首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Eggs of Heterobranchus longifilis Val. 1840 were artificially fertilized and incubated at a range of temperatures (20, 23, 25, 27, 29 and 32°C). The time from fertilization to hatching decreased with increasing temperature. No eggs survived to hatch at 20 and 32°C incubation temperatures, while at 23 and 29°C hatching was only minimal. Optimum hatching was obtained at 25 and 27°C, which corresponds to the ambient temperature range during the breeding season. Larvae of H. longifilis were reared for 11 days post-hatching at 20, 25, 27, 29 and 32°C. Growth increased with temperature (P < 0.05), whereas survival depicted an inverse relationship. Growth was minimal at 20°C and larvae rarely survived to the end of the experiment. Optimum temperature for the primary nursing of H. longifilis larvae was within the 25–27°C temperature range.  相似文献   

2.
This study assesses the influence of thermal regime on the development, survival rates and early growth of embryos of sea lamprey Petromyzon marinus incubated at five constant temperatures (7, 11, 15, 19 and 23° C). The time from fertilization to 50% hatching and from hatching to 50% burrowing were inversely related to incubation temperature. All the embryos incubated at 7° C died at very early stages, while those maintained at 11° C did not attain the burrowing stage. Survival from fertilization to hatching was 61, 89, 91 and 89% at 11, 15, 19 and 23° C, decreasing to 58, 70 and 70% from hatching to burrowing at 15, 19 and 23° C, respectively. Larvae reared during the first 3 months of exogenous feeding in a common environment at constant 21° C, revealed maximum survival for an incubation temperature of 15° C (43% of burrowed larvae) decreasing strongly at 19° C (16%) and 23° C (one suvivor among 240 larvae). Body length at the burrowing stage was maximum for embryos incubated at 19° C, but body mass increased in the interval 15–23° C. Mean incubation temperatures experienced by 117 broods during the embryonic development in the source river were estimated in 15·3±2·30° C and 16·7±1·76° C (mean±1 s.d .) for the periods fertilization-to-hatching and hatching-to burrowing, respectively.  相似文献   

3.
The effect of temperature on the rates of development and hatching of artificially fertilized eggs of the scad, Trachurus trachurus L., was studied using a thermal gradient incubator. Development of eggs through to hatching occurred within the temperature range 10.5–21.2° C, with greatest survival between 12.2 and 15.8° C. The mean egg diameter was 0.94 mm and mean length of larvae on hatching 2.46 mm. Regressions of development time on mean incubation temperature are presented. The data are compared with those reported in the literature and related to sea temperatures in scad spawning grounds.  相似文献   

4.
Atlantic halibut eggs and yolk-sac larvae were incubated at 1, 5 and 8° C. Eggs incubated at 8° C gave slightly shorter larvae at hatching with a significantly smaller total cross-sectional area of white muscle fibres than eggs incubated at 5° C. Transport of eggs 2 days prior to hatching gave significantly longer larvae at hatching with a significantly larger red fibre cross-sectional area than when eggs were transported shortly after the blastopore closure. A higher survival until 230 degree days after hatching was also observed in the former group. All eggs incubated at 1° C died before hatching and all larvae incubated at 1° C died before 45 degree days after hatching. From hatching until 230 degree days the total white cross-sectional area increased threefold in all temperature groups. The increase in white cross-sectional area was entirely due to hypertrophy between hatching and 150 degree days (10 mm L S). Recruitment of new white fibres increased in germinal zones at the dorsal, ventral and lateral borders of the myotome from 150 degree days onwards, but at 230 degree days (12–13 mm L S) the recruitment fibre zone constituted <10% of the total white cross-sectional area. Larval incubation at 8° C gave slightly longer larvae with a significantly larger cross-sectional area of recruitment fibres at 230 degree days than incubation at 5° C. The larval group incubated at 8° C also had a significantly lower survival until 230 degree days than did the 5° C group. Incubation temperature regimes did not affect the volume density of myofibrils in the axial muscle fibres at 230 degree days. Thus hypertrophy is the predominant mechanism of axial white muscle growth in Atlantic halibut yolk-sac larvae and an increased rearing temperature during the yolk-sac stage increases white muscle fibre hyperplasia.  相似文献   

