of stamen initiation (hence the total number of stamens produced – varies within genera), and very late differential expansion that forces stamens into secondary antesepalous groups in A. flexuosa and L. myrsinoides.The authors thank Dr H. Toelken for kindly providing some material and the impetus for this project. This research was supported by Australian Research Council grant AS19131815.  相似文献   

15.
16.
Part of the challenge of the post-genomic world is to identify functional elements within the wide array of information generated by genome sequencing. Although cross-species comparisons and investigation of rates of sequence divergence are an efficient approach, the relationship between sequence divergence and functional conservation is not clear. Here, we use a comparative approach to examine questions of evolutionary rates and conserved function within the guanine nucleotide-binding protein (G protein) gene family in nematodes of the genus Caenorhabditis. In particular, we show that, in cases where the Caenorhabditis elegans ortholog shows a loss-of-function phenotype, G protein genes of C. elegans and Caenorhabditis briggsae diverge on average three times more slowly than G protein genes that do not exhibit any phenotype when mutated in C. elegans, suggesting that genes with loss of function phenotypes are subject to stronger selective constraints in relation to their function in both species. Our results also indicate that selection is as strong on G proteins involved in environmental perception as it is on those controlling other important processes. Finally, using phylogenetic footprinting, we identify a conserved non-coding motif present in multiple copies in the genomes of four species of Caenorhabditis. The presence of this motif in the same intron in the gpa-1 genes of C. elegans, C. briggsae and Caenorhabditis remanei suggests that it plays a role in the regulation of gpa-1, as well as other loci.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

17.
Genomic, proteomic, phylogenetic and evolutionary aspects of a novel gene encoding a putative chloroplast-targeted sulfate permease of prokaryotic origin in the green alga Chlamydomonas reinhardtii are described. This nuclear-encoded sulfate permease gene (SulP) contains four introns, whereas all other known chloroplast sulfate permease genes lack introns and are encoded by the chloroplast genome. The deduced amino acid sequence of the protein showed an extended N-terminus, which includes a putative chloroplast transit peptide. The mature protein contains seven transmembrane domains and two large hydrophilic loops. This novel prokaryotic-origin gene probably migrated from the chloroplast to the nuclear genome during evolution of C. reinhardtii. The SulP gene, or any of its homologues, has not been retained in vascular plants, e.g. Arabidopsis thaliana, although it is encountered in the chloroplast genome of a liverwort (Marchantia polymorpha). A comparative structural analysis and phylogenetic origin of chloroplast sulfate permeases in a variety of species is presented.  相似文献   

18.
Cao X  Li K  Suh SG  Guo T  Becraft PW 《Planta》2005,220(5):645-657
The maize (Zea mays L.) CRINKLY4 (CR4) gene encodes a serine/threonine receptor-like kinase that controls an array of developmental processes in the plant and endosperm. The Arabidopsis thaliana (L.) Heynh. genome encodes an ortholog of CR4, ACR4, and four CRINKLY4-RELATED (CRR) proteins: AtCRR1, AtCRR2, AtCRR3 and AtCRK1. The available genome sequence of rice (Oryza sativa L.) encodes a CR4 ortholog, OsCR4, and four CRR proteins: OsCRR1, OsCRR2, OsCRR3 and OsCRR4, not necessarily orthologous to the Arabidopsis CRRs. A phylogenetic study showed that AtCRR1 and AtCRR2 form a clade closest to the CR4 group while all the other CRRs form a separate cluster. The five Arabidopsis genes are differentially expressed in various tissues. A construct formed by fusion of the ACR4 promoter and the GUS reporter, ACR4::GUS, is expressed primarily in developing tissues of the shoot. The ACR4 cytoplasmic domain functions in vitro as a serine/threonine kinase, while the AtCRR1 and AtCRR2 kinases are not active. The ability of ACR4 to phosphorylate AtCRR2 suggests that they might function in the same signal transduction pathway. T-DNA insertions were obtained in ACR4, AtCRR1, AtCRR2, AtCRR3 and AtCRK1. Mutations in acr4 show a phenotype restricted to the integuments and seed coat, suggesting that Arabidopsis might contain a redundant function that is lacking in maize. The lack of obvious mutant phenotypes in the crr mutants indicates they are not required for the hypothetical redundant function.  相似文献   

19.
Flower-visiting beetles belonging to three species of Cetoniidae were collected on three mountains near Beijing, China, and yeasts were isolated from the gut of the insects collected. Based on the 26S rDNA D1/D2 domain and internal transcribed spacer (ITS) region sequence analysis and phenotypic characterization, four novel anamorphic yeast species located in the Candida albicans/Lodderomyces elongisporus clade were identified from 18 of the strains isolated. The new species and type strains are designated as Candida blackwellae AS 2.3639T (=CBS 10843T), Candida jiufengensis AS 2.3688T (=CBS 10846T), Candida oxycetoniae AS 2.3656T (=CBS 10844T), and Candida pseudojiufengensis AS 2.3693T (=CBS 10847T). C. blackwellae sp. nov. was basal to the branch formed by C. albicans and C. dubliniensis with moderately strong bootstrap support. The closest relative of C. oxycetoniae was L. elongisporus. C. jiufengensis sp. nov. and C. pseudojiufengensis sp. nov. were closely related with each other and formed a branch in a subclade represented by C. parapsilosis and L. elongisporus.  相似文献   

20.
Candida albicans is a human fungal pathogen and has been extensively studied because of its clinical importance. Comprehensive gene analyses have, however, made little progress. This is because of the diploid and asexual characteristics of the fungus that hamper gene disruptions. In this study, we found that ultraviolet (UV) irradiation, as well as mutagen treatment, strongly stimulated loss of heterozygosity (LOH) in strains harboring artificially constructed heterozygosity. UV-induced LOH occurred more frequently in cells within the logarithmic phase of growth compared to those within the stationary phase of growth. This was observed at all loci tested on chromosome 7, except for a locus neighboring the centromere. C. albicans RAD52, whose orthologue in Saccharomyces cerevisiae was reported to be involved in DNA repair by homologous recombination, was shown to be required for UV-induced LOH. These results suggest that high efficiency LOH caused by UV irradiation could be a prominent tool for gene analyses in C. albicans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号