共查询到20条相似文献,搜索用时 15 毫秒
1.
Bovine trophoblasts actively proliferate to elongate blastocysts before implantation. The trophoblast at this stage secretes cytokines and starts to differentiate into an endocrine cell (binucleate cell) for successful pregnancy. Intracellular calcium ([Ca 2+] i) may act as a second messenger in the trophoblast response. In this study, we investigated [Ca 2+] i signals in a bovine trophoblast cell line (BT-1) using fura-2 fluorescence. We found that an application of ATP (1 M) induced a transient increase in [Ca 2+] i in BT-1 cells. The ATP-induced increase was not affected by the removal of extracellular Ca 2+, but was suppressed by suramin (100 M), an antagonist of P2 receptors. Pretreatment with pertussis toxin (0.1 or 1 g/ml) partially inhibited the response to ATP. The order of potency to increase [Ca 2+] i was ATP=UTP>ADP. ATP-induced [Ca 2+] i responses preferentially occurred in cells at the periphery of the colony. The reduced responses at the center of the colony were associated with an increase in cell density and decrease in bromodeoxyuridine incorporation. These results indicated that ATP stimulated P2Y receptors coupled to pertussis toxin-sensitive and -insensitive G proteins, leading to an increase in [Ca 2+] i as a result of release of Ca 2+ from intracellular stores in BT-1 cells. The occurrence of ATP-induced [Ca 2+] i signals depended on the cell confluence and reflected the high proliferative activity of the trophoblast cell population.This work was supported by grants from the Bio-oriented Technology Research Advancement Institution (BRAIN), and the Organized Research Combination System in the Science and Technology Agency of Japan. H.N. is a domestic research fellow supported by Japan Society for the Promotion of Science. A.S. is supported by a post-doctoral fellowship from the Japan Science and Technology Corporation. 相似文献
2.
The current work presents results of experiments on the calcium response evoked by the stimulation by extracellular nucleotides
occurring in control, nonstarved glioma C6 cells and in cells after long-term (96 h) serum starvation. Three nucleotide receptors
were studied: P2Y 1, P2Y 2 and P2Y 12. Two of them, P2Y 1 and P2Y 2, directly stimulate calcium response. The protein level of the P2Y 2 receptor did not change during the serum starvation, while P2Y 1 protein level fell dramatically. Observed changes in the calcium response generated by P2Y 1 are directly correlated with the receptor protein level as well as with the amount of calcium present in the intracellular
calcium stores, partially depleted during starvation process. The third receptor, P2Y 12, did not directly evoke calcium response, however it is activated by the same ligand as P2Y 1. The experiments with AR-C69941MX, the P2Y 12-specific antagonist, indicated that in control and serum-starved cells, calcium response evoked by P2Y 1 receptor is potentiated by the activity of P2Y 12-dependent signaling pathways. This potentiation may be mediated by P2Y 12 inhibitory effect on the plasma membrane calcium pump. The calcium influx enhanced by the cooperation of P2Y 1 and P2Y 12 receptor activity directly depends on the capacitative calcium entrance mechanism. 相似文献
3.
The P2 purinergic receptor family implicated in many physiological processes, including neurotransmission, mechanical adaptation and inflammation, consists of ATP-gated non-specific cation channels P2XRs and G-protein coupled receptors P2YRs. Different cells, including bone forming osteoblasts, express multiple P2 receptors; however, how P2X and P2Y receptors interact in generating cellular responses to various doses of [ATP] remains poorly understood. Using primary bone marrow and compact bone derived osteoblasts and BMP2-expressing C2C12 osteoblastic cells, we demonstrated conserved features in the P2-mediated Ca 2+ responses to ATP, including a transition of Ca 2+ response signatures from transient at low [ATP] to oscillatory at moderate [ATP], and back to transient at high [ATP], and a non-monotonic changes in the response magnitudes which exhibited two troughs at 10 −4 and 10 −2 M [ATP]. We identified P2Y2 and P2X7 receptors as predominantly contributing to these responses and constructed a mathematical model of P2Y2R-induced inositol trisphosphate (IP 3) mediated Ca 2+ release coupled to a Markov model of P2X7R dynamics to study this system. Model predictions were validated using parental and CRISPR/Cas9-generated P2Y2 and P2Y7 knockouts in osteoblastic C2C12-BMP cells. Activation of P2Y2 by progressively increasing [ATP] induced a transition from transient to oscillatory to transient Ca 2+ responses due to the biphasic nature of IP 3Rs and the interaction of SERCA pumps with IP 3Rs. At high [ATP], activation of P2X7R modulated the response magnitudes through an interplay between the biphasic nature of IP 3Rs and the desensitization kinetics of P2X7Rs. Moreover, we found that P2Y2 activity may alter the kinetics of P2X7 towards favouring naïve state activation. Finally, we demonstrated the functional consequences of lacking P2Y2 or P2X7 in osteoblast mechanotransduction. This study thus provides important insights into the biophysical mechanisms underlying ATP-dependent Ca 2+ response signatures, which are important in mediating bone mechanoadaptation. 相似文献
4.