5.
SUMMARY 1. The objective was to compare variations in egg hatching between the two species (interspecific variations) and between populations of the same species (intraspecific variations). There were significant interspecific, but not intraspecific, differences in female size, adult life-span, egg production, hatching success, incubation periods and hatching periods.
2. The optimum temperature for hatching success within the range 3.8–22.1°C in the laboratory and the range over which at least 50% of the eggs hatched were lower for Chloroperia tripunctata (Scopoli) (8.5°C, 4.2–17.3°C) than for Siphonoperla torrentium (Pictet) (12.8°C, 6.1–19.4°C). Few eggs hatched at 22.r°C.
3. The relationship between incubation period (d days) and water temperature (T°C) was given by: d=1219/T1.368 for S. torrentium , d=253/T0.459 for C. tripunctata . Both equations successfully predicted incubation periods for eggs placed in a stream. The period over which eggs hatched was much longer for C. tripunctata than for S. torrentium at all temperatures.
4. The shorter incubation period (at r>5.6°C) and shorter hatching period for S. torrentium ensure that larvae of this species are already growing when eggs of C. tripunctata start to hatch, but the prolonged hatching period of the latter species ensures a long period of larval recruitment to the population. These differences in egg hatching may reduce competition between the two closely-related species.  相似文献   

6.
SUMMARY. The rate of development and mortality of perch Perca fluviatilis was studied at ten different constant temperatures. The rate of development was inversely related to the incubation temperature, whereas the rate of mortality was directly related to the incubation temperature. The sum of heat (Σ H , degree-days) required for 10, 50 and 90% of the eggs to hatch was found to be constant, regardless of the incubation temperature, with mean values (with 95% confidence limits) of 91.4 (83.3–102.0) degree-days above 4.6°C for 10% hatched, 97.0 (90.9–104.2) degree-days above 4.9°C for 50% hatched and 101.0 (94.3–108.7) degree-days above 5.0°C for 90% hatched. Mortality among the different embryological stages was highest for the pre-hatching stage (i.e. when eye-pigment has been formed) at all temperatures. High mortality among the early stages occurred at temperatures below 8°C and above 12°C.  相似文献   

7.
Abstract
No immature stages of Culex annulirostris were found during field sampling in 1979–1980 when the average water temperature was < 17 °C; they reappeared when the average water temperature was 19 °C and reached the peak density (mean 107 immatures/cylinder) at 26.5 °C.
The effect of 6 temperatures (15–40°C) on egg hatching, development and survival of the immature stages of Cx annulirostris in the laboratory showed that at 15 and 40°C, eggs failed to hatch and larvae died in the first instars. The optimum temperatures for egg hatching and the survival of immature stages were 25 and 30°C. At these temperatures, 85 and 82% respectively of egg rafts hatched, the mean number of larvae per raft was 258 ± 9.8 and 260 ± 11.4 with immature survival of 83.5 and 79.0% respectively. Mean time to hatch at 20–35°C ranged from 1.2 d (35°C) to 2.9 d (20 °C). Developmental times from first instar to adult ranged from 7.1 d (35 °C) to 25.2 d (20 °C). The threshold for development of the immatures was 15.6 ± 2.5°C and the thermal constant was 142.9 ± 26.5 day—degrees (incubation temperatures 20–35°C). At less suitable temperatures of 20 and 35 °C, hatching (57.5 and 45%), number larvae per raft (mean 139.8 ± 9.8 and 102.6 ± 14.2) and survival were low.  相似文献   

8.
SUMMARY. Eggs of Ephemerella ignita (Poda) were kept at eight constant temperatures (range 5.9–19.8°C) in the laboratory. Over 85% of the eggs hatched in the temperature range 10.0–14.2°C but the percentage decreased markedly to 39% at 5.9°C and 42% at 19.8°C. Hatching time (days after oviposition) decreased with increasing water temperature over the range 5.9–14.2°C and the relationship between the two variables was well described by a hyperbola. Therefore, the time taken for development was expressed in units of degree-days above a threshold temperature. Mean values (with 95%CL) were 552 (534–573) degree-days above 4.25°C for 10% of the eggs hatched, 862 (725–1064) degree-days above 3.57°C for 50% hatched and 1383 (1294–1486) degree-days above 3.14°C for 90% hatched. These values can be used to predict hatching times at temperatures below 14.68°C for 10% hatched, 14.54°C for 50% hatched and 14.45°C for 90% hatched. At higher temperatures, the hatching time and the number of degree-days required for development both increased with increasing temperature. Equations were developed to estimate the number of degree-days required for development at these higher temperatures.
Eggs were also placed in the Wilfin Beck, a small stony stream in the English Lake District. Maximum and minimum water temperatures were recorded in each week and the summation of degree-days was used to predict the dates on which 10%, 50% and 90% of the eggs should have hatched. There was good agreement between these estimates and the actual hatching times. Only 10–15% of the eggs hatched between October and late February with most of the eggs hatching in March, April and May. Nymphs hatching in October and November probably did not survive the winter.  相似文献   