Local, global and propagating calcium (Ca(2+)) signals provide the substrate for glial excitability. Here we analyse Ca(2+) permeability of NMDA and P2X(1/5) receptors expressed in cortical astrocytes and provide evidence that activation of these receptors trigger astroglial Ca(2+) signals when stimulated by either endogenous agonists or by synaptic release of neurotransmitters. The Ca(2+) permeability of the ionotropic receptors was determined by reversal potential shift analysis; the permeability ratio P(Ca)/P(K) was 3.1 for NMDA receptors and 2.2 for P2X(1/5) receptors. Selective stimulation of ionotropic receptors (with NMDA and α,β-methyleneATP) in freshly isolated cortical astrocytes induced ion currents associated with transient increases in cytosolic Ca(2+) concentration ([Ca(2+)](i)). Stimulation of neuronal afferents in cortical slices triggered glial synaptic currents and [Ca(2+)](i) responses, which were partially blocked by selective antagonists of NMDA (D-AP5 and UBP141) and P2X(1/5) (NF449) receptors. We conclude that ionotropic receptors contribute to astroglial Ca(2+) signalling and may provide a specific mechanism for fast neuronal-glial signalling at the synaptic level. 相似文献
5.
ATP increases intracellular calcium concentration ([Ca(2+)](i)) in supraoptic nucleus (SON) neurons in hypothalamo-neurohypophyseal system explants loaded with the Ca(2+)-sensitive dye, fura 2-AM. Involvement of P2X purinergic receptors (P2XR) in this response was anticipated, because ATP stimulation of vasopressin release from hypothalamo-neurohypophyseal system explants required activation of P2XRs, and activation of P2XRs induced an increase in [Ca(2+)](i) in dissociated SON neurons. However, the ATP-induced increase in [Ca(2+)](i) persisted after removal of Ca(2+) from the perifusate ([Ca(2+)](o)). This suggested involvement of P2Y purinergic receptors (P2YR), because P2YRs induce Ca(2+) release from intracellular stores, whereas P2XRs are Ca(2+)-permeable ion channels. Depletion of [Ca(2+)](i) stores with thapsigargin (TG) prevented the ATP-induced increase in [Ca(2+)](i) in zero, but not in 2 mM [Ca(2+)](o), indicating that both Ca(2+) influx and release of intracellular Ca(2+) contribute to the ATP response. Ca(2+) influx was partially blocked by cadmium, indicating a contribution of voltage-gated Ca(2+) channels. PPADS (pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid), and iso-PPADS, P2XR antagonists, attenuated, but did not abolish, the ATP-induced increase in [Ca(2+)](i). Combined treatment with PPADS or iso-PPADS and TG prevented the response. A cocktail of P2YR agonists consisting of UTP, UDP, and 2-methylthio-ADP increased [Ca(2+)](i) (with or without tetrodotoxin) that was markedly attenuated by TG. 2-Methylthio-ADP alone induced consistent and larger increases in [Ca(2+)](i) than UTP or UDP. MRS2179, a specific P2Y(1)R antagonist, eliminated the response to ATP in zero [Ca(2+)](o). Thus, both P2XR and P2YR participate in the ATP-induced increase in [Ca(2+)](i), and the P2Y(1)R subtype is more prominent than P2Y(2)R, P2Y(4)R, or P2Y(6)R in SON. 相似文献
6.
ATP induces Ca(2+) influx across the cell membrane and activates release from intracellular Ca(2+) pools in vascular endothelial cells (ECs). Ca(2+) signaling leads to the modification of a variety of EC functions, including the production of vasoactive substances such as nitric oxide and prostacyclin. However, the molecular mechanisms for ATP-induced Ca(2+) influx in ECs have not been thoroughly clarified. Here we demonstrate evidence that a P2X(4) receptor for an ATP-gated cation channel is predominantly expressed in human ECs and is involved in the ATP-induced Ca(2+) influx. Northern blot analysis distinctly showed the expression of P2X(4) mRNA in human ECs cultured from the umbilical vein, aorta, pulmonary artery, and skin microvessels. Competitive PCR revealed that P2X(4) mRNA expression was much higher in ECs than was the expression of other subtypes, including P2X(1), P2X(3), P2X(5), and P2X(7). Treatment of ECs with antisense oligonucleotides designed to target the P2X(4) receptor decreased the P2X(4) mRNA and protein levels to approximately 25% of control levels and markedly prevented the ATP-induced Ca(2+) influx. 相似文献
7.
The expression of the seven P2X receptor subtypes and of two P2Y receptors was examined immunohistochemically and by in situ hybridisation in thymi of adult male rats. P2X4, P2Y2 and 4 receptor mRNA colocalisation studies combining in situ hybridisation and immunohistochemistry were also carried out. P2X and P2Y receptors were found on thymocytes. P2X receptors were also abundant in cells of the thymic microenvironment, involved in control of T-cell maturation in vivo. We are the first to describe the expression of P2X4 receptors on thymocytes and confirm the finding of P2X1 and P2Y2 receptors on subpopulations of lymphocytes. P2X1,2,3,4 and 5 receptors were present in blood vessels of the thymus. P2X1,2 and 4 receptors were detected in vascular smooth muscle, while P2X3 receptors appeared to be associated with endothelial cells; some small arteries were positive for P2X5, possibly labelling vascular smooth muscle or fibroblasts in the adventitia. P2X2,3,6 and 7 receptors were found on thymic epithelial cells. P2X2 and 3 receptors were abundant on medullary epithelial cells, whilst P2X6 receptors were prominent in Hassall's corpuscles. P2X2 receptors were found on subcapsular and perivascular epithelial cells. P2X2,6 and 7 receptors were detected in epithelial cells along the thymic septa. Expression of P2X receptors was also investigated by Western blotting of crude thymic tissue extracts under reducing conditions. All seven P2X receptor subtypes were found to be dimers of approximately 70 kDa and 140 kDa molecular weight. ATP-mediated apoptosis and cell proliferation of thymocytes are discussed. 相似文献
8.
Activation of purinoceptor by ATP induces in eosinophils various cell responses including calcium transients, actin polymerization, production of reactive oxygen metabolites, CD11b-expression, and chemotaxis. Here, the effect of ion channel-gated P2X and/or G protein-coupled P2Y receptor agonists ATP, ATPgammaS, alpha,beta-meATP, 2-MeSATP, BzATP, ADP, CTP, and UTP on the intracellular Ca(2+)-mobilization, actin polymerization, production of reactive oxygen metabolites, CD11b expression and chemotaxis of human eosinophils were measured and the biological activity was analyzed. Although all tested nucleotides were able to induce all these cell responses, the biological activity of the analyzed nucleotides were distinct. Agonists of the G protein-coupled P2Y receptors such as 2-MeSATP, UTP, and ADP have a higher biological activity for production of reactive oxygen metabolites, actin polymerization and chemotaxis in comparison to the ion channel-gated P2X agonists alphabeta-meATP, BzATP, and CTP. In contrast, P2Y and P2X agonist showed similar potencies in respect to intracellular calcium transient and CD11b up-regulation. This conclusion was further supported by experiments with receptor iso-type antagonist KN62, EGTA or with the G(i) protein-inactivating pertussis toxin. These findings indicate participation of different purinorecptors in the regulation of cell responses in eosinophils. 相似文献
9.