9.
J. M. Elliott 《Ecography》1988,11(1):55-59
Adults were obtained from three populations of Taeniopteryx nebulosa and four populations of Brachyptera risi ; their eggs were incubated at seven constant temperatures (range 3.8–22.1°C). There were interspecific, but not intraspecific, differences in adult life-span, mean number of eggs laid per female, hatching success and egg incubation periods. The optimum temperature for hatching success and the range over which at least 50% of the eggs hatched were lower for T. nebulosa (6.5°C, 2.7–15.0°C) than for B. risi (9.0°C, 5.1–15.8°C). No eggs hatched at 22.1°C. The relationship between incubation period (d days) and water temperature (T°C) was given by; d = 326.4 T−1.015 for T. nebulosa , d = 824.0 T−0.739 for B. risi . Both equations successfully predicted incubation periods for eggs placed in a stream.
Hatching success and incubation periods were similar to those already published for a Norwegian population of T. nebulosa . The lack of significant intraspecific variation suggests that the genotypes associated with the variables examined in this study have remained remarkably stable in these two species in spite of the geographical isolation of their different populations.  相似文献   

10.
SUMMARY. 1. Newly-laid eggs of Coenagrion puella (L.) from a pond near Herzogenburg (Lower Austria) were kept at constant water temperatures (range c .3.5°C to c .28°C)in the laboratory. Hatching success varied with temperature; no eggs hatched below 12°C and nearly all hatched at c .l6°C. Hatching time decreased with increasing temperature and the relationship between the two variables within the range 12–28 °C was well described by a power law. The length of the hatching period was less than 12 days. Hatching times estimated from the power-law equations and those obtained in the field experiments were similar. Therefore both the hatching time and the length of the hatching period in the field could be estimated from the laboratory data for the range 12–28°C.
2. The maximum number of instars from egg to imago was 11; the average body length increment (mm) per moult was proportionately constant at c .26% and Dyar's rule was applicable. The interval between moults decreased with increasing temperature up to the seventh instar and the relationship between the two variables within the range 12–28°C was well described by a power law. The moulting interval for instars 8–11 ranged from 23 to 48 days and was relatively independent of temperature. No moulting occurred at temperatures below 12°C.
3. Larval growth was logistic in the laboratory and variations in mean logistic growth rate (range 0–2.5% length day−1) were related to mean temperature with no growth at temperatures <12°C. Larval growth rates in pond experiments were similar to those estimated from laboratory data, and therefore the regression equations obtained from the laboratory experiments are probably applicable to larval growth in the field.
4. Information on the life cycle of C. puella is briefly reviewed and it is concluded that C. puella from the pond near Herzogenburg has an univoltine life cycle.  相似文献   

11.
Fertilized Chondrostoma nasus eggs were incubated at 10, 13, 16 and 19° C until full resorption of the yolk sac. High survival was observed at 10–16° C (89–92% at the onset of external feeding), whereas at 19) C survival was depressed (76%). The time at which 5, 50 and 95% of individuals had hatched, filled the swim bladder, ingested the first food and fully resorbed the yolk sac was determined. An increase in temperature accelerated development and made it more synchronous. Within the period from fertilization to hatching embryonic development was theoretically arrested (t0 dev) at 8·8° C, and growth was arrested (t0gr) at 8·86° C. For the whole endogenous feeding period (from fertilization to full yolk resorption) the amount of matter transformed into tissue was temperature independent between 10° and 19° C. Respiration increased exponentially with age; the respiration increase was faster at higher temperatures, but, in general, metabolic expenditures of C. nasus were low. As a consequence, the efficiency of utilizing yolk energy for growth was high as compared with other fish species (57% during the whole endogenous feeding period); it was temperature independent. However, time was used less efficiently at low temperatures, increasing a risk of predation. Within the endogenous feeding period a shift from lower to higher temperatures for optimal yolk utilization efficiency was observed. The temperatures optimal for survival and energetic performance seem to be 13–16° C for egg incubation and 15–18° C for rearing of yolk-feeding larvae. Chondrostoma nasus is a potential candidate for aquaculture for restocking purposes.  相似文献   