The roles of P(2X1)and P(2T AC)receptors in ADP-evoked Ca(2+)signalling were investigated in fura-2-loaded human platelets. Desensitization of the P(2X1)receptor with the selective agonist, alphabeta-methylene ATP, reduced the integral of the ADP-evoked rise in [Ca(2+)](i)to about 90% of control; a reduction equivalent to the integral of the P(2X1)-evoked response alone. After elevating cAMP or cGMP levels using prostaglandin E(1)or sodium nitroprusside, prior P(2X1)desensitization reduced the integral of the ADP-evoked response to about 70% of control. This reduction was greater than the integral of the P(2X1)-evoked response alone under the same conditions, suggesting rapidly activated Ca(2+)entry via the P(2X1)receptor potentiates Ca(2+)responses evoked via the phospholipase C-coupled P(2Y1)receptor. The P(2T AC)receptor antagonist, AR-C69931MX, at a concentration completely inhibiting aggregation, did not significantly affect the initial peaks but caused a significant reduction in the integrals of the ADP-evoked rises in [Ca(2+)](i)to about 71% or 77% of controls in the presence or absence of external Ca(2+)respectively. This suggests that the main effect of lowering cAMP levels after inhibition of adenylyl cyclase via P(2T AC)receptors may be reduced Ca(2+)removal from the cytosol. These results indicate that both the P(2X1)and P(2T AC)receptors play a significant role in ADP-evoked Ca(2+)signalling in human platelets. 相似文献
10.
Within the ion channel–coupled purine receptor (P2X) family, P2X7 has gained particular interest because of its role in immune responses and in the growth control of several malignancies. Typical hallmarks of P2X7 are nonselective and noninactivating cation currents that are elicited by high concentrations (0.1–10 mM) of extracellular ATP. Here, we observe spurious ATP-induced currents in HEK293 cells that neither express P2X7 nor display ATP-induced Ca 2+ influx or Yo-Pro-1 uptake. Although the biophysical properties of these ionic currents resemble those of P2X7 in terms of their reversal potential close to 0 mV, nonrectifying current-voltage relationship, current run-up during repeated ATP application, and augmentation in bath solutions containing low divalent cation (DIC) concentrations, they are poorly inhibited by established P2X7 antagonists. Because high ATP concentrations reduce the availability of DICs, these findings prompted us to ask whether other channel entities may become activated by our experimental regimen. Indeed, a bath solution with no added DICs yields similar currents and also a rapidly inactivating Na +-selective conductance. We provide evidence that TRPM7 and ASIC1a (acid-sensing ion channel type Ia)-like channels account for these noninactivating and phasic current components, respectively. Furthermore, we find ATP-induced currents in rat C6 glioma cells, which lack functional P2X receptors but express TRPM7. Thus, the observation of an atypical P2X7-like conductance may be caused by the activation of TRPM7 by ATP, which scavenges free DICs and thereby releases TRPM7 from permeation block. Because TRPM7 has a critical role in controlling the intracellular Mg 2+ homeostasis and regulating tumor growth, these data imply that the proposed role of P2X7 in C6 glioma cell proliferation deserves reevaluation. 相似文献
11.
Microglial cells are the primary immune effector cells in the brain. Extracellular ATP, e.g., released after brain injury,
may initiate microglial activation via stimulation of purinergic receptors. In the rat nucleus accumbens (NAc), the involvement
of P2X and P2Y receptors in the generation of microglial reaction in vivo was investigated. A stab wound in the NAc increased
immunoreactivity (IR) for P2X 1,2,4,7 and P2Y 1,2,4,6,12 receptors on microglial cells when visualized with confocal laser scanning microscopy. A prominent immunolabeling of P2X 7 receptors with antibodies directed against the ecto- or endodomain was found on Griffonia simplicifolia isolectin-B4-positive cells. Additionally, the P2X 7 receptor was colocalized with active caspase 3 but not with the anti-apoptotic marker pAkt. Four days after local application
of the agonists α,βmeATP, ADPβS, 2MeSATP, and BzATP, an increase in OX 42- and G. simplicifolia isolectin-IR was observed around the stab wound, quantified both densitometrically and by counting the number of ramified
and activated microglial cells, whereas UTPγS appeared to be ineffective. The P2 receptor antagonists PPADS and BBG decreased
the injury-induced increase of these IRs when given alone and in addition inhibited the agonist effects. Further, the intra-accumbally
applied P2X 7 receptor agonist BzATP induced an increase in the number of caspase-3-positive cells. These results indicate that ATP, acting
via different P2X and P2Y receptors, is a signaling molecule in microglial cell activation after injury in vivo. The up-regulation
of P2X 7-IR after injury suggests that this receptor is involved in apoptotic rather than proliferative effects. 相似文献
12.
Previous studies indicated that a ganglioside 9acGD3 (9-O-acetyl GD3) antibody [the J-Ab (Jones antibody)] reduces GCP (granule cell progenitor) migration in vitro and in vivo. We here investigated, using cerebellar explants of post-natal day (P) 6 mice, the mechanism by which 9acGD3 reduces GCP migration. We found that immunoblockade of the ganglioside with the J-Ab or the lack of GD3 synthase reduced GCP in vitro migration and the frequency of Ca 2+ oscillations. Immunocytochemistry and pharmacological assays indicated that GCPs expressed P2Y 1Rs (P2Y 1 receptors) and that deletion or blockade of these receptors decreased the migration rate of GCPs and the frequency of Ca 2+ oscillations. The reduction in P2Y 1-mediated calcium signals seen in Jones-treated and GD3 synthase-null GCPs were paralleled by P2Y 1R internalization. We conclude that 9acGD3 controls GCP migration by influencing P2Y 1R cellular distribution and function. 相似文献
13.
The broad expression pattern of the G protein-coupled P2Y receptors has demonstrated that these receptors are fundamental determinants in many physiological responses, including neuromodulation, vasodilation, inflammation, and cell migration. P2Y receptors couple either G q or G i upon activation, thereby activating different signaling pathways. Ionotropic ATP (P2X) receptors bind extracellular nucleotides, a signal which is transduced within the P2X protein complex into a cation channel opening, which usually leads to intracellular calcium concentration elevation. As such, this family of proteins initiates or shapes several cellular processes including synaptic transmission, gene expression, proliferation, migration, and apoptosis. The ever-growing range of applications for antibodies in the last 30 years attests to their major role in medicine and biological research. Antibodies have been used as therapeutic tools in cancer and inflammatory diseases, as diagnostic reagents (flow cytometry, ELISA, and immunohistochemistry, to name a few applications), and in widespread use in biological research, including Western blot, immunoprecipitation, and ELISPOT. In this article, we will showcase several of the advances that scientists around the world have achieved using the line of antibodies developed at Alomone Labs for P2Y and P2X receptors. 相似文献
14.
The broad expression pattern of the G protein-coupled P2Y receptors has demonstrated that these receptors are fundamental determinants in many physiological responses, including neuromodulation, vasodilation, inflammation, and cell migration. P2Y receptors couple either Gq or Gi upon activation, thereby activating different signaling pathways. Ionotropic ATP (P2X) receptors bind extracellular nucleotides, a signal which is transduced within the P2X protein complex into a cation channel opening, which usually leads to intracellular calcium concentration elevation. As such, this family of proteins initiates or shapes several cellular processes including synaptic transmission, gene expression, proliferation, migration, and apoptosis. The ever-growing range of applications for antibodies in the last 30 years attests to their major role in medicine and biological research. Antibodies have been used as therapeutic tools in cancer and inflammatory diseases, as diagnostic reagents (flow cytometry, ELISA, and immunohistochemistry, to name a few applications), and in widespread use in biological research, including Western blot, immunoprecipitation, and ELISPOT. In this article, we will showcase several of the advances that scientists around the world have achieved using the line of antibodies developed at Alomone Labs for P2Y and P2X receptors. 相似文献
15.
Ischemia-reperfusion injury remains a major clinical problem in liver transplantation. One contributing factor is mitochondrial calcium (mCa(2+)) overload, which triggers apoptosis; calcium also regulates mitochondrial respiration and adenosine 5'-triphosphate (ATP) production. Recently, we reported the presence of purinergic P2Y(1)- and P2Y(2)-like receptor proteins in mitochondrial membranes. Herein, we present an evaluation of the functional characteristics of these receptors. In experiments with isolated mitochondria, specific P2Y(1) and P2Y(2) receptors ligands: 2-methylthio-adenosine 5'-diphosphate (2meSADP) and uridine 5'-triphosphate (UTP), respectively, were used, and mitochondrial calcium uptake was measured. 2meSADP and UTP had a maximum effect at concentrations in the range of the known P2Y(1) and P2Y(2) receptors. The P2Y inhibitor phosphate-6-azophenyl-2',4'-disulfonate (PPADS) blocked the effects of both ligands. The phospholipase C (PLC) antagonist U73122 inhibited the effect of both ligands while its inactive analog U73343 had no effect. These data strongly support the hypothesis that mitochondrial Ca(2+) uptake is regulated in part by adenine nucleotides via a P2Y-like receptor mechanism that involves mitochondrial PLC activation. 相似文献
16.