12.
Incubation of eggs of tuatara, Sphenodon punctatus   总被引:3,自引:0,他引:3  
Eggs of the tuatara, Sphenodon punctatus , were incubated either buried or half buried in vermiculite at constant temperatures of 15, 18, 20, 22 and 25 °C and constant water potentials between —90 and —400 kPa. Many clutches failed completely, possibly because they had been taken from females prior to proper shell development. Failed eggs were significantly smaller than successful eggs. Incubation is unsuccessful at 15 °C. Hatching success is high between 18 and 22 °C but low at 25 °C, but equally successful between 18 and 22°C. Incubation is strongly influenced by temperature, with mean incubation periods of 328 days at 18 °C, 259 days at 20 °C, 169 days at 22 °C and 150 days at 25 °C. Water potential generally has little influence on incubation time at a given temperature. Buried eggs hatch sooner than partially buried eggs at 20 °C but the large range makes significance dubious.
Eggs on the driest substrata at 18 and 20 °C lose water initially but then gain water through the rest of incubation. Eggs in all other conditions gain water throughout incubation, with the rate of i water absorption being maintained or increasing late in incubation. The suggestion that increasing rate of water absorption late in incubation facilitates explosive hatching is not supported. Egg mass at the time of hatching varies from 132 to 398% of initial values, depending on incubation conditions. Final egg mass is not affected significantly by incubation temperature. Hence, rates of absorption increase with temperature.
Water potential has no influence on hatchling size. However, hatchlings from buried eggs generally are significantly larger than those from partially buried eggs.  相似文献   

13.
A. Shafir    J. G. van  As 《Journal of Zoology》1986,210(3):401-413
Egg laying of the fish-louse Argulus japonicus was observed and examined experimentally. The effect of temperature on development time and hatching yielded an inverse exponential function. Hatching started after 61–10 days in a temperature span of 15–35 °C. Eggs are laid in strings on hard substrata and covered by a gelatinous material. Females lay between 1–9 strings, 5–226 eggs per string, arranged in 1–6 rows. Four embryonic developmental stages were recognized and the mean hatching efficiency was 50% in the optimal temperature range of 20–30 °C. Hatching efficiency was not related to either the number of eggs in a string or the total number of eggs laid by any particular female. Argulus japonicus displays continuous egg-laying activity with a possibility of an overwintering mechanism which suggests a seasonality of a sort.  相似文献   

14.
Survival, growth and hatching of brown trout Salmo trutta embryos were studied using in situ incubation experiments in two lake outlet streams in Finland. The experimental design in both streams included an outlet site and a reference site far downstream. The date of hatching was recorded and the Elliott–Hurley model was then used to predict the time of emergence based on water temperature. For data analyses, the incubation period was divided into 'winter' (from fertilization to mid March) and 'spring' (from mid March until the end of the experiment). Temperature of the large-lake outlet remained at 1° C through the winter, while in other sites temperature was close to 0° C. In spring, temperature increased more slowly in the large-lake outlet. The survival of embryos was overall very high, from 83 to 98%, and they were larger in the outlets than in the downstream sites. Embryos hatched at the large-lake outlet in March, and 3–5 weeks later in the other sites. Although there were considerable between-site differences in hatching intervals, difference in expected 50% emergence dates of the earliest and latest site was only 4 days. Thus, any growth advantage that the outlet embryos had in winter disappeared by the end of the alevin period. Lake outlets, however, may be important for age 0 year brown trout later during the summer when other stream habitats do not provide adequate food resources.  相似文献   

15.
It is known that the low temperature is the most important factor inducing the pre-pupal diapause in Trichogramma species. The position of the thermosensitive period over the life cycle and temporal variation of the degree of responsiveness were investigated in T. embryophagum Htg. by transferring pre-imaginal stages between 'neutral' temperature of 15°C and 'diapause-inducing' temperature of 10°C. Our experiments showed that 6 days long exposure at 10°C significantly increased the percentage of diapausing pre-pupae when started during rather large part of development: from embryo up to early pre-pupa. The highest thermosensitivity was recorded during the embryo and the larval stages, with some decrease during the hatching period. Treatments with shorter cold exposures (2–3 days) gave similar results. Even 24 h long exposure at 10°C increased the percentage of diapausing pre-pupae when applied during egg or early larval stage. Being started at the same stage of development, longer cold exposures caused stronger increase in the percentage of diapausing individuals. The experiments did not reveal any significant daily changes in thermosensitivity: at 12 : 12 h light : dark, larvae subjected to the low temperature during six photophases showed practically the same percentage of diapausing individuals as those subjected to the low temperature during six scotophases, and as those subjected to the 3 days long uninterrupted cold exposure. Hence, in natural conditions even occasional short-term cold periods could be accumulated.  相似文献   