This review article presents a collection of tool compounds that selectively block and are recommended for studying P2Y and P2X receptor subtypes, investigating their roles in physiology and validating them as future drug targets. Moreover, drug candidates and approved drugs for P2 receptors will be discussed. 相似文献
17.
Membrane currents and changes in the intracellular Ca2+ concentration ([Ca2+]i) were measured in HEK293 cells transfected with the human P2X3 receptor (HEK293-hP2X3). RT-PCR and immunocytochemistry indicated the additional presence of endogenous P2Y1 and to some extent P2Y4 receptors. P2 receptor agonists induced inward currents in HEK293-hP2X3 cells with the rank order of potency alpha,beta-meATP approximately ATP > ADP-beta-S > UTP. A comparable rise in [Ca2+]i was observed after the slow superfusion of ATP, ADP-beta-S and UTP; alpha,beta-meATP was ineffective. These data, in conjunction with results obtained by using the P2 receptor antagonists TNP-ATP, PPADS and MRS2179 indicate that the current response to alpha,beta-meATP is due to P2X3 receptor activation, while the ATP-induced rise in [Ca2+]i is evoked by P2Y1 and P2Y4 receptor activation. TCE depressed the alpha,beta-meATP current in a manner compatible with a non-competitive antagonism. The ATP-induced increase of [Ca2+]i was much less sensitive to the inhibitory effect of TCE than the current response to alpha,beta-meATP. The present study indicates that in HEK293-hP2X3 cells, TCE, but not ethanol, potently inhibits ligand-gated P2X3 receptors and, in addition, moderately interferes with G protein-coupled P2Y1 and P2Y4 receptors. Such an effect may be relevant for the interruption of pain transmission in dorsal root ganglion neurons following ingestion of chloral hydrate or trichloroethylene. 相似文献
18.
Purinoceptor subtypes were localised to various tissue types present within the nasal cavity of the rat, using immunohistochemical methods. P2X 3 receptor immunoreactivity was localised in the primary olfactory neurones located both in the olfactory epithelium and vomeronasal organs (VNO) and also on subepithelial nerve fibres in the respiratory region. P2X 5 receptor immunoreactivity was found in the squamous, respiratory and olfactory epithelial cells of the rat nasal mucosa. P2X 7 receptor immunoreactivity was also expressed in epithelial cells and colocalised with caspase 9 (an apoptotic marker), suggesting an association with apoptosis and epithelial turnover. P2Y 1 receptor immunoreactivity was found within the respiratory epithelium and submucosal glandular tissue. P2Y 2 receptor immunoreactivity was localised to the mucus-secreting cells within the VNO. The possible functional roles of these receptors are discussed. 相似文献
19.
In the majority of cells, the integrity of the plasmalemma is recurrently compromised by mechanical or chemical stress. Serum complement or bacterial pore-forming toxins can perforate the plasma membrane provoking uncontrolled Ca 2 + influx, loss of cytoplasmic constituents and cell lysis. Plasmalemmal blebbing has previously been shown to protect cells against bacterial pore-forming toxins. The activation of the P2X7 receptor (P2X7R), an ATP-gated trimeric membrane cation channel, triggers Ca 2 + influx and induces blebbing. We have investigated the role of the P2X7R as a regulator of plasmalemmal protection after toxin-induced membrane perforation caused by bacterial streptolysin O (SLO). 相似文献
20.
ATP is found in every cell, where it is a major source of energy. But in the nervous system, ATP also has additional actions, which include its role in fast synaptic transmission and modulation. Here I discuss the 'fast' actions of ATP at synapses, the properties of the receptors that are activated by ATP and the physiology of ATP signalling, with emphasis on its role in pain processing. 相似文献
|