16.
The effects of temperature on maintenance and termination of embryonic diapause were investigated in Jining (35.4°N, 116.6°E) and Sihong (33.5°N, 118.2°E) strains of the Chinese rice grasshopper, Oxya chinensis Thunberg (Orthoptera: Catantopidae). Eggs of both strains entered diapause when incubated at 30, 25, or 20 °C. Chilling at 8 °C had an evident effect on diapause termination and almost all eggs chilled for 60 days ended diapause development. Chilling of eggs at 8 °C for only 20 days failed to result in any hatching at 20 °C, suggesting that such level of chilling was not enough to induce diapause termination. However, the treatment combining incubation of eggs at 30 °C for varying lengths of time with subsequent incubation to 20 °C had a distinct effect on the completion of diapause of the eggs. The results indicate that there were two temperature optima, that is, low temperature (chilling) and high temperature, for diapause development in this grasshopper species. Incubation of chilled eggs at 20 °C for 5–15 days followed by further incubation at 25 °C reduced termination of diapause significantly compared with the eggs only chilled at 8 °C. Exposure of eggs chilled at 8 °C to a pulse of 25 °C from 1 to 7 days, separated by a 20-day interval at 8 °C, resulted in a decrease in the percentage of successfully hatched eggs as the length of the pulse of 25 °C increased. The results suggest that diapause intensity may be restored at moderately high temperatures. This reversible change in diapause intensity would play an important role in maintaining diapause before winter.  相似文献   

17.
18.
SUMMARY 1. A laboratory study of egg development of the stonefly Isoperla obscura (Zetterstedt) collected from the stream Flybekken (southern Norway, 61°25'N, 8°48'E, 1373 m a.s.l.) showed a short diapause followed by a prolonged period of postdiapause quiescence.
2. Diapause occurred over a wide range of temperatures (−20°C to +8°C), but 0–1°C was the most favourable for fast diapause development and successful hatching. Diapause development required temperatures below 12°C, but sub-zero diapause temperatures increased mortality during the postdiapause phase, as well as reducing hatching success.
3. The threshold for initiation of postdiapausal development was about 1–2°C. Development rate increased and variation in development time decreased at higher water temperatures. These may be important characteristics to ensure seasonal and geographical synchrony of development in individual populations. Low postdiapausal temperatures were unfavourable, despite a subsequent increase in water temperature. No response to postdiapausal photoperiod was detected.
4. The results agreed well with conditions noted in the natural environment, and with the abundance of this species at high altitudes and latitudes in Fennoscandia. Nevertheless, Isoperla obscura also occurs in streams in the maritime parts of western Norway. The results of the present study suggest that egg development in these populations will prove to be different.  相似文献   

19.
The development and differentiation of the gonads of embryonic alligators incubated at 30 °C (100% female producing) and 33 °C (100% male producing) was investigated histologically. The stage of development of the gonad and differentiation into an ovary or a testis occurred at essentially the same time at both temperatures. This contrasts with the overall development of the embryos which was slower at the lower temperature. A few days prior to differentiation, gonads grew more quickly at 33 °C than they did at 30 °C. However, once differentiated into a presumptive testis, gonads reduced in volume so that at hatching presumptive testes were smaller than presumptive ovaries. It is hypothesized that synchrony/asynchrony of development of the gonad and the rest of the embryo may account for temperature-dependent sex determination.  相似文献   

20.
The present study aimed to characterize pulmonary vascular reactivity in the chicken embryo from the last stage of prenatal development and throughout the perinatal period. Isolated intrapulmonary arteries from non-internally pipped embryos at 19 days of incubation and from internally and externally pipped embryos at 21 days of incubation were studied. Arterial diameter and contractile responses to KCl, endothelin-1, and U-46619 increased with incubation but were unaffected by external pipping. In contrast, the contractions induced by norepinephrine, phenylephrine, and electric field stimulation decreased with development. No developmental changes were observed in endothelium-dependent [acetylcholine (ACh) and cyclopiazonic acid] or endothelium-independent [sodium nitroprusside (SNP)] relaxation. These relaxations were abolished by the soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. Endothelium-dependent relaxation was unaffected by blockade of cyclooxygenase or heme oxygenase but was significantly reduced by nitric oxide (NO) synthase inhibitors. Reduction of O2 concentration from 95 to 5% produced a marked reduction in ACh and SNP-induced relaxations. Chicken embryo pulmonary arteries show a marked endothelium-dependent relaxation that is unaffected by transition to ex ovo life. Endothelium-derived NO seems to be the main mediator responsible for this relaxation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号